
Proc. of AAAI-94 Workshop on AI, Artificial
Life, and Entertainment, Seattle, July 31, 1994

1

A Vision-Based Reinforcement Learning
For Coordination Of Soccer Playing Behaviors

Minoru Asada, Eiji Uchibe, Shoichi Noda,
Sukoya Tawaratsumida and Koh Hosoda

Dept. of Mech. Eng. for Computer-Controlled Machinery
Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan

asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract

A method is proposed which acquires a purpo-
sive behavior of shooting a ball into the goal
avoiding collisions with an enemy. In [Asa-
da et al., 1994], we have presented the soccer
robot which learned to shoot a ball into the
goal without any enemy, using the Q-learning,
one of the reinforcement learning methods. S-
ince a simple extension of the method is not
practical due to its huge state space, two d-
ifferent behaviors each of which are previous-
ly learned independently are combined into a
coordinated behavior. One is a shooting be-
havior without any enemy, and the other is
a collision avoiding behavior against a mov-
ing obstacle. Three kinds of coordinations are
considered; simple sum of the two action value
functions, switching the two functions accord-
ing to the situation, and the Q-learning with
the previously learned behaviors. The simula-
tion results are shown and a discussion is giv-
en.

1 Introduction

Reinforcement learning has recently been receiving in-
creased attention as a method for robot learning with
little or no a priori knowledge and higher capability of
reactive and adaptive behaviors [Connel and Mahade-
van, 1993b]. In the the reinforcement learning scheme,
a robot and environment are modeled by two synchro-
nized finite state automatons interacting in a discrete
time cyclical processes. The robot senses the current
state of the environment and selects an action. Based
on the state and action, the environment makes a tran-
sition to a new state and generates a reward that is
passed back to the robot. Through these interactions,
the robot learns a purposive behavior to achieve a given
goal.

Although the role of the reinforcement learning is very
important to realize autonomous systems, the promi-
nence of that role is largely determined by the extent to
which it can be scaled to larger and complex robot learn-

ing tasks. Many theoretical works have argued the con-
vergence time of the learning (ex. [Sammut and Cribb,
1990; Whitehead, 1991]), and how to speed up it by us-
ing some heuristics such as modularity [Wixson, 1991]
and to extend these techniques from a single goal task to
multiple ones [Whitehead et al., 1993]. However, almost
of them have only shown computer simulations, and
only a few real robot applications are reported, which
are simple and less dynamic [Maes and Brooks, 1990;
Connel and Mahadevan, 1993a]. In order to make the
role of the reinforcement learning evident in realizing
autonomous agents, we need more applications in more
dynamic and complex environments.

As one of these applications, we built a soccer robot
[Asada et al., 1994] that tried to shoot a ball into the
goal by applying the Q learning, one of the reinforce-
ment learning schemes which is widely used [Watkins
and Dayan, 1992]. The robot could learn a shooting be-
havior without world knowledge such as 3-D locations
and sizes of the goal and ball in the field or the kinemat-
ics and dynamics of the robot itself. The information
only the robot can capture is the image positions of
the ball and/or goal which tell changes happened in the
world caused by the robot actions.

In this paper, we attack more challenging problem of
shooting a ball into the goal avoiding an enemy by com-
bining two behaviors: shooting and avoiding behaviors.
The reason why challenging is twofold;
• from a viewpoint of building a real robot in a re-

al situation, it is more dynamic and complicated
environment than in [Asada et al., 1994], and

• from a viewpoint of robot learning, existing works
have not demonstrated the ability to use previously
learned knowledge to speed up the learning of a new
policy [Brooks and Mataric, 1993].

To the best of our knowledge, only a few works relat-
ed to the problem have been presented. Whitehead et
al. [Whitehead et al., 1993] proposed a method which
learns a multiple goal behavior by decomposing a task
into subtasks and merging policies independently ob-
tained in these subtasks (subgoals). In their scheme,
multiple absorbed subgoals are parallel but independent
of each other in the sense of subgoal-directed behavior.



That is, the state space is consistent with all the sub-
tasks and there is almost no interferences between them.
The problem we attack here is to obtain a new behav-
ior based on the previously learned behaviors which are
concurrent but not independent of each other. There-
fore, we cannot apply their method to the problem.

