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Abstract
In this paper, we propose a versatile visual servo-

ing control scheme with a Jacobian matrix estimator.
The Jacobian matrix estimator does not need a priori
knowledge of the kinematic structure and parameters
of the robot system, such as camera and link parame-
ters. The proposed visual servoing control scheme en-
sures the convergence of the image-features to desired
trajectories, by using the estimated Jacobian matrix,
which is proved by the Lyapunov stability theory. To
show the effectiveness of the proposed scheme, simu-
lation and experimental results are presented.

1 Introduction
The use of visual information is indispensable for

robot systems to accomplish given tasks in dynam-
ic environments. Many vision researchers have been
adopting deliberative approaches in order to describe
3-D scene structure, which are very time consuming,
and therefore utilizing these methods to real robot ap-
plications seems hard. Recently, there have been many
studies on visual servoing control schemes utilizing the
visual sensors to increase the capability of the robot
systems in the dynamic environments [1]. Here the
robot system consists of the control scheme, kinemat-
ic structure and system parameters such as link and
camera parameters. In these days, many studies focus
on control schemes which make features on the image
plane converge to the desired values [2–9].

Most of the previous works on visual servoing as-
sume that the system structure and the system pa-
rameters are known, or the parameters can be identi-
fied in an off-line process (for example,[10]). A con-
trol scheme with off-line parameter identification is
not robust for disturbance, change of parameters, and
unknown environments. To overcome such defects,
some on-line parameter identification schemes are pro-
posed [6–9]. Weiss et al. [6] assumed that the system
can be modeled by the linear and single input/ single
output (SISO) equations, and applied independent M-
RAC(Model Reference Adaptive Control) controllers.
Feddema et al. [7] and Papanikolopoulos et al. [8]
modeled the system making use of ARMAX (auto-
regressive with external inputs) model and estimat-
ed the coefficients of the model. Papanikolopoulos et
al. [9] estimated the depth related parameters. In
these approaches, the structure of the system has to
be known. These methods are only applicable to a
restricted case, for example, a single camera case.

In this paper, we propose a versatile visual servoing

control scheme with a Jacobian matrix estimator. It
has the following features:

1. The Jacobian matrix estimator does not need any
a priori knowledge of the kinematic structure or
the system parameters, as far as all the variables
of the system is measurable. So we can eliminate
the exhausting calibration process.

2. There are no restrictions: number of cameras,
camera in hand or camera and hand, SISO or
MIMO. The proposed method is applicable to all
cases.

3. The aim of the Jacobian matrix estimator is not
to estimate the true parameters, but to ensure
asymptotical convergence of the image-features
to the desired values under the proposed control
scheme. Therefore the estimated parameters do
not necessarily converge to the true values.

Because of these features, the control scheme does not
need to care the complexity of the system structure,
the number of cameras, nor the situations of cam-
eras (whether in-hand or fixed to the world coordinate
frame). In this sense, we call the proposed scheme a
versatile control scheme.

This paper is organized as follows. First, from
an equation that the estimated Jacobian matrix
should hold, a Jacobian matrix estimator is derived
in continuous-time domain and then, modified for
discrete-time domain. Another estimator is proposed
based on the extended least squares algorithm, and
is compared with the modified discrete-time estima-
tor. These two kinds of estimator are unified. Then
a versatile visual servoing control scheme is proposed
including the feedforward term, using the estimated
Jacobian matrix. The asymptotical convergence of
the image-features to the time-variant desired values is
proved by the Lyapunov stability theory. Finally sim-
ulation and experimental results show the effectiveness
of the proposed scheme.

2 Real-time Jacobian Matrix Estima-
tor

2.1 Jacobian Matrix
Only one assumption the proposed servoing control

scheme needs is that variables which describe the sys-
tem displacement are all measurable (See figure 1)．
Using the information from sensors, we construct a
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Figure 1: Robot system equipped with visual sensors

Jacobian matrix estimator.
Let θ ∈ <n and x ∈ <m denote the vector consist-

ing of variables of the system and the feature vector
that is obtained from visual sensors, respectively. A
relationship between θ and x is expressed as,

x = x(θ). (1)

