
Vision-Based Behavior Acquisition For A Shooting Robot By Using
A Reinforcement Learning

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda
Dept. of Mech. Eng. for Computer-Controlled Machinery

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan
asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract

We propose a method which acquires a purposive
behavior for a mobile robot to shoot a ball into the
goal by using a vision-based reinforcement learning. A
mobile robot (an agent) does not need to know any
parameters of the 3-D environment or its kinematic-
s/dynamics. Information about the changes of the en-
vironment is only the image captured from a single TV
camera mounted on the robot. An action-value func-
tion in terms of state is to be learned. Image positions
of a ball and a goal are used as a state variable which
shows the effect of an action previously taken. After
the learning process, the robot tries to carry a ball n-
ear the goal and to shoot it. Both computer simulation
and real robot experiments are shown, and discussion
on the role of vision in the context of the vision-based
reinforcement learning is given.

1 Introduction

Due to its globally perceptive capability, vision
seems indispensable for autonomous agent(s) to ac-
quire reactive and purposive behaviors that can be
obtained through interactions with its environment.
The existing deliberative and incremental approach-
es in computer vision, however, do not seem to have
made the great advances in this context because these
methods often need huge amount of computation time
which is fatal in real time execution of robot tasks,
and they offer general descriptions of the scene which
might need more time to be transformed into the spec-
ified descriptions needed to accomplish tasks at hand.
Rather, these general descriptions are hard to be prop-
erly evaluated unless the task or purpose of an agen-
t is specified. From this viewpoint, purposive, task-
oriented, or so-called behavior-based approach seems
promising to evaluate the role of vision (when, where,
and what kind of information is necessary and how
accurate they should be) and finally to realize au-

tonomous agent.
Since Brooks [1, 2] proposed the behavior-based ap-

proach, his group invented several kinds of behavior-
based robots, such as [3] and [4]. Although these
robots can take reflexive actions against the environ-
ment, we still lack a capability of generating purposive
behaviors each of which consists of a sequence of ac-
tions to achieve the goal. We are studying the feasibil-
ity of providing this capability with our robot by using
vision. Arkin [5] proposed a hybrid approach with re-
active and deliberative methods for navigation task.
He encoded a priori world knowledge into the motor
schemas in order to generate the purposive behaviors.
Here, we intend to solve this problem with less world
knowledge and expect our robot to learn a behavior
though interactions with dynamic environment.

Environment

Agent

Action,State, as

Reward,r

Figure 1: The basic model of robot-environment
interaction

Reinforcement learning has recently been receiving
increased attention as a method for robot learning
with little or no a priori knowledge and higher ca-
pability of reactive and adaptive behaviors [6]. Fig.1



shows the basic model of robot-environment interac-
tion, where a robot and environment are modeled by
two synchronized finite state automatons interacting
in a discrete time cyclical processes. The robot senses
the current state of the environment and selects an ac-
tion. Based on the state and action, the environment
makes a transition to a new state and generates a re-
ward that is passed back to the robot. Through these
interactions, the robot learns a purposive behavior to
achieve a given goal.

Although the role of reinforcement learning is very
important to realize autonomous systems, the promi-
nence of that role is largely determined by the extent
to which it can be scaled to larger and complex robot
learning tasks. Many theoretical works have argued on
the convergence time of the learning, and how to speed
up it by using some heuristics and to extend these
techniques from a single goal task to multiple ones [7].
However, almost of them have only shown computer
simulations, and only a few real robot applications are
reported which are simple and less dynamic [8, 9]. Es-
pecially, the use of vision in the reinforcement learning
is very rare.

To the best of our knowledge, only Whitehead and
Ballard [10] argued this problem. Their task is a sim-
ple manipulation of blocks on the conveyer belt. Al-
though each block is colored to be easily discriminated,
they still have a large size of state space. To cope with
this problem, they assumed that observer could con-
trol its gaze to attended object so as to reduce the size
of the state space. However, this causes so-called “per-
ceptual aliasing” problem. That is, both the observer
motion and actual changes happened in the environ-
ment cause the changes inside the image captured by
the observer. Therefore, it seems difficult to discrim-
inate the both from only the image. Then, they pro-
posed a method to cope with this problem by adopting
the internal states and separating action command-
s into “Action frame” and “Attention frame” com-
mands. Thus, they encoded encoded a priori world
knowledge into state and action spaces.

