
To Appear in Proc. of IEEE/RSJ/GI International Conference on Intel-
ligent Robots and Systems, September 12-16, 1994, Munich, Germany

1

Coordination Of Multiple Behaviors
Acquired By A Vision-Based Reinforcement Learning

Minoru Asada, Eiji Uchibe, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda
Dept. of Mech. Eng. for Computer-Controlled Machinery

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan
asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract
A method is proposed which accomplishes a w-

hole task consisting of plural subtasks by coordinat-
ing multiple behaviors acquired by a vision-based rein-
forcement learning. First, individual behaviors which
achieve the corresponding subtasks are independently
acquired by Q-learning, a widely used reinforcement
learning method. Each learned behavior can be repre-
sented by an action-value function in terms of state of
the environment and robot action. Next, three kinds
of coordinations of multiple behaviors are considered;
simple summation of different action-value function-
s, switching action-value functions according to situ-
ations, and learning with previously obtained action-
value functions as initial values of a new action-value
function. A task of shooting a ball into the goal avoid-
ing collisions with an enemy is examined. The task
can be decomposed into a ball shooting subtask and a
collision avoiding subtask. These subtasks should be
accomplished simultaneously, but they are not inde-
pendent of each other. Three kinds of coordinations
are compared with each other by computer simulations
and our on-going real experiments are explained.

1 Introduction
Reinforcement learning has recently been receiving

increased attention as a method for robot learning
with little or no a priori knowledge and higher ca-
pability of reactive and adaptive behaviors [1]. Fig.1
shows the basic model of robot-environment interac-
tion, where a robot and environment are modeled by
two synchronized finite state automatons interacting
in a discrete time cyclical processes. The robot senses
the current state of the environment and selects an ac-
tion. Based on the state and action, the environment
makes a transition to a new state and generates a re-
ward that is passed back to the robot. Through these
interactions, the robot learns a purposive behavior to
achieve a given goal.

Although the role of the reinforcement learning is
very important to realize autonomous systems, the
prominence of that role is largely determined by the
extent to which it can be scaled to larger and complex
robot learning tasks. However, the more complex and
larger the robot task and the environment are, the
much, much longer the learning rate is. Therefore,
many theoretical works have argued the convergence

Environment

Agent

Action,State, as

Reward,r

Figure 1: The basic model of robot-environment
interaction.

time of the learning (ex. [2, 3]), and how to speed up it
by using some heuristics such as modularity [4] and to
extend these techniques from a single goal task to mul-
tiple ones [5]. Almost of them have only shown com-
puter simulations, and only a few real robot applica-
tions are reported, which are simple and less dynamic
[6, 7]. In order to make the role of the reinforcement
learning evident in realizing autonomous agents, we
need more applications in more dynamic and complex
environments.

As one of these applications, we built a soccer robot
[8] that tried to shoot a ball into the goal by applying
the Q learning, a widely used reinforcement learning
scheme [9]. The robot could learn a shooting behavior
without world knowledge such as 3-D locations and
sizes of the goal and ball in the field or the kinematics
and dynamics of the robot itself. The information only
the robot can capture is the image positions of the ball
and/or goal which tell changes happened in the world



caused by the robot actions.
In this paper, we attack more challenging problem

of coordination of multiple behaviors which are con-
current with each other but not independent of each
other. Such an example is to shoot a ball into a goal
avoiding an enemy. The reason why challenging is t-
wofold;

• from a viewpoint of building a real robot in a
real situation, it is more dynamic and complicated
environment than in [8], and

• from a viewpoint of robot learning, existing works
have not demonstrated the ability to use previous-
ly learned knowledge to speed up the learning of
a new policy [10].

To the best of our knowledge, only a few works re-
lated to the problem have been presented. Whitehead
et al. [5] proposed a method which learns a multiple
goal behavior by decomposing a task into subtasks and
merging policies independently obtained in these sub-
tasks (subgoals). In their scheme, multiple subgoals
(getting food and water which are not placed at the
same place) are parallel but independent of each oth-
er in the sense of subgoal-directed behavior. That is,
the state space is consistent with all the subtasks and
there is almost no interferences between them. The
problem we attack here is to obtain a new behavior
based on the previously learned behaviors which are
concurrent but not always independent of each oth-
er. Therefore, we cannot apply their method to the
problem. Further, they have shown only the comput-
er simulation results for the multiple goal problem in
which the environment is simple and less dynamic.

