Proc. of MLC-COLT (Machine Learning Confernce and Computer Learning The-
ory) Workshop on Robot Learning, Rutgers, New Brunswick, July 10, 1994

Purposive Behavior Acquisition On A Real Robot By A
Vision-Based Reinforcement Learning

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda
Dept. of Mech. Eng. for Computer-Controlled Machinery
Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan
asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract

In [1], we have presented the soccer robot
which had learned to shoot a ball into the
goal using the Q-learning. In this paper,
we discuss several issues in applying the Q-
learning method to a real robot with vision
sensor. First, to speed up the learning rate,
we implement a mechanism of Learning for-
m Easy Missions (or LEM) which is a simi-
lar technique to “shaping” in animal learning.
LEM reduces the learning rate from the ex-
ponential order in the size of the state space
to about the linear order of the size of the s-
tate space. Also, we save the learning time by
policy transfer in which the goal-directed be-
havior is first acquired by Q-learning in com-
puter simulation, and then the learned pol-
icy is copied into a real robot brain. Next,
a “state-action deviation” problem is found
as a form of perceptual aliasing when we try
to construct such a state (action) space that
reflects the outputs from physical sensors (ac-
tuators). To cope with this, we construct an
action set in such a way that one action con-
sists of a series of the same action primitives
which is successively executed until the cur-
rent state changes. We give the results of
computer simulation and real robot experi-
ments.

1 Introduction

The ultimate goal of AI and Robotics is to realize
autonomous agents that organize their own internal
structure in order to behave adequately with respect
to their goals and the world. That is, they learn. As
a method for robot learning, reinforcement learning
has recently been receiving increased attention with
little or no a priori knowledge and higher capability of
reactive and adaptive behaviors [2]. In the reinforce-
ment learning scheme, a robot and environment are

modeled by two synchronized finite state automatons
interacting in a discrete time cyclical processes. The
robot senses the current state of the environment and
selects an action. Based on the state and action, the
environment makes a transition to a new state and
generates a reward that is passed back to the robot.
Through these interactions, the robot learns a purpo-
sive behavior to achieve a given goal.

Although the role of the reinforcement learning is very
important to realize autonomous systems, the promi-
nence of that role is largely determined by the extent
to which it can be scaled to larger and complex robot
learning tasks. Many theoretical works have argued
the convergence time of the learning, and how to speed
up it by using some techniques and to extend these
techniques from a single goal task to multiple ones [3].
However, almost of them have only shown computer
simulations in which they assume ideal sensors and
actuators, and therefore they can construct consistent
state and action spaces. A typical example is a 2-D
grid environment in which a robot can take an action
of forward, backward, left move, or right move, and
its state is encoded by the coordinate of the grid, that
is, the absolute (therefore global) positioning system
is assumed. Although the uncertainties of sensor and
actuator outputs are taken into account by stochastic
transitions in the state space, it does not seem real-
istic because the localization of the robot is sensitive
to sensor noise which can be easily accumulated into
non-negligible amount.

From a viewpoint of real robot applications, we should
construct a state space so that it can reflect the out-
puts of the physical sensors which are currently avail-
able and can be mounted on the robot. These sensors
generally output the relative and often local informa-
tion of the environment. The following two works deal
with such sensors.

Mahadevan and Connenl [4] proposed a method of
rapid task learning on real robot. They separated a
pushing task into three subtasks of “finding a box,”
“pushing a box,” and “getting unwedged,” and ap-

plied the Q-learning to each of them. Two algorithms
for clustering the state space are implemented in each
subtask. Since they used the proximity sensors such as
bumper and sonar sensors, the task is limited to local
behavior and not suitable for the goal-directed more
global task such as carrying a box to the specified loca-
tion. To cope with more global tasks, the vision sensor
seems more suitable. However, the use of vision in the
reinforcement learning is somehow very rare.