Connell and Mahadevan [Connel and Mahadevan,
1993a] describe a system that decompose a single task
into a series of subtasks, each of which is learned by
an individual module. Although they showed the real
experimental results for the task of pushing a box, sub-
tasks of “finding a box,” “pushing a box,” and “getting
unwedged” are independent of each other, therefore the
whole problem seems simpler than ours.

The subsumption architecture [Brooks, 1986] might
be useful because the shooting behavior can be set at
the upper level than the avoiding behavior in order to
subsume the avoiding behavior. However, this control
law when to subsume the lower behavior seems difficult
to be determined because it seriously depends on the
situation. Typical example is a case that a robot tries
to shoot a ball by attacking an enemy (this means a
collision with an enemy).

In this paper, we propose a method which obtains a
coordinated behavior consisting of two different behav-
iors previously learned. The difficulty of the problem
the existing works have not faced with is to coordinate
two behaviors that are concurrent and interfered with
each other, and therefore action selection might be con-
flict in the dynamic and complicated situations. We
consider three kinds of coordinations: simple sum of t-
wo action value functions, switching the action value
functions according to situations, and learning a new
behavior given the previously learned policies. We dis-
cuss the performance of these methods and the differ-
ences between them.

The remainder of this article is structured as follows:
In the next section, we give a brief overview of the Q
learning. We then explain the task and basic assump-
tions, and the learning scheme in our method. Final-
ly, we show the experiments with computer simulations
and give discussions.

2 Q-learning

Before getting into the details of our system, we briefly
review the basics of the Q-learning. For more through
treatment, see [Watkins, 1989]. We follow the explana-
tion of the Q learning by Kaelbling [Kaelbling, 1993].

We assume that the robot can discriminate the set S
of distinct world states, and can take the set A of actions
on the world. The world is modeled as a Markov pro-
cess, making stochastic transitions based on its current
state and the action taken by the robot. Let T (s, a, s′)
be the probability that the world will transit to the
next state s′ from the current state-action pair (s, a).
For each state-action pair (s, a), the reward r(s, a) is
defined.

The general reinforcement learning problem is typi-
cally stated as finding a policy that maximizes discount-
ed sum of the reward received over time. A policy f is
mapping from S to A. This sum called the return and
is defined as: ∞∑

n=0

γnrt+n, (1)

where rt is the reward received at step t given that the
agent started in state s and executed policy f . γ is the
discounting factor, it controls to what degree rewards in
the distant future affect the total value of a policy and
is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal pol-
icy, using methods from dynamic programming [Bell-
man, 1957]. A more interesting case occurs when we
wish to simultaneously learn the dynamics of the world
and construct the policy. Watkin’s Q-learning algorith-
m gives us an elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a)+γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′). (2)

Because we do not know T and r initially, we construct
incremental estimates of the Q values on line. Starting
with Q(s, a) at any value (usually 0), every time an
action is taken, update the Q value as follows:

Q(s, a) ⇐ (1− α)Q(s, a) + α(r(s, a) + γ max
a′∈A

Q(s′, a′)).

(3)
where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is a
leaning rate (between 0 and 1).

3 The Task and Assumptions

Figure 1: The task is to shoot a ball into the goal avoid-
ing an enemy.

The task for a robot is to shoot a ball into the goal
avoiding an enemy as shown in Fig.1, where a robot



and an enemy are indicated by a rectangle and a circle,
respectively. The problem we are attacking here is to
develop a method which automatically acquires strate-
gies how to do this. In [Asada et al., 1994], the robot
has learned how to shoot a ball into the goal in the case
of no enemy. Here, the robot tries to shoot a ball avoid-
ing the collisions with an enemy. Except this point, the
environment is the same as one in [Asada et al., 1994].
That is, the environment consists of a ball the robot can
kick and a goal fixed on the ground.

