
Vision-Based Reinforcement Learning for Purposive Behavior
Acquisition

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda

Dept. of Mech. Eng. for Computer-Controlled Machinery

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan

asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract
This paper presents a method of vision-based rein-

forcement learning by which a robot learns to shoot a
ball into a goal, and discusses several issues in applying
the reinforcement learning method to a real robot with
vision sensor. First, a “state-action deviation” prob-
lem is found as a form of perceptual aliasing in con-
structing the state and action spaces that reflect the
outputs from physical sensors and actuators, respec-
tively. To cope with this, an action set is constructed
in such a way that one action consists of a series of
the same action primitive which is successively exe-
cuted until the current state changes. Next, to speed
up the learning time, a mechanism of Learning form
Easy Missions (or LEM) which is a similar technique
to “shaping” in animal learning is implemented. LEM
reduces the learning time from the exponential order
in the size of the state space to about the linear order
in the size of the state space. The results of computer
simulations and real robot experiments are given.

1 Introduction
Realization of autonomous agents that organize

their own internal structure in order to behave ade-
quately with respect to their goals and the world is
the ultimate goal of AI and Robotics. That is, the au-
tonomous agents have to learn. Reinforcement learn-
ing has recently been receiving increased attention as
a method for robot learning with little or no a pri-
ori knowledge and higher capability of reactive and
adaptive behaviors [1]. In the reinforcement learning
scheme, the robot and the environment are modeled
by two synchronized finite state automatons interact-
ing in discrete time cyclical processes. The robot sens-
es the current state of the environment and selects an
action. Based on the state and the action, the environ-
ment makes a transition to a new state and generates
a reward that is passed back to the robot. Through
these interactions, the robot learns a purposive behav-
ior to achieve a given goal.

Although the role of the reinforcement learning is
very important to realize autonomous systems, the
prominence of that role is largely determined by the
extent to which it can be scaled to larger and complex
robot learning tasks. Many researchers in the field
of machine learning have concerned with the conver-
gence time of the learning, and developed the methods

to speed it up by some techniques and to extend these
techniques from a single goal task to multiple ones [2].
However, almost all of them have only shown com-
puter simulations in which they assume ideal sensors
and actuators, and therefore they can easily construct
the state and action spaces consistent with each oth-
er. From a viewpoint of real robot applications, we
should construct the state space so that it can reflect
the outputs of the physical sensors which are currently
available and can be mounted on the robot.

Some applications are recently reported to control
robot arms [3] or mobile robots [4] in which the initial
controller and the correct reward function are given in
advance. Therefore, the robot learns the control poli-
cy given much knowledge about the environment and
itself. We intend to apply the reinforcement learning
scheme to the task of purposive behavior acquisition in
real world with less knowledge about the environment
and the robot.

Mahadevan and Connel [5] proposed a method of
rapid task learning on a real robot. They separated
a pushing task into three subtasks of “finding a box,”
“pushing a box,” and “getting unwedged,” and applied
the Q-learning, a widely used reinforcement learning
method, to each of them. Since the proximity sen-
sors such as bumper and sonar sensors are used, the
acquired behaviors are limited to local ones and there-
fore these behaviors are not suitable for the more glob-
al and goal-directed tasks such as carrying a box to the
specified location. For such tasks, visual sensors could
be more useful because they might be able to capture
the image of the goal in the distant place. Howev-
er, the use of visual information in the reinforcement
learning is very few 1 due to its processing cost.

In this paper, we present a method of vision-based
reinforcement learning by which a robot learns to
shoot a ball into a goal. The robot does not need
to know any parameters of the 3-D environment or
its kinematics/dynamics. The image captured from
a single TV camera mounted on the robot is only the
source of the information telling the changes of the en-
vironment. Image positions and sizes of the ball and
the goal are used as a state vector. We discuss several

1To the best of our knowledge, only Whitehead and Ballard
[6] used the active vision system and argued the importance
of so-called “perceptual aliasing” problem. However, they have
not shown the real experiments.



issues from a viewpoint of robot learning: a) coping
with a “state-action deviation” problem which occurs
in constructing the state and action spaces in accor-
dance with outputs from the physical sensors and ac-
tuators, and b) learning from easy missions mechanism
for rapid task learning instead of task decomposition.