Differentiating eq.(1), we get the velocity relationship

ẋ = J(θ)θ̇, (2)

where J(θ) = ∂x/∂θT ∈ <m×n is a Jacobian matrix
which denotes the relation between time-derivative of
features and variables of the system. This Jacobian
matrix consists of the kinematic structure, the camera
parameters such as focal length, aspect ratio, distor-
tion coefficients, and the kinematic parameters such
as translation and rotation between the camera and
the arm-tip and the length of links. The matrix also
consists of joint variables and translation and rotation
between the camera and the features.
2.2 Jacobian Estimation Using Formal

Kinematic Equation
The Jacobian matrix is estimated to satisfy eq.(2),

not to obtain the true Jacobian matrix. That is, the
estimated Jacobian matrix Ĵ(t) is supposed to satisfy
the equation

ẋ = Ĵ(t)θ̇. (3)
Differentiating eq.(3), we get

ẍ = Ĵ θ̈ + ˙̂
Jθ̇, (4)

and then
˙̂
Jθ̇ = ẍ− Ĵ θ̈. (5)

The derivative ˙̂
J(t) which satisfies eq.(5) cannot be

determined uniquely. We choose one of the solutions
of this equation:

˙̂
J = (ẍ− Ĵ θ̈)θ̇

T
W (t)

θ̇
T
W (t)θ̇

, (‖ θ̇ ‖6= 0),

˙̂
J = O, (‖ θ̇ ‖= 0),

(6)

where W (t) is a full rank weighting matrix. This so-
lution can be obtained by applying a pseudo-inverse
matrix of θ̇ to eq.(5).

Formally discretizing eq.(5) with sampling rate ∆t,
we get

Ĵ(t)− Ĵ(t−∆t) =
{∆x(t)− Ĵ(t−∆t)∆θ(t)}∆θ(t)T W (t)

∆θ(t)T W (t)∆θ(t)
, (7)

where ∆θ(t) = θ(t) − θ(t −∆t) and ∆x(t) = x(t) −
x(t−∆t).
2.3 Modification for Discrete-Time Do-

main and Extended Least Squares Al-
gorithm

On the other hand, when the system moves slowly,
we can use the least squares algorithm with exponen-
tial data weighting for estimating the Jacobian matrix.
From the formulation of the algorithm, we get

Ĵ(t)− Ĵ(t−∆t) =
{∆x(t)− Ĵ(t−∆t)∆θ(t)}∆θ(t)T P (t−∆t)

ρ + ∆θ(t)T P (t−∆t)∆θ(t)
, (8)

where ρ(0 < ρ ≤ 1) is a forgetting factor. If ρ = 1, the
new information is averaged with all past data. If ρ <
1, the old data are weighed less, and the estimator can
track the slowly time-varying Jacobian matrix. Here
P (t) denotes a covariance matrix:

P (t) =
1
ρ{P (t−∆t)− P (t−∆t)∆θ(t)∆θ(t)T P (t−∆t)

ρ+∆θ(t)T P (t−∆t)∆θ(t)
} . (9)

The estimator (8) is valid only when J is time-
invariant. But tuning forgetting factor ρ, we can apply
this method when the velocity of the system is small.

Eqs.(7) and (8) appear to be similar formulations
although they are introduced from different policies.
2.4 Proposed Estimator in Discrete-Time

Domain
We propose a unified formulation of eqs.(7) and (8)

in this subsection.

Ĵ(t)− Ĵ(t−∆t) ={
{∆x(t)−Ĵ (t−∆t)}∆θ(t)T W (t)

ρ+∆θ(t)T W (t)∆θ(t)
, (‖ ∆θ ‖6= 0),

O, (‖ ∆θ ‖= 0),
(10)
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where W (t) and ρ(0 ≤ ρ ≤ 1) denote a full rank
weighting matrix and a forgetting factor, respectively.
Note that the forgetting factor ρ can be equal to 0.

When one adopts the covariance matrix P (t−∆t)
as the weighting matrix W (t), and let 0 < ρ ≤ 1, one
can get the least squares algorithm with exponential
data weighting. When one adopts ρ = 0, Ĵ satisfies
eq.(3) under the condition ∆t → 0. Using the Jaco-
bian matrix estimator (10), if ρ is nearly equal to 0,
the system becomes sensitive to observed data, and if
ρ is nearly equal to 1, the system becomes insensitive
and stable. When the proposed scheme is applied to
the real system, one has to tune ρ according to noise,
sensitivity, etc.