To the best of our knowledge, only Whitehead and
Ballard [5] argued this problem. Their task is a simple
manipulation of blocks on the conveyer belt. Although
each block is colored to be easily discriminated, they
still have a large size of state space. To cope with this
problem, they assumed that observer could control its
gaze to attended object so as to reduce the size of the
state space. However, this causes so-called “perceptual
aliasing” problem. That is, both the observer motion
and actual changes happened in the environment cause
the changes inside the image captured by the observer.
Therefore, it seems difficult to discriminate the both
from only the image. Then, they proposed a method
to cope with this problem by adopting the internal
states and separating action commands into “Action
frame” and “Attention frame” commands. However,
they have not shown the real experiments.

In [1], we have presented a soccer robot which had
learned to shoot a ball into the goal using the Q-
learning. The robot does not need to know any pa-
rameters of the 3-D environment or its kinematic-
s/dynamics. Information about the changes of the en-
vironment is only the image captured from a single
TV camera mounted on the robot. Image positions
of the ball and the goal are used as state variables.
In this paper, we discuss several issues dealt in the
method from a viewpoint of robot learning: a) learning
from easy missions mechanism for rapid task learning
instead of task decomposition, and b) coping with a
“state-action deviation” problem which occurs in con-
structing state and action spaces in accordance with
outputs from physical sensors and actuators.

The remainder of this article is structured as follows:
In the next section, we show the problems we face with
in applying Q-learning scheme to real robot applica-
tions, then we give a brief overview of the Q-learning.
Next, we explain the task and basic assumptions, and
the learning scheme in our method. Finally, we show
the experiments with computer simulations and a real
robot system, and give a conclusion.

2 Problems in Applying Q-learning to
Real Robot Applications

(a) learning rate

In order to reduce the learning rate, the whole task
was separated by the programmer in [4]. However,

we have not separated the shooting task into subtasks
of “finding a ball,” “driblling a ball,” and “shooting
a ball.” This is just a monolithic approach. To re-
duce the learning time, we implement a mechanism of
Learning from FEasy Missions (or LEM) which is sim-
ilar to a widely known “shaping” technique in animal
learning [6]. In the LEM scheme, the robot begins to
learn the behavior from easy missions such as shooting
a ball given the ball and the robot are located near the
goal. This approach reduces the learning time from the
exponential order in the size of the state space [7] to
about the linear order in the size of the state space.

The difference between task decomposition and LEM
(or easy mission specification) can be explained as fol-
lows; the task decomposition should be complete in
the sense of constructing the whole task while LEM
does not always need the completeness of the easy mis-
sion specification although the reduction of the learn-
ing rate into linear order depends on the completeness.
That is, partial knowledge about easiness of the mis-
sion can be used in LEM scheme, but such knowledge
seems difficult to be used in the task decomposition
scheme.

A strategy of different aspect to save the learning rate
is “a policy transfer” in which the goal-directed behav-
ior is first acquired by Q-learning in computer simula-
tion, and then the learned policy is copied into a real
robot brain. The policy transfer is useful not only to
save the learning rate but also to find the differences
between computer simulations and real experiments.

(b) a state-action deviation problem

In order to realize a shooting behavior, a goal-directed
global behavior, we adopt the vision sensor. One of the
perceptual aliasing problems [5] caused due to the lack
of the reference point in the environment. In our case,
the goal post is fixed on the ground plane, and one
action causes both body and camera motions togeth-
er. Therefore we do not need to discriminate between
“Action frame” and “Attention frame” commands. In-
stead, another kind of perceptual aliasing problem, a
“state-action deviation” problem occurs due to the pe-
culiarities of the visual information and its processing.
If it is located far from the goal, the robot needs a num-
ber of forward motions for state transition from “the
goal is far” to “the goal is near.” While, one action
near the goal might be sufficient to shoot a ball. To
cope with this problem, we construct an action space
in such a way that an action consists of a sequence of
the same action primitives, and one action primitive is
successively executed until the current state changes.