The remainder of this article is structured as fol-
lows: In the next section, we explain the task and as-
sumptions, and give a brief overview of the Q-learning.
Next, we show how to construct the state and action
spaces for the task at hand, and how to reduce the
learning time by the learning from easy missions (or
LEM) mechanism. Finally, we show the experimental
results by the computer simulations and the real robot
system, and give a discussion and concluding remarks.

2 Task and Assumptions

Closeup

Possible Actions

(a) The task is to shoot a ball into the goal.

(b) A picture of the radio-controlled vehicle.

Figure 1: Task and our real robot.

The task for a mobile robot is to shoot a ball into
a goal as shown in Figure 1(a). The problem we at-
tack here is to develop a method which automatically

acquires strategies how to do this. We assume that
the environment consists of a ball and a goal, and the
mobile robot has a single TV camera, and that the
robot does not know the location and the size of the
goal, the size and the weight of the ball, any camera
parameters such as focal length and tilt angle, or kine-
matics/dynamics of itself. Figure 1(b) shows a picture
of the real robot with a TV camera (Sony handy-cam
TR-3) used in the experiments.

3 Q-learning
Before getting into the details of our system, we

briefly review the basics of the Q-learning. For more
through treatment, see [7]. We follow the explanation
of the Q-learning by Kaelbling [8].

We assume that the robot can discriminate the set
S of distinct world states, and can take the set A

of actions on the world. The world is modeled as a
Markov process, making stochastic transitions based
on its current state and the action taken by the robot.
Let T (s, a, s′) be the probability that the world will
transit to the next state s′ from the current state-
action pair (s, a). For each state-action pair (s, a),
the reward r(s, a) is defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. A pol-
icy f is mapping from S to A. This sum called the
return and is defined as:

∞
∑

n=0

γnrt+n, (1)

where rt is the reward received at step t given that
the agent started in state s and executed policy f . γ
is the discounting factor, it controls to what degree
rewards in the distant future affect the total value of
a policy and is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal pol-
icy, using methods from dynamic programming [9]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct
the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′).

(2)
Because we do not know T and r initially, we construct
incremental estimates of the Q values on line. Starting
with Q(s, a) at any value (usually 0), every time an
action is taken, update the Q value as follows:

Q(s, a) ⇐ (1−α)Q(s, a)+α(r(s, a)+γ max
a′∈A

Q(s′, a′)).

(3)
where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is
a leaning rate (between 0 and 1).



4 Construction of State and Action

Sets

4.1 Construction of Each Space
(a) a state set S

The image supposed to capture the ball and/or the
goal is only the source of the information the robot
can obtain about the environment. The ball image is
classified into 9 sub-states, combinations of three sorts
of positions (left, center, or right) and three sorts of
sizes (large (near), middle, or small (far)). The goal
image has 27 sub-states, combinations of three proper-
ties each of which is classified into three categories (see
Figure 2). Each sub-state corresponds to one posture
of the robot toward the goal, that is, position and ori-
entation of the robot in the field. In addition to these
243 (27 × 9) states, we add other states such as these
cases in which only the ball or the goal is captured in
the image. Totally, we have 319 states in the set S.

lost-left                lost-right

Ball

position size

    left   center right     small   medium   large

Goal

  left   center  right
   lost-left           lost-right

small                   medium                  large

left-oriented    front               right-oriented

position

size

orientation

Figure 2: The ball substates and the goal substates

After some simulations, we realized that as long as
the robot captures the ball and the goal positions in
the image it succeeds in shooting a ball. However, once
it lost the ball, the robot randomly moves because it
does not know to which direction it should move to
find the ball. This occurs because the ball-lost state
is just one, therefore the robot cannot discriminate to
which direction the ball is lost. Then, we separate the
ball-lost state into two states; the ball-lost-into-right
and the ball-lost-into-left states. Similarly, we set up

goal-lost-into-right and goal-lost-into-left states, too.
This improved the robot behavior much better.