Connell and Mahadevan [7] described a system that
decompose a single task into a series of subtasks, each
of which is learned by an individual module. Although
they showed the real experimental results for the task
of pushing a box, subtasks of “finding a box,” “push-
ing a box,” and “getting unwedged” are independent
of each other, therefore the whole task can be easily
achieved according to situations which are straightfor-
wardly discriminated by robot sensors.

The subsumption architecture [11] might be useful
because one behavior can be set at the upper level
than other behavior in order to subsume the other.
However, this control law when to subsume the lower
behavior seems difficult to be determined because it
seriously depends on the situation. A typical example
is a case that a robot tries to shoot a ball by attacking
an enemy (this means a collision with an enemy).

In this paper, we propose a method which obtains a
coordinated behavior consisting of different behaviors
previously learned. The difficulty of the problem the
existing works have not faced with seems to coordinate
different behaviors that are concurrent and interfered
with each other, and therefore action selection might
be conflict in the dynamic and complicated situation-
s. We consider three kinds of coordinations: simple
summation of different action value functions, switch-
ing action value functions according to situations, and
learning a new behavior given the previously learned

policies. We discuss the performance of these methods
and the differences between them.

The remainder of this article is structured as fol-
lows: In the next section, we give a brief overview of
the Q learning and three kinds of coordinations of mul-
tiple behaviors. We then explain the task, and how to
construct state and action spaces in our method. Nex-
t, we show the experiments with computer simulations
and on-going real robot system. Finally, we give dis-
cussions.

2 Basics of Reinforcement Learning
2.1 Q-learning

Before getting into the details of our system, we
briefly review the basics of the Q-learning. For more
through treatment, see [12]. We follow the explanation
of the Q learning by Kaelbling [13].

We assume that the robot can discriminate the set
S of distinct world states, and can take the set A
of actions on the world. The world is modeled as a
Markov process, making stochastic transitions based
on its current state and the action taken by the robot.
Let T (s, a, s′) be the probability that the world will
transit to the next state s′ from the current state-
action pair (s, a). For each state-action pair (s, a),
the reward r(s, a) is defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. A pol-
icy f is mapping from S to A. This sum called the
return and is defined as:

∞∑
n=0

γnrt+n, (1)

where rt is the reward received at step t given that
the agent started in state s and executed policy f . γ
is the discounting factor, it controls to what degree
rewards in the distant future affect the total value of
a policy and is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal poli-
cy, using methods from dynamic programming [14]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct
the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′).

(2)
Because we do not know T and r initially, we construct
incremental estimates of the Q values on line. Starting
with Q(s, a) at any value (usually 0), every time an
action is taken, update the Q value as follows:

Q(s, a) ⇐ (1−α)Q(s, a)+α(r(s, a)+γ max
a′∈A

Q(s′, a′)).

(3)

2



where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is
a leaning rate (between 0 and 1). The following is a
simple version of the 1-step Q-learning algorithm we
used here.

Initialization: Q ← a set of initial values for the
action-value function (e.g., all zeros).
Repeat forever:

1. s ← the current state

2. Select an action a that is usually consistent with
the policy f but occasionally an alternate.

3. Execute action a, and let s′ and r be the next
state and the reward received, respectively.

4. Update Q(s, a):

Q(s, a) ← (1−α)Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)).

(4)

5. Update the policy f :

f(s) ← a such that Q(s, a) = max
b∈A

Q(s, b)

(5)

To speed up the learning time, we generate actions
probabilistically based on Q values using a Boltzmann
distribution. Given a situation s, we choose an action
a with probability:

eQ(a,s)/T

∑
a∈A eQ(a,s)/T

(6)

This serves to make actions whose values are much
better than the others be chosen with much greater
likelihood. The temperature parameter T controls the
amount of exploration (the degree to which actions
other than the one with the best Q value are taken).

2.2 Learning a reflexive behavior
The Q-learning method can obtain not only goal-

directed behaviors but also reflexive ones as well by
slightly changing some parameters and updating equa-
tions. Unlike the goal-directed behaviors to find the
path from the current state to the goal state, reflexive
behaviors are reactive, and therefore, the discounting
factor γr should be much smaller so that the action-
value for the distant future action cannot be affected.