Another aspect of this problem is that there is a de-
lay due to image acquisition and processing. Usually,
it takes one video frame rate (1/30 sec.) to acquire
one image and at least one more frame rate for image
processing. This means that what the robot perceives

(state discrimination) is what the environment was (t-
wo video frame rates ago). This makes the convergence
of the learning difficult due to the wider variations of
state transitions than in the case of less delay. If the
robot is located far from the goal, this does not cause
serious situations because we construct the state space
very coarsely which absorbs a small amount of delay.
However, the robot might take actions not suitable
for shooting near the goal. To avoid these situations,
we first obtain the policy without almost no delay in
computer simulation, and then we apply it to the real
robot experiments.

3 Q-learning

Before getting into the details of our system, we briefly
review the basics of the Q-learning. For more through
treatment, see [8]. We follow the explanation of the
Q-learning by Kaelbling [9].

We assume that the robot can discriminate the set S of
distinct world states, and can take the set A of actions
on the world. The world is modeled as a Markov pro-
cess, making stochastic transitions based on its current
state and the action taken by the robot. Let T'(s, a, s")
be the probability that the world will transit to the
next state s’ from the current state-action pair (s,a).
For each state-action pair (s,a), the reward r(s,a) is
defined.

The general reinforcement learning problem is typical-
ly stated as finding a policy that maximizes discounted
sum of the reward received over time. A policy f is
mapping from S to A. This sum called the return
and is defined as:

Z 7nrt+na (1)
n=0

where 1 is the reward received at step t given that the
agent started in state s and executed policy f. 7 is the
discounting factor, it controls to what degree rewards
in the distant future affect the total value of a policy
and is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal poli-
cy, using methods from dynamic programming [10]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct
the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this.

Let Q*(s,a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q*(s,a) =r(s,a) +~ Z T(s,a,s") g}gﬁ@*(s',a').

s'eS
(2)

Because we do not know 7" and r initially, we construct
incremental estimates of the @) values on line. Starting
with Q(s,a) at any value (usually 0), every time an
action is taken, update the () value as follows:

Q(Sv CL) < (1 - Oé)Q(S, a) + OL(T(S, 0,) + Vg}g% Q(3/7 a‘/))'
(3)

where 7 is the actual reward value received for taking
action a in a situation s, s’ is the next state, and « is
a leaning rate (between 0 and 1).

4 Task and Assumptions

(a) The task is to shoot a ball into the goal.

(b) A picture of the radio-controlled vehicle.

Figure 1: Task and our real robot.

The task for a mobile robot is to shoot a ball into
the goal as shown in Fig.1(a). The problem we are

attacking here is to develop a method which automat-
ically acquires strategies how to do this. We assume
that the environment consists of a ball and a goal, and
a mobile robot has a single TV camera, and that the
robot does not know location and size of the goal, size
and weight of the ball, any camera parameters such as
focal length and tilt angle, or kinematics/dynamics of
itself.

Fig.1(b) shows a picture of the real robot with a TV
camera (Sony handy-cam TR-3) and video transmit-
ter. Fig.2 shows a sequence of the images in which
the robot succeeded in shooting a ball into the goal by
the method.

Figure 2: The robot succeeded in shooting a ball into
the goal.

5 Construction of State and Action
Sets

In order to apply the Q-learning scheme to the task, we
define a number of sets and parameters. Many exist-
ing applications of the reinforcement learning schemes
have constructed the state and action spaces in such
a way that each action causes the state transition (ex.
one action is forward, backward, left, or right, and
states are encoded by the locations of the agent) in
order to make the quantization problem (the struc-
tural credit assignment problem) easy. This makes a
gap between the computer simulations and real robot

systems. Each space should reflect the correspond-
ing physical space in which a state (an action) can be
perceived (taken). However, such construction of s-
tate and action spaces sometimes causes one kind of
perceptual aliasing problem; “state-action deviation”
problem. In the followings, we describe how to con-
struct the state and action spaces, and then how to
cope with the state-action deviation problem.

5.1 Construction of Each Space

(a) a state set S

Only the information the robot can obtain about the
environment is the image supposed to be capturing
the ball and/or the goal. The ball image is quan-
tized into 9 sub-states, combinations of three positions
(left, center, and right) and three sizes (large (near),
middle, and small (far)). The goal image has 27 sub-
states, combinations of three parameters each of which
is quantized three parts. Each sub-state corresponds
to one posture of the robot toward the goal, that is,
position and orientation of the robot in the field. In
addition to these 243 (27 x 9) states, we add other
states such as these cases in which only the ball or the
goal is captured in the image. Totally, we have 319
states in the set S.

