
A Study On Applying A Reinforcement Learning

For A Real Robot

Shoichi Noda, Minoru Asada, Sukoya Tawaratsumida, and Koh Hosoda

Dept. of Mech. Eng. for Computer-Controlled Machinery

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan

noda@robotics.ccm.eng.osaka-u.ac.jp

Abstract Reinforcement learning is a useful method to acquire a purposive behavior with little or no a priori

knowledge about the environment. In applying the reinforcement learning to a real robot, there are many difficult
problems, such as long learning time and construction of its state and action space. In this paper, we show a soccer
robot which learns to shoot a ball into the goal using the Q-learning, one of the reinforcement learning methods. We
give the results of computer simulation and real robot experiments that show the effectiveness of a policy transfer from
the computer simulation to the real robot.

Key Words Reinforcement learning, Q-learning

1 Introduction
Reinforcement learning has recently been receiving

increased attention as a method for robot learning with
little or no a priori knowledge and higher capability of
reactive and adaptive behaviors[1]. However, almost
of existing works in the reinforcement learning have
only shown computer simulations, and only a few real
robot applications are reported, which are simple and
less dynamic.

We aim to realize an autonomous robot by using
the reinforcement learning. In this paper, we show a
soccer robot which learns to shoot a ball into the goal
by the method of Q-learning. In applying the rein-
forcement learning, we have difficult problems how to
reduce the long learning time which requires the expo-
nential order in the size of the state space[2] and how
to construct the state and action spaces for a complex
real enviornment.

In general, the state space should be constructed
such that each action causes a state transition. On a
real robot, however, one physical action does not al-
ways causes a state transition discriminated by physi-
cal sensors. To cope with this “state-action deviation”
problem, we constructed an action set in such a way
that one action consists of a series of the same action
which is successively executed until the current state
changes. To speed up the learning time, we propose
an algorithm which we call Learning from Easy Mis-
sions (or LEM). This algorithm reduces the learning
rate from the exponential order in the size of the state
space to about the liner order.

We implemented the experiments on both comput-
er simulation and real robot. A Policy transfer from
the computer simulation to the real robot system is not
only effective to save the learning time, but also useful

to check differences between both and to improve the
whole system.

2 Q-learning
Before getting into the details of our system, we

briefly review the basics of the Q-learning. For more
through treatment, see [3]. We follow the explanation
of the Q-learning by Kaelbling [4].

We assume that the robot can discriminate the set
S of distinct world states, and can take the set A of ac-
tions on the world. The world is modeled as a Markov
process, making stochastic transitions based on its cur-
rent state and the action taken by the robot. Let
T (s, a, s′) be the probability that the world will tran-
sit to the next state s′ from the current state-action
pair (s, a). For each state-action pair (s, a), the reward

r(s, a) is defined.
The general reinforcement learning problem is typ-

ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. A pol-
icy f is mapping from S to A. This sum called the
return and is defined as:

∞∑

n=0

γnrt+n, (1)

where rt is the reward received at step t given that the
agent started in state s and executed policy f . γ is the
discounting factor, it controls to what degree rewards
in the distant future affect the total value of a policy
and is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal pol-
icy, using methods from dynamic programming [5]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct



the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value

function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′).

(2)
Because we do not know T and r initially, we construct
incremental estimates of the Q values on line. Starting
with Q(s, a) at any value (usually 0), every time an
action is taken, update the Q value as follows:

Q(s, a) ⇐ (1−α)Q(s, a) +α(r(s, a) + γ max
a′∈A

Q(s′, a′)).

(3)
where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is
a leaning rate (between 0 and 1).

3 Learning from Easy Missions
In order to realize a real robot using the reinforce-

ment learning, it is a indispensable problem to speed
up the learning time. There are several works to speed
up it in applying the reinforcement learning. Mahade-
van and Connenl [6] proposed a task decomposition
method for rapid task learning on real robot. White-
head proposed the Learning with an External Critic
(or LEC) algorithm [2] that the robot receives an ad-
vise in each state from the external critic. When the
task or the environment is not so simple, however, it
is difficult to decompose the whole task into subtasks,
and to give a proper advise for each state.

We construct the learning schedule such that the
robot can learn in easy situations at the early stage and
learn in more difficult situations at the later stage. We
call this Learning from Easy Missions (or LEM).

S GS1S iSk-1k

Fig.1 The simplest state space.

Instead of critical analysis of the time complexity
for LEM, we give an intuitive explanation for it by
using a very simple example. Following the complex-
ity analysis by Whitehead [2], we assume the “homo-
geneous” state space uniformly k-bounded with poly-
nomial width of the depth k and zero-initialized Q-
learning. Further, we assume that state transition is
deterministic and the robot can take m-kinds actions
with equal opportunities. In order to figure out how
many steps are needed to converge the Q-learning, we
use O(k) state space and simplify the convergence such

that the action value function converged if it is updat-
ed from the initial value (0) 1.