In order to make the role of the reinforcement learn-
ing evident in realizing autonomous agents, we need
more applications in more dynamic and complex en-
vironment. In this paper, we propose a method which
acquires a purposive behavior for a mobile robot to
shoot a ball into the goal by using a vision-based rein-
forcement learning. We apply Q-learning method [11],
one of the widely used reinforcement learning schemes
to our problem. The robot is expected to learn a
shooting behavior without world knowledge such as
3-D locations and sizes of the goal and the ball or the

kinematics and dynamics of the robot itself. All the
information the robot can capture is the image posi-
tions of the ball and the goal from which we can infer
changes in the world caused by the robot’s actions.

The remainder of this article is structured as fol-
lows: In the next section, we give a brief overview of
Q-learning. We then explain the task and the learning
scheme in our method. Next, we show the experiments
with computer simulations and a real robot system.
Finally, we give concluding discussions.

2 Q-learning
Before getting into the details of our system, we

briefly review the basics of Q-learning. For more
through treatment, see [12]. We follow the explana-
tion of Q-learning by Kaelbling [13].

We assume that the robot can discriminate the set
S of distinct world states, and can take the set A
of actions on the world. The world is modeled as a
Markov process, making stochastic transitions based
on its current state and the action taken by the robot.
Let T (s, a, s′) be the probability that the world will
transit to the next state s′ from the current state-
action pair (s, a). For each state-action pair (s, a),
the reward r(s, a) is defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. A pol-
icy f is mapping from S to A. This sum is called the
return and is defined as:

∞∑
n=0

γnrt+n, (1)

where rt is the reward received at step t given that
the agent started in state s and executed policy f . γ
is the discounting factor, it controls to what degree
rewards in the distant future affect the total value of
a policy and is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal poli-
cy, using methods from dynamic programming [14]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct
the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′).

(2)



Because we do not know T and r initially, we construct
incremental estimates of the Q values on line. Starting
with Q(s, a) at any value, usually 0, every time an
action is taken update the Q value as follows:

Q(s, a) ⇐ (1−α)Q(s, a)+α(r(s, a)+γ max
a′∈A

Q(s′, a′)).

(3)
where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is
a leaning rate (between 0 and 1). The following is a
simple version of the 1-step Q-learning algorithm we
used here.

Initialization: Q ← a set of initial values for the
action-value function (e.g., all zeros).
Repeat forever:

1. s ← the current state
2. Select an action a that is usually consistent with

the policy f but occasionally an alternate.
3. Execute action a, and let s′ and r be the next

state and the reward received, respectively.
4. Update Q(s, a):

Q(s, a) ← (1−α)Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)).

(4)5. Update the policy f :

f(s) ← a such that Q(s, a) = max
b∈A

Q(s, b)

(5)
3 Task and Assumptions

Figure 2: The task is to shoot a ball into the
goal.

The task for a mobile robot is to shoot a ball in-
to the goal as shown in Fig.2. The problem we are
attacking here is to develop a method which automat-
ically acquires strategies how to do this. As a first
step, we simplify the environment in such a way that
the environment consists of only a ball the robot can
kick and a goal fixed on the ground.

If we know the exact three-dimensional parameters
of the environment and kinematics and dynamics of

Figure 3: A picture of the radio-controlled vehi-
cle.

the robot, we might be able to develop several meth-
ods to control it to shoot a ball into a goal. This is
not our intention. We intend to start with the visual
information only, that is, the image positions of the
ball and the goal. That is all the robot captures from
the environment. In order for the robot to take an
action against the environment, it has several motion
commands such as forward and turn left (See Fig.2).
Note that the robot does not even know any physical
meanings for these motion commands. The effects of
an action against the environment can be informed to
the robot only through the visual information. To en-
able to do that, the robot has to track the ball and/or
the goal inside image continuously. Fig.3 shows a
mobile robot, a ball, and a goal we used in the real
experiments.