After some simulations, we realized that as long as
the robot is capturing the ball and the goal positions
in the image, it succeeds in shooting a ball. However,
once it lost the ball, it randomly moves because it does
not know to which direction it should move to find the
ball. This causes because the ball-lost state is just one,
therefore it cannot discriminate to which direction the
ball is lost. Then, we separate the ball-lost state into
two states; the ball-lost-into-right and the ball-lost-
into-left states. Also, we set up goal-lost-into-right
and goal-lost-into-left states, too. This improved the
robot behavior much better.

(b) an action set A

The robot can select an action to be taken against the
environment. In real system, the robot moves around
the field by a PWS (Power Wheeled Steering) system
with two independent motors. Since we can send the
motor control command to each of two motors inde-
pendently, we quantized the action set in terms of t-
wo motor commands w; and w,, each of which has 3
sub-actions (forward, stop, and back motions, respec-
tively). Totally, we have 9 actions in the action set

(c) a reward and a discounting factor ~y

We assign a reward value 1 when the ball was entered
into the goal or 0 otherwise. This makes the learn-
ing very time-consuming. Although adopting a reward
function in terms of distance to the goal state makes

the learning time much shorter, it seems difficult to
avoid the local maxima of the action-value function

Q.

A discounting factor y is used to control to what degree
rewards in the distant future affect the total value of
a policy. In our case, we set the value a slightly less
than 1 (79 = 0.8).

5.2 Solving A State-Action Deviation
Problem

) (w0 e i

Medium

Far

Figure 3: A state-action deviation problem

In 5.1, we constructed the state space in such a way
that the position and the size of the ball or goal are
naturally and coarsely quantized into each state. The
peculiarity of the visual information, that is, a small
change near the observer might cause a large change
in image and vice versa, causes a state-action devia-
tion problem because each action produces almost the
same amount of motion in the environment. Fig.3 in-
dicates this problem, where the area of which state is
“the goal is far” has a large area, and therefore the
robot frequently transits to the same state if the ac-
tion is forward. This is highly undesirable because
the variance of the state transitions is vary large, and
therefore the learning does not converged correctly. In
the case of Fig.3, the major transition from the state
“the goal is far” is returning to the same state, and we
cannot obtain the optimal policy.

Then, we reconstruct the action space as follows. Each
action defined in 5.1 is regarded as an action primitive.
The robot continues to take one action primitive until
the current state changes. This sequence of the action
primitive is called an action. In the above case, the
robot takes a forward motion many times until the
state “the goal is far” changes into the state “the goal
is middle.” The number of action primitives needed
for state changes has no meanings. Once the state has
changed, we apply the update equation (3 of the action

value function.

6 Learning from Easy Missions

Unlike the approach in [4], we do not decompose the w-
hole task into subtasks of finding, driblling, and shoot-
ing a ball. Instead, we first used a monolithic ap-
proach. That is, we set the ball and the robot at ar-
bitrary positions. In almost cases, the robot crossed
over the field line without shooting a ball into the goal.
This means that the learning has not converged after
many trials (a week running on SGI Elan with R4000).
This situation resembles a case that a small child tries
to shoot a ball into the goal, but he cannot imagine
in which direction and how far the goal is because a
reward is received just after the ball is entered into the
goal. Further, he does not know which action to selec-
t. This is the famous delayed reinforcement problem
due to no explicit teacher signal that indicates the cor-
rect output at each time step. Then, we construct the
learning schedule such that the robot can learn in easy
situations at the early stage and learn in more difficult
situations at the later stage. We call this Learning
from Easy Missions (or LEM). This technique is sim-
ilar to a widely known “shaping” technique in animal
learning in letting an agent know how to achieve the
goal.

Figure 4: The simplest state space.