A typical example of such behaviors is “collision
avoidance” which has another different property from
that of goal-directed behaviors. That is, any action
can be allowed to be taken unless it causes collisions
with other objects (agents). In order to learn such a
behavior, the negative reward should be assigned for
the state-action pair which causes a collision with a
moving obstacle, and such actions should be learned
by using the following update equations instead of
eqns.(4,5):

Qr(s, a) ⇐ (1− α)Qr(s, a) +
α(r + γa min

a′∈A
Qr(s′, a′)). (7)

fr(s) ← a such that (8)
Qr(s, a) = min

b∈A
Qr(s, b). (9)

After learning, the decision of action selection is
done based on eqn.(5). That is, the agent tries to
make collisions with other objects during the learning
process, and it does not take such actions after the
learning.

3 Coordinatin of Multiple Behaviors
We consider three kinds of coordinations in which

the previously learned behaviors are combined; simple
summation of different action value functions, switch-
ing action value functions according to situations, and
learning given the learned policies as a priori knowl-
edge. The state spaces Sc for the coordinated behav-
ior in these coordinations are a little bit different from
each other according to their methods. To simplify
the following explanatins, let us consider to combine a
goal-directed behavior (Qg(sg, a)) and a reflexive be-
havior (Qr(sr, a)) into a new one.

Basically, a state sc ∈ Sc can be defined as a com-
bined state of Sg and Sr. We denote this combination
as Sg ×Sr or (Sg,Sr). The number of Sc is theoret-
ically a product of numbers of states of Sg and Sr.
(a) Simple summation of different action
value functions

The action value function of simple summation
Qc

ss(sc, a) for the coordinated behavior is given by;

Qc
ss(s

c, a) = max
a∈A

(Qg((sg, ∗), a) + Qr((∗, sa), a)) (10)

where Qg((sg, ∗), a) and Qa((∗, sa), a) denote the ex-
tended action value functions for the goal-directed and
reflexive behaviors in the new state space, respectively.
∗ means any states, therefore each of these functions
considers only the original states and ignores the s-
tates of other behaviors. In this scheme, the selected
action sometimes might not make any sense for both
behaviors because the simple summation cannot con-
sider combined new situations.
(b) Switching action value functions

The switching action value function Qc
sw(sc, a) for

the coordinated behavior is given by the following e-
quation depending on a situation.

Qc
sw(sc, a) =

{
Qr(sr, a), in some situations
Qg(sg, a), otherwise

(11)
It seems hard to appropriately determine the situ-

ations to switch the functions Qg(sg, a) and Qr(sr, a).
Therefore, we need a carefully designed decision rule
to switch the policies. The following method provides
us with this rule by learning a new policy coping with
new situations.

3



(c) Learning a new behavior
In the above methods, the previously learned ac-

tion value functions are simply summed or switched.
Therefore these methods ignore some situations incon-
sistent with the state spaces Sg or Sr. Eventually,
an action suitable for these situations has never been
learned. To cope with these new situations, the robot
needs to learn a new behavior by using the previously
learned behaviors. The method is as follows;

1. Construct a new state space Sc:

(a) construct the directly combined state space
Sg × Sr.

(b) find such states that are inconsistent with
Sg or Sr.

(c) resolve the inconsistent states by adding new
substates sc

sub ∈ Sc.

2. Learn a new behavior in the new state space Sc:

(a) use the values of the action value function
Qc

ss as the initial values of Qc
rl for both the

normal states sc and the new substates sc
sub.

For the new substates, we use the original
value of Qc

ss(s
c, a) before generating these

new states. That is,

Qc
rl(s

c, a) = Qc
ss(sc, a)

Qc
rl(s

c
sub, a) = original value of Qc

ss(s
c, a)

(12)
(b) control the temperature parameter T in

eqn(6) for the action selection in such a way
that low temperature (conservative) is used
around the normal states sc and high tem-
perature (random) around the new substates
sc

sub in order to reduce the learning rate.