4 Construction of State and Action
Sets

In order to apply Q-learning scheme to the task, we
define a number of sets and parameters. Many exist-
ing applications of the reinforcement learning schemes
have constructed the state and action spaces in such
a way that each action causes a state transition (e.g.
one action is forward, backward, left, or right, and
states are encoded by the locations of the agent) in
order to make the quantization problem (the struc-
tural credit assignment problem) easy. This makes a
gap between the computer simulations and real robot
systems. Each space should reflect the correspond-
ing physical space in which a state (an action) can be
perceived (taken). However, such construction of state
and action spaces sometimes causes a “state-action de-
viation” problem. In the followings, we describe how



to construct the state and action spaces, and then how
to cope with the state-action deviation problem.

4.1 Construction of Each Space

(a) a state set S

Only the information the robot can obtain about the
environment is the image supposed to be capturing
the ball and/or the goal. The ball image is quan-
tized into 9 sub-states, combinations of three posi-
tions (left, center, and right) and three sizes (large
(near), medium, and small (far)). The goal image has
27 sub-states, combinations of three parameters each
of which is quantized to three levels. Each sub-state
corresponds to one posture of the robot toward the
goal, that is, position and orientation of the robot in
the field. In addition to these 243 (27 × 9) states, we
add other states such as these cases in which only the
ball or the goal is captured in the image.

After some simulations, we realized that as long
as the robot captures the ball and the goal positions
in the image, it succeeds in shooting a ball. Howev-
er, once it lost the ball, it randomly moves because
it does not know to which direction it should move
to find the ball. This happens because the ball-lost s-
tate is just one, therefore it cannot determine in which
direction the ball is lost. Then, we separate the ball-
lost state into two states; the ball-lost-into-right and
the ball-lost-into-left states. Also, we set up goal-lost-
into-right and goal-lost-into-left states. This made the
robot behavior much better. As a result, we totally
have 319 states in the set S.

(b) an action set A

The robot can select an action to be taken against the
environment. In real system, the robot moves around
the field by a PWS (Power Wheeled Steering) sys-
tem with two independent motors. Since we can send
the motor control command to each of two motors in-
dependently, we quantized the action set in terms of
two motor commands ωl and ωr, each of which has 3
sub-actions (forward, stop, and back motions, respec-
tively). Totally, we have 9 actions in the action set
A.

Due to the peculiarity of the visual information,
that is, a small change near the observer might cause
a large change in image and vice versa, causes a state-
action deviation problem because each action pro-
duces almost the same amount of motion in the en-
vironment. In our case, the resolution of robot action
is much higher than that of state space. Therefore,
the robot might frequently transits to the same state.
This is highly undesirable because the variance of the

state transitions is vary large, and therefore the learn-
ing does not converged correctly. Then, we reconstruct
the action space as follows. Each action defined in the
above is called an action primitive. The robot con-
tinues to take one action primitive until the current
state changes. This sequence of the action primitive
is called an action. The number of action primitives
needed for state changes has no meanings. Once the
state has changed, we apply the update equation (3)
of the action value function.

(c) a reward and a discounting factor γ

We assign a reward value 1 when the ball was entered
into the goal or 0 otherwise. This makes the learning
very time-consuming. Although adopting a reward
function in terms of distance to the goal state makes
the learning time much shorter, it seems difficult to
avoid the local maxima of the action-value function
Q.

A discounting factor γ is used to control to what
degree rewards in the distant future affect the total
value of a policy. In our case, we set the value at
slightly less than 1 (γ = 0.8).

5 Experiments

The experiment consists of two parts: first, learning
the optimal policy f through the computer simulation,
then apply the learned policy to a real situation. The
merit of the computer simulation is not only to check
the validity of the algorithm but also to save the run-
ning cost of the real robot during the learning process.
Still real experiments are necessary because the com-
puter simulation cannot completely simulate the real
world [15].