Instead of critical analysis of the time complexity for
LEM, we give an intuitive explanation for it by using a
very simple example. Following the complexity analy-
sis by Whitehead [7], we assume the “homogeneous” s-
tate space uniformly k-bounded with polynomial width
of the depth k and zero-initialized Q-learning. Fur-
ther, we assume that state transition is deterministic
and the robot can take m-kinds actions with equal op-
portunities. In order to figure out how many steps are
needed to converge the Q-learning, we use O(k) state
space and simplify the convergence such that the ac-
tion value function converged if it is updated from the
initial value (0) .

Fig.4 show an example of such state spaces. Since we
assigned a reward 1 when the robot achieves the goal
and 0 otherwise, the unbiased Q-learning takes long
time. From the above formulation, it needs m trials to
transit from the initial state Sy to the state Si_1 in
the worst case, therefore it takes m” trials to achieve
the goal for the first time in the worst case, and the
value of the action value function for only the state

!Strictly speaking, this might be incorrect, however, it
seems easy to figure out the order of the search time.

51 is updated. Next, it needs m*~! trials to update
the value of the action value function for the state Ss,
and totally it need (m* + mkF=! + ... + m) trials to
converge the value of the action value function for all
the states. Therefore, the unbiased Q-leaning can be
expected time moderately exponential in the size of k
[7].

While, in the Learning from Easy Missions algorithm,
we set the agent at the state Sy first and make it try to
achieve the goal. In the worst case, it takes m trials.
Then, we set the agent at the state Sy and repeat it.
In the worst case, it needs m x k trials to converge the
action value function. Therefore, the LEM algorithm
requires about linear in the size of k.

In actual situations like our task, the state transition
is stochastic, the state space is not homogeneous, and
therefore it seems difficult to correctly decide which s-
tate is an easy one to achieve the goal and when to shift
the initial situations into more difficult ones. Since the
convergence to the optimal policy is guaranteed in the
Q-learning scheme, we roughly collect the easy states
S1 in which the agent can achieve the goal with high
probability and shift to a slightly more difficult situa-
tions when

AQ(S1,a) <e and 0<e<x 1, (4)
where
AQ(S1,a) = | Z Q+(S1,a) — E Qi—1(S1,a)|. (5)
aeA aeA
500000 : i - . — .
! with LEM —
450000 / ‘without LEM - g
! without LEM(random) -----

400000 | i |

350000 | ‘,r‘ |
o 300000 |- / |
2 ;
£ 250000
£
= 200000 |

150000 |-

100000 |

50000

0
0 5 10 15 20 25 30 35 40
depth

Figure 5: Search time complexity as a function k.

Fig.5 shows a plot of the search time versus maximum
distance k for a simple get food problem in the 2-D grid
environment, where one step Q-learning algorithm is
applied. As we expected, the search time with LEM
(solid line) is almost linear in the size of k while that
of the normal Q-learning without LEM (dotted and
broken lines) indicates the exponential order in the
size of k. The initial position is fixed (broken line) or
randomly positioned (dotted line).

The LEM algorithm differs in some aspects from the
existing approaches to speed up the search time. In
the task decomposition approach [4], the Q-learning
is closed inside each subtask. In LEM, however, the
robot wanders around the field crossing over the easy
states to achieve the goal even if we initially set it at
such states. We just advise the position of the easy
state. In other words, we do not need to care so much
about the segmentation of the state space in order to
decompose the whole task.

In the Learning with an External Critic (or LEC) [7],
the robot receives an advise in each state from the ex-
ternal critic. In order to let LEC work correctly, the
complete knowledge about the path to the absorbing
goal is needed. While, the partial knowledge is avail-
able in LEM. The completeness of the knowledge does
not make any effect on the correct convergence of Q-
learning, but on the search time in LEM.

7 Experiments

The experiment consists of two parts: first, learning
the optimal policy f through the computer simula-
tion, then apply the learned policy to a real situation.
The merit of the computer simulation is not only to
check the validity of the algorithm but also to save the
running cost of the real robot during the learning pro-
cess. Further, this policy transfer helps us improve the
system by finding bugs in the simulation program and
difference between the simulation and the real robot
system. The computer simulation cannot completely
simulate the real world [11].