The robot has a single TV camera on it and therefore
captures the image positions of the ball, the goal, and
the enemy. That’s all the robot captures from the envi-
ronment. In order for the robot to take an action against
the environment, it can select action switches such as
forward, backward, and turn (see Fig.1). Note that the
robot does not even know any physical meanings for
them. The effects of an action against the environment
can be informed to the robot only through the visu-
al information. A simple application of the Q-learning
to the task here is not practical because the number
of states drastically increases by a factor of more than
ten compared with the number of states in our previous
work, which means that non realistic number of trials
are needed since the learning rate can be said exponen-
tial in the size of the state space [Whitehead, 1991].

Here, we consider to divide the task into two subtasks;
one is to shoot a ball into the goal [Asada et al., 1994]
and the other is to avoid a moving obstacle which seems
difficult in the sense of existing works (ex.[Millan and
Torras, 1992]), but straightforward in our framework.
Then, we coordinate these learned behaviors into one.
Three methods of coordination are considered.

4 Learning Scheme

In order to apply the Q-learning scheme to each of two
subtasks, we define a number of sets and parameter-
s for each of them. The existing applications of the
reinforcement learning have constructed the state and
action spaces in such a way that each action causes the
state transition (ex. one action is forward, backward,
left, or right, and states are encoded by the locations of
the agent) in order to make the quantization problem
(the structural credit assignment problem) easy. This
makes a gap between the computer simulations and re-
al robot systems. Each space should reflect the corre-
sponding physical space in which a state (an action) can
be perceived (taken). Then, we construct these spaces
considering the sensor resolution and control parameter
resolution for the actuator as follows.

4.1 Preparations for the first task

The first task to simply shoot a ball into the goal has
been learned by using the following sets [Asada et al.,
1994].

• a state set Sg: only the information the robot can
obtain about the environment is the image sup-

posed to be capturing the ball and/or the goal. The
ball image is quantized into 9 sub-states, combina-
tions of three positions (left, center, and right) and
three sizes (large (near), medium, and small (far)).
The goal image has 27 sub-states, combinations of
three parameters each of which is quantized three
levels. Each sub-state corresponds to one posture
of the robot toward the goal, that is, position and
orientation of the robot in the field. In addition to
these 243 (27 × 9) states, we add other states such
as these cases in which only the ball or the goal is
captured in the image, and in which only one of the
goal post can be seen. Totally, we have 319 states
in the set Sg.

• an action set A: In a real system, the robot moves
around the field by a PWS (Power Wheeled Steer-
ing) system with two independent motors. Since
we can send the motor control command to each
of two motors independently, we quantized the ac-
tion set in terms of two motor commands ωl and
ωr, each of which has 3 sub-actions (forward, stop,
and backward motions, respectively). Totally, we
have 9 actions in the action set A.

• a reward and a discounting factor: we assign a re-
ward value 3 when the ball was entered into the goal
or 0 otherwise. A discounting factor γg is used to
control to what degree rewards in the distant fu-
ture affect the total value of a policy. In our case,
we set the value a slightly less than 1 (γg = 0.8).

4.2 Preparations for the second task
The second subtask is to simply avoid a moving ob-
stacle. The action set is the same as in the first one,
but the number of states is much smaller because the
state space consists of the image of only the moving ob-
stacle, which is quantized by the same manner for the
ball image in the first task. That is, combinations of
the position (left, center, and right) and the size (small,
medium, and large) are used in the state space Sa.

From a viewpoint of the Q-learning, this task is quite
different from the first one due to the followings:
• the behavior to be learned is not goal-directed like

the first one to find the path from the current state
to the goal state, but reactive, and

• any action can be allowed to be taken unless it
causes collisions with a moving obstacle.

Due to the former, the discounting factor γa should
be much smaller (γa = 0.1) so that the action-value for
the distant future action cannot be affected. In order
to reflect the latter, the negative reward (-1) should be
assigned for the state-action pair which causes a colli-
sion with a moving obstacle, and such actions should be
learned by using the following update equation instead
of eqn.(3):

Qa(s, a) ⇐ (1− α)Qa(s, a) +



α(r + γa min
a′∈A

Qa(s′, a′)). (4)

Another important issue is the enemy’s behavior
which tries to keep the ball outside the goal. If the
enemy has learned the professional techniques to keep
the goal, the robot might not be able to learn how to
shoot a ball into the goal anymore because of almost no
goals it achieves. From a viewpoint of teaching, the en-
emy’s behavior should be idle in part so that the robot
can succeed in shooting a ball into the goal. Then, we
set the enemy’s behavior in such a way that it randomly
moves with probability of 50% and tends to chase after
the robot in order to interfere its shooting behavior with
probability of 50%.