Fig.1 show an example of such state spaces. Since
we assigned a reward 1 when the robot achieves the
goal and 0 otherwise, the unbiased Q-learning takes
long time. From the above formulation, it needs m

trials to transit from the initial state Sk to the state
Sk−1 in the worst case, therefore it takes mk trials to
achieve the goal for the first time in the worst case, and
the value of the action value function for only the state
S1 is updated. Next, it needs mk−1 trials to update
the value of the action value function for the state S2,
and totally it need (mk + mk−1 + · · · + m) trials to
converge the value of the action value function for all
the states. Therefore, the unbiased Q-learning can be
expected time moderately exponential in the size of k

[2].
While, in the LEM algorithm, we set the agent at

the state S1 first and make it try to achieve the goal.
In the worst case, it takes m trials. Then, we set the
agent at the state S2 and repeat it. In the worst case, it
needs m×k trials to converge the action value function.
Therefore, the LEM algorithm requires at most linear
in the size of k.

In actual situations in which the state transition is
often stochastic, the state space is not homogeneous,
and therefore it seems difficult to correctly decide which
state is an easy one to achieve the goal and when to
shift the initial situations into more difficult ones. S-
ince the convergence to the optimal policy is guaran-
teed in the Q-learning scheme, we roughly collect the
easy states S1 in which the agent can achieve the goal
with high probability and shift to a slightly more dif-
ficult situations when

∆Qt(S1, a) < ε , 0 < ε � 1 (4)

where

∆Qt(S1, a) =
∑

s∈S1

|max
a∈A

Qt(s, a) − max
a∈A

Qt−1(s, a)|

The search time versus maximum distance k for a
simple get food problem in the 2-D grid environmen-
t (Fig.2(a)), where one step Q-learning algorithm is
applied, is shown in Fig.2(b). As we expected, the
search time with LEM is almost linear in the size of k

while that of the normal Q-learning without LEM (ini-
tial position is fixed in the left-lower corner or random)
indicates the exponential order in the size of k.

4 Task and Assumptions
The task for a mobile robot is to shoot a ball in-

to the goal as shown in Fig.3(a). The environment

1Strictly speaking, this might be incorrect, however, it seems
easy to figure out the order of the search time.



Agent

1 2 3 ... n

1

2

3

n

...

Goal

Sensor

(a) 2-D grid environ-
ment.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 5 10 15 20 25 30 35 40

tim
e 

st
ep

depth

with LEM
without LEM

without LEM(random)

(b) Search time complexity
as a function k.

Fig.2 Simple get-food problem.

Robot

Goal

Ball

Observed Image

(a) The task is to
shoot a ball into
the goal.

(b) A picture of the radio-
controlled vehicle.

Fig.3 Task and our real robot.

consists of a ball and a goal, and a mobile robot has
a single TV camera. The robot does not know the lo-
cation and the size of the goal, size and weight of the
ball, any camera parameters such as focal length and
tilt angle, or kinematics/dynamics of itself. The im-
age positions of the ball and/or the goal are able to be
tracked continuously. The robot can select an action
to be taken.

Fig.3(b) shows a picture of the real robot with a
TV camera and video transmitter.

5 Learning Scheme
In order to apply the Q-learning scheme to the task,

we define a number of sets and parameters as follows.

(a) a state set S

Only the information the robot can obtain about
the environment is the image supposed to be captur-
ing the ball and/or the goal. The ball image is quan-
tized into 9 sub-states, combinations of three positions
(left, center, and right) and three sizes (large (near),
middle, and small (far)). The goal image has 27 sub-
states, combinations of three parameters each of which
is quantized three parts. Each sub-state corresponds
to one posture of the robot toward the goal, that is,
position and orientation of the robot in the field. In
addition to these 243 (27 × 9) states, we add other
states such as these cases in which only the ball or the

goal is captured in the image. Totally, we have 319
states in the set S.

(b) an action set A

The robot can select an action to be taken against
the environment. In real system, the robot moves
around the field by a PWS (Power Wheeled Steering)
system with two independent motors. Since we can
send the motor control command to each of two motors
independently, we quantized the action set in terms of
two motor commands ωl and ωr, each of which has 3
sub-actions (forward, stop, and back motions, respec-
tively). Totally, we have 9 actions in the action set
A.

The existing applications of the reinforcement learn-
ing schemes have constructed the state and action s-
paces in such a way that each action causes the state
transition (ex. one action is forward, backward, left,
or right, and states are encoded by the locations of
the agent) in order to make the quantization prob-
lem (the structural credit assignment problem) easy.
This makes a gap between the computer simulations
and real robot systems. Each space should reflect the
corresponding physical space in which a state or an
action can be perceived or taken. However, such con-
struction of state and action spaces sometimes causes
a “state-action deviation” problem. To cope with this,
the robot continues to take one action until the current
state changes.