7.1 Simulation

140 T T T T T T T T T

with LEM ——
without LEM _—--

120

100

80

sum of Q

60

40

20/ i

ok L L L L L L L L L

0 1 2 3 4 5 6 7 8 9 10
time step M

Figure 6: Change of the sum of Q-values.

We performed the computer simulation with the fol-
lowing specifications (the unit is an arbitrary-scaled
length). The field is a square of which side length is

200. The goal post is located at the center of the top
line of the square (see Fig.1) and its height and width
are 10 and 50, respectively. The robot is 16 wide and
20 long and kicks a ball of which diameter is 6. The
camera is horizontally mounted on the robot (no tilt),
and its visual angle is 30 degrees. These parameters
are selected so that they can roughly simulate the real
world. Therefore, they are not so accurate.

Following the LEM algorithm, we began the learning
of the shooting behavior by setting the ball and the
robot near the goal. Once the robot succeeded in a
shooting, the robot begin to learn (the sum of Q is
increasing), but after that the robot wonders again in
the field. After many iterations of these successes and
failures, the robot learned to shoot a ball into the goal
when the ball is near the goal. After that, we set the
ball and the goal slightly further from the goal, and
repeat the robot learning again.

Fig.6 shows the change of the sum of Q-values with
(solid line) or without (broken line) LEM. The Q-
learning with LEM is much better than that without
LEM. Two arrows indicate the time step at which we
changed the initial position from S; (S2) to Sa (S3).
Fine and coarse dotted lines show the curve when the
initial position was not changed. This simulates the
LEM with partial knowledge. If we know only the
easy situation of S7, and nothing more, the learning
curve follows the fine dotted line in 6. The sum of Q
values is slightly less than that of the LEM with more
knowledge, but much better than without LEM.

180 T T T T

no delay —
160 | 2 frames delay ---z N
140 4

o 120) il
E i
7 100 AN]
il
¥
|
80 I B
/
|
60 - -
40 1 1 1 1
0 200 400 600 800 1000
time step M

Figure 7: Change of the sum of Q-values in terms of
delay time.

In the above simulations shown in Fig.6, the delay
of image acquisition and processing is set almost ze-
ro. However, a real system needs at least one video
frame (1/30 sec.) for image acquisition and one more
video frame for image processing (state discrimina-
tion). Fig.7 shows the changes of the sum of Q-values

in terms of the delay time. The solid and broken curves
indicate the learning curves with no delay and two
video frames delay, respectively. Evidently, the learn-
ing curve with delay is worse than that of no delay, and
also its performance is not so good as that of no de-
lay. Also, we compared the performance of the learned
policies with and without delay assuming that the re-
al robot needs two video frames time (1/15 sec.). The
shooting rates are 70% with the policy of no delay and
60% with the policy of delay. Therefore, we copy the
leaned policy of no delay to a real robot.

7.2 Real System

° i i Ether Net
MC68040

MaxVideo 200
DigiColor

§/- UHF Receiver

MC68040
Parallel I/O
A/ID
DI/IA

BE)

Radio Controller

Transmitter

Receiver

Figure 8: A configuration of the real system

Fig.8 shows a configuration of the real mobile robot
system. The image taken by a TV camera mounted
on the robot is transmitted to a UHF receiver and
processed by Datacube MaxVideo 200, a real-time
pipeline video image processor. In order to simplify
and speed up the image processing time, we painted
the ball in red and the goal in blue. We constructed
the radio control system of the vehicle, following the
remote-brain project by Profs. Inaba and Inoue at U-
niversity of Tokyo [12]. The image processing and the
vehicle control system are operated by VxWorks OS
on MC68040 CPU which are connected with host Sun
workstations via Ether net. We have shown a picture
of the real robot with a TV camera (Sony handy-cam
TR-3) and video transmitter in Fig.1(b).