4 The Task and Assumptions
As mentioned in Introduction, complicated tasks in

real world are not always decomposed into perfectly
indepedent subtasks. As one of such tasks, we consid-
er a task of a soccer robot which tries to shoot a ball
into the goal avoiding an enemy as shown in Fig.2,
where a robot and an enemy are indicated by a dark
and bright rectangles, respectively. The problem we
are attacking here is to develop a method which au-
tomatically acquires strategies how to do this. In [8],
the robot has learned how to shoot a ball into the goal
in the case of no enemy. Here, the robot tries to shoot
a ball avoiding the collisions with an enemy. Except
this point, the environment is the same as one in [8].
That is, the environment consists of a ball the robot
can kick and a goal fixed on the ground.

If we know the exact three-dimensional parameters
of the environment, kinematics/dynamics of the robot
and the enemy, and sensing parameters such as in-
ternal and external camera parameters, we might be
able to develop several methods to control it to shoot
a ball into the goal avoiding the enemy. This is not
our intention. We intend to start with only the visual
information, that is, the image positions of the ball,

Goal

Ball

Robot2(Enemy)

Robot1(Learner)

Figure 2: The task is to shoot a ball into the
goal avoiding an enemy.

the goal, and the enemy. That’s all the robot captures
from the environment. In order for the robot to take
an action against the environment, it can select one
action from several candidates. Note that the robot
does not even know any physical meanings for them.
The effects of an action against the environment can
be informed to the robot only through the visual infor-
mation. To enable to do that, the robot has to track
the ball, the goal and/or the enemy in the image, con-
tinuously. A simple application of the Q-learning to
the task here is not practical because the number of
states drastically increases by a factor of more than
ten compared with the number of states in our previ-
ous work, which means that non realistic number of
trials are needed since the learning rate can be said
exponential in the size of the state space [3].

Here, we apply the method of coordination of mul-
tiple behavios to the task; shooting a ball into a goal
avoiding collisions with an enemy (moving obstacle).
The former has been learned in [8] as a goal-directed
behavior. The latter which seems difficult in the
sense of existing works (ex.[15]) is also acquired by Q-
learning as a reflexive behavior. These two behaviors
are combined into a new behabior by the three kinds
of coordinations described in the provious section.

5 Constructing State and Action S-
paces

In order to apply the Q-learning scheme to each
of two subtasks, we define a number of sets and pa-
rameters for each of them. The existing applications
of the reinforcement learning have constructed the s-
tate and action spaces in such a way that each action
causes the state transition (ex. one action is forward,
backward, left, or right, and states are encoded by the
locations (coordinates) of the agent) in order to make
the quantization problem (the structural credit assign-
ment problem) easy. This makes a gap between the

4



computer simulations and real robot systems. Each
space should reflect the corresponding physical space
in which a state or an action can be perceived or tak-
en. Then, we construct these spaces considering the
sensor resolution and control parameter resolution for
the actuator as follows.
5.1 Preparations for the first task [8]

The first task to simply shoot a ball into the goal
has been learned by using the following sets.

• a state set Sg: only the information the robot can
obtain about the environment is the image sup-
posed to be capturing the ball and/or the goal.
The ball image is quantized into 9 sub-states,
combinations of three positions (left, center, and
right) and three sizes (large (near), medium, and
small (far)). The goal image has 27 sub-states,
combinations of three parameters each of which
is quantized three parts. Each sub-state corre-
sponds to one posture of the robot toward the
goal, that is, position and orientation of the robot
in the field. In addition to these 243 (27 × 9) s-
tates, we add other states such as these cases in
which only the ball or the goal is captured in the
image.
After some simulations, we realized that as long
as the robot is capturing the ball and the goal
positions in the image, it succeeds in shooting a
ball. However, once it lost the ball, it randomly
moves because it does not know to which direc-
tion it should move to find the ball. This causes
because the ball-lost state is just one, therefore
it cannot discriminate to which direction the bal-
l is lost. Then, we separate the ball-lost state
into two states; the ball-lost-into-right and the
ball-lost-into-left states. Also, we set up goal-
lost-into-right and goal-lost-into-left states, too.
This improved the robot behavior much better.
Eventually, we have 319 states in the set Sg.