3 Visual Servoing Controller
Using the estimated Jacobian matrix, we construct

a visual servoing control scheme which makes features
on the image plane converge to the desired values.
Stability of the system depends on the relationship
between m, l, and rank of matrix Ĵ ∈ <m×n, where
m and l denote the dimension of the features on im-
age plane and the number of d.o.f. of the features
in the real world. For example, tracking a finger-tip
point with stereo cameras, m = 4 and l = 3. Note
that the number of d.o.f. of the features on the image
plane does not exceed that in the real world, that is,
rank Ĵ is smaller than l. We assume that the sys-
tem has enough degrees of freedom to control, that is
n ≥ max(m, l), otherwise the system cannot realize
the desired motion.

Giving the desired trajectories of the features on
the image plane xd as C1 class, we proposed a visual
servoing control scheme

θ̇ = Ĵ
+
ẋd + (In − Ĵ

+
Ĵ)k −KĴ

T
e, (11)

where A+, In, K, k and e denote a pseudo-inverse
matrix of A, an n × n identity matrix, a positive-
definite gain matrix, an arbitrary vector and the error
vector e = x − xd, respectively. We assume that the
joints are controlled by minor velocity feedback con-
trollers so that the inputs for the joints are desired ve-
locity values. Applying the Jacobian matrix estimator
in continuous-time domain (6), and the servoing con-
trol scheme (11), we can prove that x asymptotically
converges to xd by using the Lyapunov stability the-
ory as follows;

We define a positive-definite scalar function

V =
1
2
eT e. (12)

Differentiating V with respect to time, we get

V̇ = eT ė

= eT (ẋ− ẋd). (13)

Since the estimator (6) satisfies eq.(3), from eq.(11)
we get

V̇ = eT (Ĵ Ĵ
+
ẋd − ẋd − ĴKĴ

T
e). (14)

To show that V̇ ≤ 0 and V is a Lyapunov function,
we consider two cases.
(case i) m ≤ l : This case means that the dimension
of the features on the image plane is smaller than the
number of d.o.f. of the features in the real world.
When rankĴ = m holds, we get

Ĵ Ĵ
+ − Im = O, (15)

therefore the time-derivative of V becomes

V̇ = −eT ĴKĴ
T
e ≤ 0. (16)

Here the sign of equality holds when e = , therefore
from the Lyapunov stability theory, the convergence
x → xd is proved as time tends to infinity.
(case ii) m > l : This case means that the di-
mension of the features on the image plane is larger
than the number of d.o.f. of the features in the real
world, that is, the case that the visual information is
redundant. In such a case, there is a certain constraint
between the features, which means the constraint in
the real world. Picking up independent elements from
features, we take a new independent feature vector
y ∈ <l. The constraint between x and y is written as

ẋ = J iẏ, (17)

where J i ∈ <m×l is a matrix which describes the con-
straint. Suppose that the desired trajectories xd sat-
isfies the constraint (17). When rankĴ = l holds,

(Ĵ Ĵ
+ − Im)J i = . (18)

therefore the derivative of V becomes

V̇ = −eT ĴKĴ
T
e ≤ 0. (19)

Here the sign of equality holds when y = yd, so
from the Lyapunov stability theory, the convergence
y → yd is proved as time tends to infinity. From the
constraint (17), finally the asymptotical convergence
x → xd is proved.

From the cases (i) and (ii), when rankĴ = min(m, l)
holds, the visual servoing control scheme (11) with the
Jacobian matrix estimator (6) is proved to guarantee
the asymptotical convergence x → xd. When one
applies the Jacobian matrix estimator in discrete-time
domain (10), the case that ρ = 0 is proved to be stable
as the sampling time ∆t tends to 0. In the case that
ρ 6= 0, the response of the system is supposed to be
similar.

Using the proposed visual servoing control scheme
with the Jacobian matrix estimator, without having
any a priori knowledge of the kinematic structure and
the system parameters, the features can be controlled
to converge to the desired values. The typical feature
of the proposed scheme is not to estimate the true
parameters, but to obtain arbitrary parameters that
ensure the features’ asymptotical convergence to the
desired values.