5.1 Simulation
We performed the computer simulation with the

following specifications (the unit is an arbitrary-scaled
length). The field is a square of which side length is
200. The goal post is located at the center of the
side line of the square (see Fig.2) and its height and
width are 10 and 50, respectively. The robot is 16
wide and 20 long and kicks a ball of diameter 6. The
camera is horizontally mounted on the robot (no tilt),
and its visual angle is 36 degrees. The mass of the
ball is negligible compared to that of the robot. Other
parameters such as a bounding factor between the ball
and the robot, viscous friction between the ball and
the field and so on are properly chosen to simulate the
real world.

First, we place the ball and the robot at arbitrary
positions. In almost all cases, the robot crossed over
the field line without shooting a ball into the goal.



This means that the learning has not converged af-
ter many trials (three days running on SGI Elan with
R4000). This situation resembles a case in which the
small child tries to shoot a ball into the goal, but he
(or she) cannot imagine which direction and how far
the goal is because a reward is received only after the
ball has entered into the goal. Further, he (or she)
does not know how to choose an action from several
action commands. This is the famous delayed rein-
forcement problem due to no explicit teacher signal
that indicates the correct output at each time step.
Then, we construct the learning schedule such that
the robot can learn in easy situations at early stages
and learn in more difficult situations at later stages.

We began the learning of the shooting behavior by
setting the ball and the robot near the goal. Once
the robot succeeds in a shooting, the robot begins to
learn (the sum of Q increases), but after that the robot
wonders again in the field. After many iterations of
these successes and failures, the robot learned to shoot
a ball into the goal when the ball is near the goal.
After that, we place the ball and the robot slightly
further from the goal, and repeat the robot learning
again.

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500

n
u
m
b
e
r
 
o
f
 
g
o
a
l
s

time step *1000

gamma = 0.600
gamma = 0.800
gamma = 0.999

Figure 4: Number of goals in terms of γ
Fig.4 show the accumulated number of shooting

goals in terms of the temporal discount factor γ, where
the number of goals with larger γ (0.999) is lower than
that with smaller ones (0.6 and 0.8). The reason is as
follows. When the temporal discount factor γ is very
close to 1 (almost no discount), the reward received
after the goal is almost the same whichever path is
selected. While, if γ is small, the robot try to take
a shorter path which means more rewards. Howev-
er, for a too small γ, the robot loses the way to the
goal. Fig.5 shows some kinds of behaviors during the
learning process. (a) and (b) show the difference be-
tween the shooting behaviors with different γs. In (a),

(a) shooting
(γ = 0.999)

(b) shooting
(γ = 0.6)

(c) finding

Figure 5: Some kinds of behaviors during learn-
ing process.

γ = 0.999, and the robot shifted its body to the better
position for getting a shoot. While, in (b), γ = 0.6,
and the robot tried to get a shoot immediately. (a)
shows a series of behaviors: first the robot lost the
ball, then tried to find it by rotating itself, and finally
it dribbled and got a shoot.

5.2 Real System

MC68040

MaxVideo 200

A/D 

UHF Receiver

Parallel I/O

D/A

DigiColor

MC68040

VME BOX

Ether Net
Sun WS Sun WS

++ + ++ +

Transmitter

Receiver

Radio Controller

Figure 6: A configuration of the real system.

Fig.6 shows a configuration of the real mobile robot
system. The image taken by a TV camera mounted
on the robot is transmitted to a UHF receiver and
processed by Datacube MaxVideo 200, a real-time
pipeline video image processor. In order to simplify
and speed up the image processing time, we painted
the ball in red and the goal in blue. We constructed
the radio control system of the vehicle, following the
remote-brain project by Profs. Inaba and Inoue at U-
niversity of Tokyo [16]. The image processing and the



(a) input image (b) detected image

Figure 7: Detection of the ball and the goal.

vehicle control system are operated by VxWorks OS
on MC68040 CPU which are connected with host Sun
workstations via Ether net. We have shown a picture
of the real robot with a TV camera (Sony handy-cam
TR-3) and video transmitter in Fig.3.

Figure 8: The robot succeeded in shooting a ball
into the goal.