• an action set A: In a real system, the robot moves
around the field by a PWS (Power Wheeled Steer-
ing) system with two independent motors. Since
we can send the motor control command to each
of two motors independently, we quantized the
action set in terms of two motor commands ωl
and ωr, each of which has 3 sub-actions (forward,
stop, and backward motions, respectively). To-
tally, we have 9 actions in the action set A.

• a reward: we assign a reward value 3 when the
ball was entered into the goal or 0 otherwise. This
makes the learning very time-consuming. Al-
though adopting a reward function in terms of
distance to the goal state makes the learning time
much shorter, it seems difficult to avoid the local
maxima of the action-value function Qg.

• a discounting factor γg is used to control to what
degree rewards in the distant future affect the to-
tal value of a policy. In our case, we set the value
a slightly less than 1 (γg = 0.8).

5.2 Preparations for the second task
The second subtask is to simply avoid a moving

obstacle. The action set is the same as in the first one,
but the number of states is much smaller because the
state space consists of the image of only the moving
obstacle, which is quantized by the same manner as for
the ball image in the first task. That is, combinations
of the position (left, center, and right) and the size
(small, medium, and large) are used in the state space
Sr.

Since collision avoiding behavior is a reflexive one,
we apply the method described in 2.2. In order to re-
duce the effects on the action-value function for the
distant future actions, we set the discounting factor
γr = 0.1. The robot tries to make collisions with
a moving obstacle during the learning process, and
to take any actions except collision after the learning
process. To realize such a behavior, we set the nega-
tive reward (-1) for the state-action pair which causes
a collision with a moving obstacle and use the update
eqns.(7,9).

Another important issue is the enemy’s behavior
which tries to keep the ball outside the goal. If the
enemy has learned the professional techniques to keep
the goal, the robot might not be able to learn how to
shoot a ball into the goal anymore because of almost
no goals it achieves. From a viewpoint of teaching,
the enemy’s behavior should be idle in part so that
the robot can succeed in shooting a ball into the goal.
Then, we set the enemy’s behavior in such a way that
it randomly moves with probability of 50% and tends
to chase after the robot in order to interfere its shoot-
ing behavior with probability of 50%.

6 Coordination of Learned Behaviors
We consider three kinds of coordinations in which

the previously learned behaviors are combined. Since
the numbers of Sg and Sr are 319 and 11 respectively,
the number of Sc is basically 3509.
(a) Simple summation of two action value
functions

By using eqn.(10), we decide an action for the coor-
dinated behavior. In this scheme, the selected action
sometimes might not make any sense for both behav-
iors because the simple sum cannot consider combined
new situations.
(b) Switching action value functions

By using eqn.(11), we decide an action for the co-
ordinated behavior. It seems hard to appropriate-
ly determine the situations to switch the functions
Qg(sg, a) and Qr(sr, a). Simple situations we tried are
the cases where only an enemy can be seen or where
an enemy can be seen. In the former, the robot does
not care about collisions with the enemy when the bal-
l or the goal can be observed, while in the latter the
robot tries to avoid the enemy even if it is likely able
to shoot a ball into the goal. Therefore, we need a
carefully designed decision rule to switch the policies.
(c) Learning a new behavior

In the above methods, the previously learned ac-
tion value functions are simply summed or switched.

5



Therefore these methods ignore some situations incon-
sistent with the state spaces Sg or Sr. Eventually,
an action suitable for these situations has never been
learned. To cope with these new situations, the robot
needs to learn a new behavior by using the previously
learned behaviors (the method is described in 3(c)).

A typical example is the case where a ball and the
enemy are located at the same area and the ball is oc-
cluded by the enemy from the viewpoint of the robot.
In this case, the robot cannot observe the ball, and
therefore the corresponding state sg ∈ Sg might be
the state of “ball-lost,” but it is not correct. Of course,
if both the ball and the enemy can be observed, this
situation can be considered consistent. This problem
is resolved by adding new substates sc

sub ∈ Sc. In the
above example, a new situation “occluded” is added,
and the corresponding new substates are generated.

The learning scheme is applied to both normal s-
tates and newly generated ones with different temper-
ature parameters T in eqn(6) for the action selection
in such a way that low temperature (conservative) is
used around the normal states sc and high tempera-
ture (random) around the new substates sc

sub in order
to reduce the learning time.