3



r
1

2

3

Z θ
OX

Y

Z

Z R
L

r

r

r

θ

θ

camera L camera R

Figure 2: Robot system used for simulation

length of link 2 (m) 0.43
length of link 3 (m) 0.40
focal length of camera R (m) 0.01
focal length of camera L (m) 0.011

Table 1: Parameters of robot system

4 Simulation
4.1 Robot System Used for Simulation

To show the validity of the proposed scheme, we
show some simulation results. The hardware setup of
the robot system used for simulation is shown in figure
2, which has a 3 d.o.f robot arm and two cameras.
This is a model of a real robot system (figure 5). We
assume a pinhole camera model as a camera model.
Translation and rotation of the camera frames ΣL and
ΣR with respect to the robot base frame Σr, are set:
rRR =


−8.9× 10−1 −3.7× 10−1 2.4× 10−1 −0.1
−7.3× 10−2 −4.1× 10−1 −9.1× 10−1 2.0
4.4× 10−1 −8.3× 10−1 3.4× 10−1 0.1

0 0 0 1




rRL =


−8.8× 10−1 −4.5× 10−1 1.7× 10−1 0.1
−1.5× 10−2 −3.2× 10−1 −9.5× 10−1 2.0
4.8× 10−1 −8.3× 10−1 2.8× 10−1 0.1

0 0 0 1




True parameters used for the simulation are shown in
Table 1. The arm-tip point is assumed to be tracked
by making use of a visual tracking system (for exam-
ple, presented in [11]), then the output of the cameras
is the feature vector [xR, yR, xL, yL]T . In this simula-
tion, video plain is 256 width ×480[pixel] height, and

zero-mean noise ±2[pixel] is added to the observed
image. The joint displacement is assumed to be mea-
sured from some joint sensors.

Theoretically, in case of the gain matrix K is
positive-definite, the proposed control scheme guar-
antees the asymptotical convergence. But in the sim-
ulation, because of the sampling ratio, too large gain
leads to be unstable, so the gain matrix is chosen by
trial and error:

K = diag[6.0× 105, 6.0× 105, 6.0× 105]

The initial Jacobian matrix at t = 0 is as-
sumed to be estimated coarsely. When [θ1,θ2,θ3]T =
[0, 70◦,−60◦]T , the estimated Jacobian matrix at t = 0
is given as

Ĵ(0) =



−1.0× 10−4 0.0 1.0× 10−4

0.0 1.0× 10−3 −1.0× 10−3

0.0 −1.0× 10−3 0.0
−1.0× 10−4 1.0× 10−3 −1.0× 10−3


 ,

while the true Jacobian matrix is

J(0) =



−7.0× 10−4 2.7× 10−3 7.0× 10−4

−6.2× 10−4 −2.2× 10−3 −1.8× 10−3

−6.3× 10−4 2.9× 10−3 5.8× 10−4

−6.0× 10−4 −2.7× 10−3 −2.1× 10−3


 .

Sampling ratio is set as 33 [ms](1/30 [sec]).
4.2 Step Response

We show a result of a step response of the sys-
tem in figure 3. The initial state of the arm is
[θ1,θ2,θ3]T = [0, 70◦,−60◦]T , the initial feature vec-
tor is [xR, yR, xL, yL]T = [67, 278, 168, 206]T . At
time t = 0, a step desired feature vector is given:
[xR, yR, xL, yL]T = [91, 250, 192, 167]T . This desired
features are calculated to satisfy the constraint in the
real world.

We show results of two cases:

case 1 Using the proposed control scheme (11), with
the proposed Jacobian matrix estimator (10) with
ρ = 0.001 and W (t) = In.

case 2 Using the proposed control scheme (11), with-
out any Jacobian estimator.

In figure 3, the error norm ‖ xR−xRd ‖ on the image
plane of the camera R is shown. The robot can not
realize the desired point stably in case 2, while it can
in case 1. Comparing the results of case 1 and case 2,
we can find the effectiveness of the proposed Jacobian
estimator. The result of the camera L is similar to this
one.
4.3 Continuous Trajectory Tracking

We show results of continuous trajectory tracking
in figure 4. The desired features are calculated so as
to satisfy the constraint in the real world.

Desired features move from the initial point
[xR, yR, xL, yL]T = [67, 278, 168, 206]T , to the goal
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Figure 3: Simulation result (step response, error norm
on camera R)

point [xR, yR, xL, yL]T = [65, 515, 169, 470]T in 3.0
[sec]. In figure 4, we show the same cases as 1 and
2.

The estimated Jacobian matrix at t = 6.0[sec] in
the case 1 is,

Ĵ(6) =



−2.8× 10−3 1.9× 10−3 1.3× 10−3

−1.3× 10−3 −2.0× 10−3 −1.4× 10−3

−2.4× 10−3 1.7× 10−3 −3.2× 10−3

−1.3× 10−3 −2.7× 10−3 −6.8× 10−4


 ,

while the true Jacobian matrix is

J(6) =



−2.1× 10−3 1.0× 10−3 −2.2× 10−4

−5.8× 10−4 −3.0× 10−3 −1.8× 10−3

−2.3× 10−3 8.2× 10−4 −5.4× 10−4

−4.3× 10−4 −3.4× 10−3 −2.0× 10−3


 .