Fig.9 shows a flow of image processing where input
NTSC color video signal is first converted into HSV
color components in order to make extraction of a red

from TV Camera

Color Transformatlon

NTSC — HS(V)

S

Image Shrlnkmg
(512x480 — 128x120)

——
[I’hree Parts Segmentatlon] [I’hree Parts Segmentallon]

Ball, Goal, background) (Ball, Goal, background)

Edge Extraction
Goal State]

BaJI State
Dlscrlmmallo |scr|m|nat|0

Dlsplay :‘ H
To host CPU
(state mapping)

Figure 9: A flow of image processing

ball and a blue goal easy. Then, the image size is
reduced to speed up the image processing time, and
boundaries of two region are extracted for state dis-
crimination. The result of image processing are sent
to the host CPU to decide a optimal action against the
current state.

The shooting rate in the real robot system was less
than 40% which was more than 20% worse than the
simulation. The main reason is that the ball often
moves towards unpredictable directions due to its ec-
centricity of the centroid. The second one is noise of
the image processing explained in the following.

Fig.10 (a) and (b) show a result of the image pro-
cessing where the ball and the goal are detected and
their positions are calculated in real time (1/30 sec-
onds). Table 1 shows the image processing and state
mapping result in each time stamp (1/30 sec.) for
the sequence of the images captured by the robot in
Fig.2. Each column indicates time step (1/30 sec.),
the state transition step, mapped state, action com-
mand, and error, respectively. The state transition
number shows the state the robot could discriminate.
The mapped state consists of five substates: two for
ball position (Left, Center, or Right) and size (large
(Near), Middle, or small (Far)), and three for the goal
position, size, and orientation (Left-oriented, Front-

[Times: 107 |

(a) input image

(b) detected image

Figure 10: Result of image processing

oriented, or Right-orinented). “D” means a lost state
(disappear). Incorrectly mapped substates are with
“*7g and the number of these substates are shown in
error box. Action commands consist of a combination
of two independent motor commands (Forward, Stop,
or Backward).

Amazingly, the ratio of the completely correct map-
pings is about 60%. Almost incorrect mapping occurs
when the size of the ball is misjudged as smaller one
due to mistakes in edge detection or small up-down
motions of the robot. As long as the ball and the goal
are captured at the center of the image, this does not
cause serious situations because the optimal action is
just forward. However, it fails to shoot a ball when the
ball is captured at the right or left of the image be-
cause it has to follow a curved path and misjudges the
distance to the ball. Due to the noise of the transmit-
ter, completely incorrect mapping occurs at the ratio
of 15%. Unless this situation continues two or more
time steps, the robot can obtain the almost correct s-
tate mapping and therefore almost correct action can
be executed. In our experiments the action execution
seldom fails because each action consists of a number
of action primitives, and consecutive failure of the ac-
tion primitives is very rare. However, also we have
some delay in changing from the forward motion to
the backward one.

8 Conclusion and Future Works

We have shown a vision-based reinforcement learn-
ing on real robot system, which adopted the Learning
from Easy Missions algorithm similar to a “shaping”
technique in animal learning in order to speed up the
learning rate instead of task decomposition. The state-
action deviation problem due to the peculiarity of the
visual information is pointed out as one of the per-
ceptual aliasing problem in applying the Q-learning to
real robot application, and we constructed an action
space to cope with this problem.