7 Experiments
The experiment consists of two phases: first, learn-

ing the optimal policy f through the computer simula-
tion, then apply the learned policy to a real situation.
The merit of the computer simulation is not only to
check the validity of the algorithm but also to save
the running cost of the real robot during the learning
process. However, still real experiments is necessary
because the computer simulation cannot completely
simulate the real world [10]. We have done the real
experiments for the first task [8], that is, the robot
learned how to shoot a ball into the goal without any
enemy. Now, we are developing the real experiments
for the coordinated behavior. Therefore we show the
simulation results of the coordination of multiple be-
haviors by the simple summation, the switching, and
the learning, and as a real system, we show the system
configuration and the image processing results. At the
conference, we will be able to presents the whole ex-
perimental results.

7.1 Simulation
We performed the computer simulation with the

following specifications (the unit is an arbitrary-scaled
length). The field is a square of which side length is
200. The goal post is located at the center of the top
line of the square (see Fig.2) and its height and width
are 10 and 50, respectively. The robot is 16 wide and
20 long and kicks a ball of which diameter is 6. The
camera is horizontally mounted on the robot (no tilt),
and its visual angle is 30 degrees. These and other
parameters such as friction between the floor and the
crawler and bounding factor between the robot and
the ball are chosen to simulate the real world (for more
details, see [8]).

In addition to three kinds of coordination method-
s, we show the performance data by only using the
policy Qg which completely ignores the existence of

the enemy. Table 1 shows the simulation result where
the rate of shooting per trial, the average of collision
with the enemy, and the average steps needed to get
a shoot. In the case of only using Qg, the robot tries
to shoot a ball ignoring the enemy, and therefore it
collides with the enemy many times and needs much
more steps to get a shoot although the rate is as good
as the learning method. The simple sum seems better
in collision because Qa becomes dominant when the
enemy approaches to it. However, it sometimes set-
tles at the local maxima near the goal where Qg and
Qa are balanced, and therefore the shooting rate is the
worst. The switching condition we set is to use Qg un-
less only the enemy can be observed very largely. The
robot got more shoots than the simple sum because
it can avoid the local maxima. However, when it us-
es Qa, many actions not related to shooting behavior
are chosen, and therefore it takes longest time step to
get a shoot as a result. The learning method is the
best in shooting rate, collision avoidance, and speed
of shooting per trial.

Table 1: Simulation result

combination rate of average of average of
method shooting(%) collisions/steps steps
only Qg 46.7 0.0232 286.9

simple sum 33.2 0.0129 231.2
switching 39.2 0.0102 414.4
learning 46.7 0.0042 128.3

Figure 3: A shooting behavior of the learning
method

Fig.3 shows a sequence of shooting behavior by the
learning method. In these figures, the robot and the
enemy are numbered 1 and 2, and colored in black
and gray, respectively. The lines emerged from them

6



shows their visual angles. The enemy tries to chase
after the robot with the probability of 50% as long as
it can see the robot. Otherwise, it randomly moves.
7.2 Real System

MC68040

MaxVideo 200

A/D 

UHF Receiver

Parallel I/O

D/A

DigiColor

MC68040

VME BOX

Ether Net
Sun WS Sun WS

++ + ++ +

Transmitter

Receiver

Radio Controller

Figure 4: A configuration of the real system.

Fig.4 shows a configuration of the real mobile robot
system some parts of which we have built. The image
taken by a TV camera mounted on the robot is trans-
mitted to a UHF receiver and processed by Datacube
MaxVideo 200, a real-time pipeline video image pro-
cessor. In order to simplify and speed up the image
processing time, we painted the ball, the goal, and the
enemy in red, blue, and yellow, respectively. We have
constructed the radio control system of the robot, fol-
lowing the remote-brain project by Inaba et al. [16],
but not yet for the enemy. The image processing and
the vehicle control system are operated by VxWorks
OS on MC68040 CPU which are connected with host
Sun wrokstations via Ether net. Fig.5 shows a picture
of the real robot with a TV camera (Sony handy-cam
TR-3) and video transmitter.

Fig.6 shows the result of the image processing
where a ball (front left), a goal (center-back), and an
enemy (right) are detected and their positions are cal-
culated in real time (1/30 seconds). Fig.7 shows a
sequence of images where the robot achieved the goal
avoiding an enemy that is currently static.