Note that these two matrices are quite different, but
the performances of the two cases are similar.

From these results, the proposed visual servoing
control scheme with the Jacobian matrix estimator is
proved effective to make features converge to desired
values, without a priori knowledge of the kinematic
structure and the system parameters of the robot sys-
tem.

5 Experiments
In this section, some experimental results will be

shown to demonstrate validity of the proposed scheme.
In this paper, the results on PTP (Point-To-Point)
control are shown. Results of two cases are shown,
one of camera and arm system, and one of camera in
arm system, to show the flexibility of the proposed
method.
5.1 Robot and Camera System used for

experiments
In figure 5, the experimental system used for ex-

periments is shown. The system consists of a robot
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Figure 4: Simulation result (trajectory tracking, error
norm no camera R)

manipulator and a stereo camera system. The robot
manipulator is a puma type 6 d.o.f. robot manipu-
lator, Js-5 by Kawasaki Heavy Industry. The stere-
o camera system consists of two color CCD cameras,
ELMO UN401, whose focal length is 11[mm]. Baseline
length between two cameras is about 0.2[m].

5.2 Experimental Equipment
Figure 6 shows the experimental equipment of the

system. Video signal from the stereo camera is sent
to an image processing board MV200 (DataCube) and
pre-processed. Then the signal is sent to the tracking
module (Fujitsu). The tracking module has a func-
tion of block correlation to track some pre-memorized
pattern. Then the tracking module feeds coordinates
of the reference pattern to the controller, MVME167
(CPU:68040, 33MHz, motorola). The controller cal-
culate desired position of the robot by the proposed
scheme and send it to the robot controller via VME-
VME bus adapter. Using the system, sampling ratio
is 33[ms]. The stereo camera system and the robot are
not calibrated, so one do not know the parameters of
the system completely.

5.3 Experimental results
5.3.1 Camera and arm system

PTP control is applied to camera and arm system.
The cameras are set on the ground. First we show
the desired image on the image plane to the robot,
and move the arm to the initial point. At the ini-
tial point, the arm moves a little in x, y, z direc-
tion, to estimate the initial coarse Jacobian matrix.
Then we apply the PTP control, eq.(11) without feed-
forward terms. The initial image and the desired
image are [xR, yR, xL, yL]T = [78, 262, 156, 190]T and
[106, 295, 185, 223], respectively (see figure 7). Results
of the experiment are shown in figure 8, and figure 9.

In figure 8, we show two cases, with the proposed
Jacobian estimation and without estimation. We can

5



see the effectiveness of the proposed method from this
figure.

In figure 9, we show three cases to demonstrate the
effect of ρ. In this experiments, as ρ decreases, the
result becomes better. But in the real experiment, we
could observe the instability as ρ decreases.

5.3.2 Camera in arm system

To show the flexibility of the proposed scheme, the
same controller is applied to a camera in arm system
(figure 10). The target is fixed to the ground. We also
do experiment of PTP control of this case. The result
is shown in figure 11. This result demonstrates the
flexibility of the proposed method.

6 Discussion and Future Works
In this paper, we have proposed a versatile visual

servoing control scheme with a Jacobian matrix es-
timator to make features converge to desired values,
without a priori knowledge of the kinematic structure
and system parameters of the robot system. To show
the validity of the proposed scheme, some simulations
and real experiments are done.

When the proposed scheme is applied to the real
system, we have to check how the forgetting factor ρ
works. The factor ρ can make the system either sensi-
tive or stable, therefore how to choose an appropriate
ρ is one of the future works.

We have to discuss further on the combination of
the number of d.o.f. of the features in the real world
l and the dimension of the features in image plane
m, which is essential for the stability of the system.
Also we have to develop a method to generate the
desired image features xd which satisfy the real world
constraint amang them.

Also to do experiments on continuous control is one
of future works.
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Figure 5: Camera and arm system used for experi-
ments
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Figure 8: Experimental result 1 (camera and arm,
with and without estimation)
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Figure 10: Camera in arm system used for experi-
ments
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Figure 11: Experimental result 2 (camera in arm, with
and without estimation)

8