4.3 One step Q-learning algorithm
According to the above formalization of the state set,
the action set, and other functions and parameters, we
apply the Q-learning to each of the subtasks indepen-
dently. The following is a simple version of the 1-step
Q-learning algorithm.

Initialization: Qg (Qa) ⇐ a set of initial values for
the action-value function (e.g., all zeros).
Repeat forever:

1. s ⇐ the current state
2. Select an action a that is usually consistent with

the policy f but occasionally an alternate.
3. Execute action a, and let s′ and r be the next state

and the reward received, respectively.
4. Update Qg(s, a) (Qa(s, a)):

Qg(s, a) ⇐ (1− α)Qg(s, a) +
α(r + γg max

a′∈A
Qg(s′, a′)) (5)

or
Qa(s, a) ⇐ (1− α)Qa(s, a) +

α(r + γa min
a′∈A

Qa(s′, a′)). (6)

5. Update the policy fg (fa):
fg(s) ⇐ a such that

Qg(s, a) = max
b∈A

Qg(s, b) (7)

or
fa(s) ⇐ a such that

Qa(s, a) = min
b∈A

Qa(s, b). (8)

To speed up the learning time, we generate actions
probabilistically based on Q values using a Boltzmann
distribution. Given a situation s, we choose an action
a with probability:

eQ(a,s)/T

∑
a∈A eQ(a,s)/T

(9)

This serves to make actions whose values are much
better than the others be chosen with much greater
likelihood. The temperature parameter T controls the
amount of exploration (the degree to which actions oth-
er than the one with the best Q value are taken).

5 Coordination of Learned Behaviors

We consider three kinds of coordinations in which the
previously learned behaviors are combined: simple sum
of two action value functions, switching action value
functions according to the situation, and learning given
the learned policies as a priori knowledge. The state s-
paces Sc for the coordinated behavior in these coordina-
tions are a little bit different from each other according
to their methods.

Basically, a state sc ∈ Sc can be defined as a com-
bined state of Sg and Sa. We denote this combination
as Sg × Sa or (Sg,Sa). Since the numbers of Sg and
Sa are 380 and 11 respectively, the number of Sc is
theoretically 4180.

(a) Simple sum of two action value functions
The action value function Qc

ss(s
c, a) for the coordinated

behavior is given by;

Qc
ss(s

c, a) = max
a∈A

(Qg((sg, ∗), a) + Qa((∗, sa), a)) (10)

where Qg((sg, ∗), a) and Qa((∗, sa), a) denote the ex-
tended action value functions for the shooting and
avoiding behaviors in the new state space, respective-
ly. ∗ means any states, therefore each of these functions
considers only the original states and ignores the states
of other behaviors. In this scheme, the selected action
sometimes might not make any sense for both behaviors
because the simple sum cannot consider the combined
situation.

(b) Switching action value functions
The action value function Qc

sw(sc, a) for the coordinated
behavior is given by the following equation depending
on the situation.

Qc
sw(sc, a) =

{
Qa(sa, a), in some situations
Qg(sg, a), otherwise (11)

It seems hard to appropriately determine the situa-
tions to switch the functions Qg(sg, a) and Qa(sa, a).
Simple situations we tried are the cases where only an
enemy can be seen or where an enemy can be seen. In
the former, the robot does not care about collisions with
the enemy when the ball or the goal can be observed,
while in the latter the robot tries to avoid the enemy
even if it is likely able to shoot a ball into the goal.
Therefore, we need a carefully designed decision rule to
switch the policies. The following method provides us
with this rule by learning a new policy coping with new
situations.