Fig.7 shows a result of the image processing where
the ball and the goal are detected and their positions
are calculated in real time (1/30 of a second). Fig.8
shows a sequence of the shooting images in which the
robot succeeded in shooting a ball into the goal.

Table 1 shows the result of state discrimination
for the scene shown in Fig.8, where the time step
(1/30 of a second), state step the robot discriminat-
ed, ball state (Left, Right, Center, Disappeared, and
Near, Medium, or Far), goal state (in addition to the
same states as a ball, Front Oriented, Left Oriented,
or Right Oriented), control commands to right and
left motors (Forward, Stop, or Backward), and the
number of failures of state discrimination. The mis-
understood states are with *s. Although error ratio
of the state discrimination was very high (about 15%)

Table 1: State-Action data

time state state action errer
step step ball goal L R

1 1 (C,F) (C,F,Fo) F F
2 2 (R*,F) (C,F,Fo) F F 1
3 3 (D*,D*) (C,F,Ro*) B B 3
4 4 (C,F) (C,F,Lo*) B S 1
5 5 (C,F) (C,F,Fo) F F
6 (C,F) (C,F,Fo) F F
7 (C,F) (C,F,Fo) F F
8 (C,F) (C,F,Fo) F F
9 6 (C,F) (C,F,Ro*) B S 1

10 7 (C,F) (C,F,Fo) F F
11 8 (C,F) (R,M,Fo) F F
12 9 (R,F) (R,M,Fo) F F
13 10 (R,M*) (R,F*,Lo*) F B 3
14 11 (L*,F) (R,M,Ro*) F S 2
15 12 (L*,F) (R,M,Fo) F S 1
16 13 (R,M) (R,M,Fo) S B
17 14 (C,M) (C,M,Fo) F F
18 15 (L,M) (L,M,Fo) S F
19 16 (L,N) (L,M,Fo) B S
20 (L,N) (L,M,Fo) B S
21 17 (L,M*) (L,M,Fo) S F 1
22 18 (L,N) (L,M,Fo) B S
23 (L,N) (L,M,Fo) B S
24 19 (C,N) (C,M,Fo) F B
25 20 (C,M) (C,M,Fo) F F
26 (C,M) (C,M,Fo) F F
27 21 (C,M) (C,N,Fo) F S
28 22 (C,M) (C,M*,Lo*) F S 2
29 23 (C,M) (C,M*,Ro*) S B 2
30 24 (C,F) (D,D,D) F S

due to noise of image processing, the robot succeeded
in shooting a ball into the goal as long as the errors
do not occur continuously because the robot has the
optimal action value function against the all states.

6 Discussion and Future Works

As a first step towards an autonomous agent capa-
ble to generate a purposive behavior, we have studied
the feasibility of realizing a shooting behavior with
vision. Although we need very longer learning time,
the robot has learned to generate a shooting behav-
ior consisting of a series of actions including finding,
dribbling, and shooting a ball.

In the followings, we argue the role of vision in the
context of the vision-based reinforcement learning.
• During the learning process, the visual informa-

tion has an important role of state discrimination
and eventually action evaluation. Almost of the
previous works in the reinforcement learning ap-
plications assume the perfect sensors that are of-
ten too idealized to apply the real situations. The
vision is the most suitable sensor because of its
global scope to the environment. Only the prob-
lem is how to extract the necessary information
to accomplish the task.



• The action value function obtained after the re-
inforcement learning includes the necessary infor-
mation for the robot to take the optimal action
against each individual state of the environment,
and therefore it could be called the environment
map.

• Two environments which are different in their ap-
pearances could be found similar to each other if
we can find the similarity in the action value func-
tions for these environments. A desk or a chair
in the office scene and a large rock in the out-
door scene need not be discriminated for a obsta-
cle finder and avoider.

• How to construct a state space is one of the is-
sues in the reinforcement learning scheme. This
is called structural credit assignment problem.
Many existing works in the reinforcement learning
construct the state space in such a way that their
simulations work well. This sometimes causes un-
natural segmentation of the sensory information
and mapping to the state space. At least, this
can be avoided if the robot uses the visual in-
formation because the spatial resolution and the
dynamic range of the observed intensities are lim-
ited to some extents and therefore the robot can-
not discriminate the state beyond these physical
constraints.