8 Discussion and Future Works
We have proposed a method which acquires a

new behavior by coordinating behaviors previously
learned. Three kinds of coordinations are considered:
simple summation of action value functions, switching
policies according to situations, and learning a new
policy. Although it is time-consuming, the learning
method to obtain a new policy was the best one be-
cause the simple sum and the switchg methods do not
learn anymore to cope with new situations. In the

Figure 5: A picture of the radio-controlled vehi-
cle near the goal with a ball and an enemy (a
group of four boxes).

(a) input image (b) detected image

Figure 6: Detection of a ball (front left), a goal
(center back) and an enemy (right).

simulation experiments, the enemy’s moved towards
the robot with the probability of 50%, but it can be-
have much better to keep the goal. In order to obtain
more proficient behavior, the robot should have the
capability of learning a new policy every time.

About the real robot experiments, we have to finish
it first. Now, the enemy’s behavior is radio-controlled
by human operator. We need another set of remote
brain which has a realtime vision system and control
system operated by the host CPU.

The future works in long term includes from the
competition between single agents to that of multi-
agents. We are planning to solve many challenging
problems of multi- agents coordination and competi-
tion by using the vision-based reinforcement learning.

Acknowledgment
The authors thanks Mr. Yasutake Takahashi for

his efforts of implementing the experiments.

7



Figure 7: The robot succeeded in shooting a ball
into a goal avoiding an enemy.

References
[1] J. H. Connel and S. Mahadevan, editors. Robot

Learning. Kluwer Academic Publishers, 1993.

[2] C. Sammut and J. Cribb. “Is learning rate a good
perfomance criterion for learning?”. In Proc. of
Conf. on Machine Learning-1990, pages 170–178,
1990.

[3] S. D. Whitehead. “A complexity analysis of co-
operative mechanisms in reinforcement learning”.
In Proc. AAAI-91, pages 607–613, 1991.

[4] L. E. Wixson. “Scaling reinforcement learning
techniques via modularity”. In Proc. of Workshop
on Machine Learning-1991, pages 368–372, 1991.

[5] S. Whitehead, J. Karlsson, and J. Tenenberg.
“Learning multiple goal behavior via task de-
composition and dynamic policy merging”. In
J. H. Connel and S. Mahadevan, editors, Robot
Learning, chapter 3. Kluwer Academic Publish-
ers, 1993.

[6] P. Maes and R. A. Brooks. “Learning to coor-
dinate behaviors”. In Proc. of AAAI-90, pages
796–802, 1990.

[7] J. H. Connel and S. Mahadevan. “Rapid task
learning for real robot”. In J. H. Connel and
S. Mahadevan, editors, Robot Learning, chap-
ter 5. Kluwer Academic Publishers, 1993.

[8] M. Asada, S. Noda, S. Tawaratsumida, and
K. Hosoda. “Vision-based behavior acquisition
for a shooting robot by using a reinforcement
learning”. In Proc. of IAPR / IEEE Workshop
on Visual Behaviors-1994, pages 112–118, 1994.

[9] C. J. C. H. Watkins and P. Dayan. “Technical
note: Q-learning”. Machine Learning, 8:279–292,
1992.

[10] R. A. Brooks and M. J. Mataric. “Real robot, real
learning problems”. In J. H. Connel and S. Ma-
hadevan, editors, Robot Learning, chapter 8. K-
luwer Academic Publishers, 1993.

[11] R. A. Brooks. “A robust layered control system
for a mobile robot”. IEEE J. Robotics and Au-
tomation, RA-2:14–23, 1986.

[12] C. J. C. H. Watkins. Learning from delayed re-
wards”. PhD thesis, King’s College, University of
Cambridge, May 1989.

[13] L. P. Kaelbling. “Learning to achieve goals”. In
Proc. of IJCAI-93, pages 1094–1098, 1993.

[14] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[15] J. DEL R. Millan and C. Torras. “A reinforce-
ment connectionist approach to robot path find-
ing in non-maze-like environments”. Machine
Learning, 8:363–395, 1992.

[16] M. Inaba. “Remote-brained robotics: Interfacing
ai with real world behaviors”. In Preprints of
ISRR’93, Pitsuburg, 1993.

8