(c) Learning a new behavior
In the above methods, the previously learned action val-
ue functions are simply summed or switched. Therefore
these methods ignore some situations inconsistent with
the state spaces Sg or Sa. Eventually, an action suit-
able for these situations has never been learned. To
cope with these new situations, the robot needs to learn



a new behavior by using the previously learned behav-
iors. The method is as follows;

1. Construct a new state space Sc:
(a) construct the directly combined state space

Sg × Sa.
(b) find such states that are inconsistent with Sg

or Sa. A typical example is the case where
a ball and the enemy are located at the same
area and the ball is occluded by the enemy
from the viewpoint of the robot. In this case,
the robot cannot observe the ball, and there-
fore the corresponding state sg ∈ Sg might be
the state of “ball-lost,” but it is not correct.
Of course, if both the ball and the enemy can
be observed, this situation can be considered
consistent.

(c) resolve the inconsistent states by adding new
substates sc

sub ∈ Sc. In the above example,
a new situation “occluded” is added, and the
corresponding new substates are generated.

2. Learn a new behavior in the new state space Sc:
(a) use the values of the action value function Qc

ss
as the initial values of Qc

rl for both the nor-
mal states sc and the new substates sc

sub. For
the new substates, we use the original value of
Qc

ss(sc, a) before generating these new states.
That is,
Qc

rl(s
c, a) = Qc

ss(sc, a)
Qc

rl(s
c
sub, a) = original value of Qc

ss(s
c, a)
(12)

(b) control the temperature parameter T in eqn(9)
for the action selection in such a way that low
temperature (conservative) is used around the
normal states sc and high temperature (ran-
dom) around the new substates sc

sub in order
to reduce the learning time.

6 Experiments

The experiment consists of two phases: first, learning
the optimal policy f through the computer simulation,
then apply the learned policy to a real situation. The
merit of the computer simulation is not only to check
the validity of the algorithm but also to save the run-
ning cost of the real robot during the learning process.
Still, real experiments is necessary because the comput-
er simulation cannot completely simulate the real world
[Brooks and Mataric, 1993]. We have done the real ex-
periments for the first task [Asada et al., 1994], that
is, the robot learned how to shoot a ball into the goal
without any enemy. Now, we are developing the real ex-
periments for the coordinated behavior. Therefore we
show the simulation results for the coordinated behav-
ior by the simple sum, the switching, and learning, and
as a real system, we show the system configuration. At
the workshop, we hope we will be able to present the
whole experimental results.

We performed the computer simulation with the fol-
lowing specifications (the unit is an arbitrary-scaled
length). The field is a square of which side length is
200. The goal post is located at the center of the top
line of the square (see Fig.1) and its height and width
are 10 and 50, respectively. The robot is 16 wide and 20
long and kicks a ball of diameter 6. The camera is hor-
izontally mounted on the robot (no tilt), and its visual
angle is 30 degrees. These and other parameters such as
friction between the floor and the crawler and bound-
ing factor between the robot and the ball are chosen to
simulate the real world. (for more details, see [Asada et
al., 1994]).

Table 1: Simulation result

combination rate of average of average of
method shooting(%) collisions/steps steps
only Qg 46.7 0.0232 286.9

simple sum 33.2 0.0129 231.2
switching 39.2 0.0102 414.4
learning 46.7 0.0042 128.3

In addition to three kinds of coordinations, we show
the performance data by only using the policy Qg which
completely ignores the existence of the enemy. 1 shows
the simulation result where the rate of shooting per tri-
al, the average of collision with the enemy, and the av-
erage steps needed to get a shoot. In the case of only
using Qg, the robot tries to shoot a ball ignoring the ene-
my, and therefore it collides with the enemy many times
and needs much more steps to get a shoot although the
rate is as good as the learning method. The simple sum
seems better in collision because Qa becomes dominant
when the enemy approaches to it. However, it some-
times settles at the local maxima near the goal where
Qg and Qa are balanced, and therefore the shooting rate
is the worst. The switching condition we set is to use
Qg unless only the enemy can be observed very largely.
The robot got more shoots than the simple sum because
it can avoid the local maxima. However, when it uses
Qa, many actions not related to shooting behavior are
chosen, and therefore it takes longest time step to get
a shoot as a result. The learning method is the best in
shooting rate, collision avoidance, and speed of shooting
per trial.

Fig.2 shows a sequence of shooting behavior by the
learning method. In these figures, the robot and the
enemy are numbered 1 and 2, and colored in black and
gray, respectively. The lines emerged from them shows
their visual angles. The enemy tries to chase after the
robot with the probability of 50% as long as it can see
the robot. Otherwise, it randomly moves.