(c) a reward and a discounting factor γ

We assign a reward value 1 when the ball was en-
tered into the goal or 0 otherwise. This makes the
learning very time-consuming. Although adopting a
reward function in terms of distance to the goal state
makes the learning time much shorter, it seems difficult
to avoid the local maxima of the action-value function
Q.

A discounting factor γ is used to control to what
degree rewards in the distant future affect the total
value of a policy. In our case, we set the value a slightly
less than 1 (γ = 0.9).

6 Experiments
The experiment consists of two parts: first, learn-

ing the optimal policy f through the computer simula-
tion, then apply the learned policy to a real situation.

6.1 Simulation
We performed the computer simulation with the

following specifications (the unit is correspond to cm).
The field is a square of which side length is 200. The
goal post is located at the center of the top line of
the square and its height and width are 23 and 90,
respectively. The robot is 31 wide and 45 long and
kicks a ball of diameter 9. The camera is horizontally
mounted on the robot (no tilt), and its visual angle is
36 degrees. These parameters are selected so that they
can roughly simulate the real world.



0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

su
m

 o
f Q

time step M

with LEM
without LEM

(a) Change of the sum of Q-
values.

MC68040

MaxVideo 200

A/D 

UHF Receiver

Parallel I/O

D/A

DigiColor

MC68040

VME BOX

Ether Net
Sun WS Sun WS

++ + ++ +

Transmitter

Receiver

Radio Controller

(b) A configuration of
the real system.

Fig.4 Simulation result and real system.

Following the LEM algorithm, we began the learn-
ing of the shooting behavior by setting the ball and
the robot near the goal. Once the robot succeeded in
a shooting, the robot begin to learn (the sum of Q is
increasing), but after that the robot wonders again in
the field. After many iterations of these successes and
failures, the robot learned to shoot a ball into the goal
when the ball is near the goal. After that, we set the
ball and the goal slightly further from the goal, and
repeat the robot learning again.

Fig.4(a) shows the change of the sum of Q-values
with or without LEM. The Q-learning with LEM is
much better than that without LEM. The arrows in-
dicate the time to change the initial states from S1

in which the robot can shoot easily, to more difficult
states S2, and then S3.

6.2 Real System
Fig.4(b) shows a configuration of the real mobile

robot system. The image taken by a TV camera mount-
ed on the robot is transmitted to a UHF receiver and
processed by Datacube MaxVideo 200, a real-time pipeline
video image processor. In order to simplify and speed
up the image processing time, we painted the ball in
red and the goal in blue. We constructed the radio con-
trol system of the vehicle, following the remote-brain
system[7]. The image processing and the vehicle con-
trol system are operated by VxWorks OS on MC68040
CPU which are connected with host Sun workstations
via Ether net. We have shown a picture of the real
robot with a TV camera (Sony handy-cam TR-3) and
video transmitter in Fig.3(b).

Fig.5 shows a sequence of the shooting images in
which the robot succeeded in shooting a ball into the
goal.

7 Discussion and Future Works
We have shown a vision-based reinforcement learn-

ing on real robot system, which adopted the Learning
from Easy Missions algorithm to speed up the learning
rate instead of task decomposition. The state-action

1

2

3

4

5

6

Fig.5 The robot succeeded in shooting a ball into the
goal.

deviation problem due to the peculiarity of the visual
information is pointed out as a problem in applying
the Q-learning to real robot applications, and we con-
structed an action space to cope with this problem.

Although we roughly constructed the state space,
it is still a difficult problem how to construct it. Higher
resolution of the state space contributes to the higher
performance of the robot behavior, but the learning
time becomes unrealistically longer and vice versa. It
seems necessary to take into account the purpose and
action of the robot in constructing an appropriate state
space. Now, we are considering the construction of
action-based state space for robot behavior acquisition.

References
[1] J. H. Connel and S. Mahadevan, editors. Robot Learn-

ing. Kluwer Academic Publishers, 1993.

[2] S. D. Whitehead. “A complexity analysis of cooperative
mechanisms in reinforcement learning”. In Proc. AAAI-

91, pages 607–613, 1991.

[3] C. J. C. H. Watkins. Learning from delayed rewards”.
PhD thesis, King’s College, University of Cambridge,
May 1989.

[4] L. P. Kaelbling. “Learning to achieve goals”. In Proc.

of IJCAI-93, pages 1094–1098, 1993.

[5] R. Bellman. Dynamic Programming. Princeton Univer-
sity Press, Princeton, NJ, 1957.

[6] J. H. Connel and S. Mahadevan. “Rapid task learning
for real robot”. In J. H. Connel and S. Mahadevan,
editors, Robot Learning, chapter 5. Kluwer Academic
Publishers, 1993.

[7] M. Inaba. “Remote-brained robotics: Interfacing ai
with real world behaviors”. In Preprints of ISRR’93,
Pitsuburg, 1993.