• In the vision based reinforcement learning
scheme, there are two issues related to each oth-
er: coarse segmentation of the state space and
real-time processing (state mapping and control).
In our work, the red ball and the blue goal are
easily extracted and their sizes and positions are
very coarsely mapped to the state space, that
is, “right,” “center,” or “left” and so on in or-
der to reduce the size of the state space. This
contributes to absorb small amount of errors in
measuring the positions and the sizes of the ball
or the gall in the image captured by the robot.
In order to cover this coarseness of the state s-
pace, control of the robot action must be done
in real-time (1/30 of a second). Since it has the
action value function obtained after the learning,
the robot can take the optimal action against any
situation of the environment. Therefore, even if
mis-mapping of the state due to the image noise
or the failure of action execution due to the slip
between the floor and crawler of the robot hap-
pens, the robot succeed in shooting a ball into the
goal as long as the frequencies of these mistakes
is low (See Table 1).

Although we have other problems such as the tem-
poral credit assignment problem when to give a re-

ward to speed up the learning rate and the scaling
problem to apply the learned policy to similar tasks
but different environments, we realized that the vision-
based reinforcement learning method seems promising
in realizing autonomous agent in real world. We are
planning to extend the method to multiple players co-
ordination and competition.

References

[1] R. A. Brooks. “A robust layered control system for
a mobile robot”. IEEE J. Robotics and Automation,
RA-2:14–23, 1986.

[2] R. A. Brooks. “Elephants don’t play chess”. In
P. Maes, editor, Designing Autonomous Agents, pages
3–15. MIT/Elsevier, 1991.

[3] M. J. Mataric. “Integration of representation into
goal-driven behavior based robots”. IEEE J. Robotics
and Automation, RA-8:–, 1992.

[4] P. Maes. “The dynamics of action selection”. In Proc.
of IJCAI-89, pages 991–997, 1989.

[5] R. C. Arkin. “Integrating behavioral, perceptual, and
world knowledge in reactive navigation”. In P. Maes,
editor, Designing Autonomous Agents, pages 105–122.
MIT/Elsevier, 1991.

[6] J. H. Connel and S. Mahadevan, editors. Robot Learn-
ing. Kluwer Academic Publishers, 1993.

[7] R. S. Sutton. “Special issue on reinforcement learn-
ing”. In R. S. Sutton(Guest), editor, Machine Learn-
ing, volume 8, pages –. Kluwer Academic Publishers,
1992.

[8] P. Maes and R. A. Brooks. “Learning to coordinate
behaviors”. In Proc. of AAAI-90, pages 796–802,
1990.

[9] J. H. Connel and S. Mahadevan. “Rapid task learning
for real robot”. In J. H. Connel and S. Mahadevan,
editors, Robot Learning, chapter 5. Kluwer Academic
Publishers, 1993.

[10] S. D. Whitehead and D. H. Ballard. “Active percep-
tion and reinforcement learning”. In Proc. of Work-
shop on Machine Learning-1990, pages 179–188, 1990.

[11] C. J. C. H. Watkins and P. Dayan. “Technical note:
Q-learning”. Machine Learning, 8:279–292, 1992.

[12] C. J. C. H. Watkins. Learning from delayed rewards”.
PhD thesis, King’s College, University of Cambridge,
May 1989.

[13] L. P. Kaelbling. “Learning to achieve goals”. In Proc.
of IJCAI-93, pages 1094–1098, 1993.

[14] R. Bellman. Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ, 1957.

[15] R. A. Brooks and M. J. Mataric. “Real robot, re-
al learning problems”. In J. H. Connel and S. Ma-
hadevan, editors, Robot Learning, chapter 8. Kluwer
Academic Publishers, 1993.

[16] M. Inaba. “Remote-brained robotics: Interfacing ai
with real world behaviors”. In Preprints of ISRR’93,
Pitsuburg, 1993.