Fig.3 shows a picture of the real robot with a TV
camera (Sony handy-cam TR-3) and video transmitter
developed in [Asada et al., 1994]. We are now imple-
menting the real experiments.



Figure 2: A shooting behavior of the learning method

Figure 3: A picture of the radio-controlled vehicle.

7 Discussion and Future Works

We have proposed a method which acquires a new be-
havior by coordinating behaviors previously learned.
Although it is time-consuming, the learning method to
obtain a new policy was the best one because the sim-
ple sum and the switching method do not learn anymore
to cope with new situations. In the simulation exper-
iments, the enemy moved towards the robot with the
probability of 50%, but it can behave much better to
keep the goal. In order to obtain more proficient be-
havior, the robot should have the capability of learning
a new policy every time.

About the real robot experiments, we have to finish
it first. We need another set of remote brain which has
a realtime vision system and control system operated
by the host CPU.

The future works in long term includes from the com-

petition between single agents to that of multi-agents.
We are planning to solve many challenging problems of
multi- agents coordination and competition by using the
vision-based reinforcement learning.

References

[Asada et al., 1994] M. Asada, S. Noda, S. Tawaratsumida,
and K. Hosoda. “Vision-based behavior acquisition for
a shooting robot by using a reinforcement learning”. In
Proc. of IAPR / IEEE Workshop on Visual Behaviors-
1994, pages 112–118, 1994.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ, 1957.

[Brooks and Mataric, 1993] R. A. Brooks and M. J. Matar-
ic. “Real robot, real learning problems”. In J. H. Connel
and S. Mahadevan, editors, Robot Learning, chapter 8.
Kluwer Academic Publishers, 1993.

[Brooks, 1986] R. A. Brooks. “A robust layered control sys-
tem for a mobile robot”. IEEE J. Robotics and Automa-
tion, RA-2:14–23, 1986.

[Connel and Mahadevan, 1993a] J. H. Connel and S. Ma-
hadevan. “Rapid task learning for real robot”. In J. H.
Connel and S. Mahadevan, editors, Robot Learning, chap-
ter 5. Kluwer Academic Publishers, 1993.

[Connel and Mahadevan, 1993b] J. H. Connel and S. Ma-
hadevan, editors. Robot Learning. Kluwer Academic Pub-
lishers, 1993.

[Kaelbling, 1993] L. P. Kaelbling. “Learning to achieve goal-
s”. In Proc. of IJCAI-93, pages 1094–1098, 1993.

[Maes and Brooks, 1990] P. Maes and R. A. Brooks.
“Learning to coordinate behaviors”. In Proc. of AAAI-90,
pages 796–802, 1990.

[Millan and Torras, 1992] J. DEL R. Millan and C. Torras.
“A reinforcement connectionist approach to robot path
finding in non-maze-like environments”. Machine Learn-
ing, 8:363–395, 1992.

[Sammut and Cribb, 1990] C. Sammut and J. Cribb. “Is
learning rate a good perfomance criterion for learning?”.
In Proc. of Conf. on Machine Learning-1990, pages 170–
178, 1990.

[Watkins and Dayan, 1992] C. J. C. H. Watkins and
P. Dayan. “Technical note: Q-learning”. Machine Learn-
ing, 8:279–292, 1992.

[Watkins, 1989] C. J. C. H. Watkins. Learning from delayed
rewards”. PhD thesis, King’s College, University of Cam-
bridge, May 1989.

[Whitehead et al., 1993] S. Whitehead, J. Karlsson, and
J. Tenenberg. “Learning multiple goal behavior via task
decomposition and dynamic policy merging”. In J. H.
Connel and S. Mahadevan, editors, Robot Learning, chap-
ter 3. Kluwer Academic Publishers, 1993.

[Whitehead, 1991] S. D. Whitehead. “A complexity analysis
of cooperative mechanisms in reinforcement learning”. In
Proc. AAAI-91, pages 607–613, 1991.

[Wixson, 1991] L. E. Wixson. “Scaling reinforcement learn-
ing techniques via modularity”. In Proc. of Workshop on
Machine Learning-1991, pages 368–372, 1991.