The delay due to image acquisition and processing

Table 1: State-Action data

time || state state action | errer

step || step ball] goal LR
1 1 (C,F) (C,F,Fo) F|F
2 2 (R*F) (C,F,Fo) F | F 1
3 3 (D*,D¥) (C,F,Ro¥) B | B 3
4 4 (C,F) (C,F,Lo¥) B | S 1
5 5 (C,F) (C,F,Fo) F|F
6 (C,F) (C,F,Fo) F|F
7 (C,F) (C,F,Fo) F|F
8 (C,F) (C,F,Fo) F|F
9 6 (C,F) (C,F,Ro¥) B | S 1
10 7 (C,F) (C,F,Fo) F|F
11 8 (C,F) (R,M,Fo) F|F
12 9 (R,F) (R,M,Fo) F|F
13 10 (R,M*) (R,F*Lo*) | F | B 3
14 11 (L*F) (R,M,Ro*) F|S 2
15 12 (L¥F) (R,M,Fo) F|S 1
16 13 (R,M) (R,M,Fo) S| B
17 14 (C,M) (C,M,Fo) F|F
18 15 (L,M) (L,M,Fo) S| F
19 16 (L,N) (L,M,Fo) B|S
20 (L,N) (L,M,Fo) B|S
21 17 (L,M*) (L,M,Fo) S| F 1
22 18 (L,N) (L,M,Fo) B|S
23 (L,N) (L,M,Fo) B | S
24 19 (C,N) (C,M,Fo) F | B
25 20 (C,M) (C,M,Fo) F | F
26 (C,M) (C,M,Fo) F|F
27 21 (C,M) (C,N,Fo) F|S
28 22 (C,M) (CM*Lo*) | F | S 2
29 23 (C,M) (C,M*Ro*) [S| B 2
30 24 (C,F) (D,D,D) F|S

causes serious situations near the goal because the s-
tate segmentation around here seems too coarse to find
the optimal action and delay of state discrimination
sometimes fatal for shooting behavior. The method
of dynamic construction of the state space considering
the delay would be necessary. This is now under the
investigation.

Although the real experiments are encouraging, still
we have a gap between the computer simulation and
the real system. We have not made the real robot learn
but only execute the optimal policy obtained by the
computer simulation. We are planning to make the
real robot begin to learn from the policy.

As one extension of the work here, we have done some
simulations of obtaining a shooting behavior avoiding
a goal keeper [13]. Three kinds of coordinations of
different behaviors (shooting and avoiding) are simu-
lated and compared with each other. Now, we try to
transfer the learned policy to real robots system.

References

[1] M. Asada, S. Noda, S. Tawaratsumida, and
K. Hosoda. “Vision-based behavior acquisition for
a shooting robot by using a reinforcement learn-
ing”. In Proc. of IAPR / IEEE Workshop on
Visual Behaviors-1994, pages 112-118, 1994.

[2] J. H. Connel and S. Mahadevan, editors. Robot
Learning. Kluwer Academic Publishers, 1993.

[3] R. S. Sutton. “Special issue on reinforcement
learning”. In R. S. Sutton(Guest), editor, Ma-
chine Learning, volume 8, pages — Kluwer Aca-
demic Publishers, 1992.

[4] J. H. Connel and S. Mahadevan. “Rapid task
learning for real robot”. In J. H. Connel and
S. Mahadevan, editors, Robot Learning, chapter 5.
Kluwer Academic Publishers, 1993.

[5] S. D. Whitehead and D. H. Ballard. “Active per-
ception and reinforcement learning”. In Proc. of
Workshop on Machine Learning-1990, pages 179—
188, 1990.

[6] J. M. Pearce. Introduction to Animal Learning.
Lawrence Erlbaum Associate Ltd., 1987.

[7] S. D. Whitehead. “A complexity analysis of co-
operative mechanisms in reinforcement learning”.

In Proc. AAAI-91, pages 607-613, 1991.

[8] C. J. C. H. Watkins. Learning from delayed re-
wards”. PhD thesis, King’s College, University of
Cambridge, May 1989.

[9] L. P. Kaelbling. “Learning to achieve goals”. In
Proc. of IJCAI-93, pages 10941098, 1993.

[10] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[11] R. A. Brooks and M. J. Mataric. “Real robot, real
learning problems”. In J. H. Connel and S. Ma-
hadevan, editors, Robot Learning, chapter 8. K-
luwer Academic Publishers, 1993.

[12] M. Inaba. “Remote-brained robotics: Interfacing
al with real world behaviors”. In Preprints of IS-
RR’93, Pitsuburg, 1993.

[13] M. Asada, E. Uchibe, S. Noda, S. Tawaratsumi-
da, and K. Hosoda. “A vision-based reinforcement
learning for coordination of soccer playing behav-
iors”. In Proc. of AAAI-94 Workshop on Al and
A-life and Entertainment, pages 16-21, 1994.