(b) an action set A

The robot can select an action to be taken against the
environment. In real system, the robot moves around
the field by a PWS (Power Wheeled Steering) system
with two independent motors. Since we can send the
motor control command to each of two motors inde-
pendently, we construct the action set in terms of two
motor commands ωl and ωr, each of which has 3 sub-
actions: forward, stop, and back motions, respectively.
Totally, we have 9 actions in the action set A.

(c) a reward and a discounting factor γ

We assign a reward value 1 when the ball was kicked
into the goal or 0 otherwise. This makes the learning
very time-consuming. Although adopting a reward
function in terms of distance to the goal state makes
the learning time much shorter, it seems difficult to
avoid the local maxima of the action-value function
Q.

A discounting factor γ is used to control to what
degree rewards in the distant future affect the total
value of a policy. In our case, we set the value a slightly
less than 1 (γ = 0.8).

4.2 Solving A State-Action Deviation
Problem

Near

Medium

Far

Figure 3: A state-action deviation problem

In the previous section, we constructed the state
space in such a way that the position and the size of
the ball or goal are naturally and coarsely classified
into each state. Due to the peculiarity of the visual
information, that is, a small change near the observer
results in a large change in image and vice versa, one
action does not always corresponds to one state tran-
sition. We call this “state-action deviation prob-
lem.” Figure 3 indicates this problem, where the area
of which state is “the goal is far” has a large area, and



therefore the robot frequently returns to the same s-
tate if the action is forward. This is highly undesirable
because the variance of the state transitions is vary
large, and therefore the learning does not converge
correctly.

Then, we reconstruct the action space as follows.
Each action defined in 4.1 is regarded as an action
primitive. The robot continues to take one action
primitive until the current state changes. This se-
quence of the action primitive is called action. In the
above case, the robot takes a forward motion many
times until the state “the goal is far” changes into the
state “the goal is medium.” The number of action
primitives needed for state changes has no meanings.
Once the state has changed, we update the action val-
ue function by eqn.(3).

5 Learning from Easy Missions
Unlike the approach in [5], we do not decompose

the whole task into subtasks of finding, driblling, and
shooting a ball. Instead, we first used a monolithic
approach. That is, we place the ball and the robot at
arbitrary positions. In almost all the cases, the robot
crossed over the field line without shooting the ball
into the goal. This means that the learning did not
converge after many trials (a week running on SGI E-
lan with R4000). This situation resembles a case that
a small child tries to shoot a ball into a goal, but he
or she cannot imagine in which direction and how far
the goal is because a reward is received only after the
ball was kicked into the goal. Further, he or she does
not know which action to be selected. This is the fa-
mous delayed reinforcement problem due to no explicit
teacher signal that indicates the correct output at each
time step. Then, we construct the learning schedule
such that the robot can learn in easy situations at the
early stage and learn in more difficult situations at the
later stage. We call this Learning from Easy Missions
(or LEM). This technique is similar to a widely known
“shaping” technique in animal learning in letting an
agent know the order of the situations to achieve the
goal.

S GS1S iSk-1k

Figure 4: The simplest state space.

5.1 Complexity analysis
We roughly estimate the time complexity for LEM

following the complexity analysis by Whitehead [10].
We assume the “homogeneous” state space uniform-
ly k-bounded with polynomial width of the depth k
and zero-initialized Q-learning with a problem solving
task. The problem solving task is defined as any learn-
ing task where the system receives a reward only upon
entering a goal state. Further, we assume that state
transition is deterministic and the robot can take one
of m-kinds actions with equal opportunities. In order
to figure out how many steps are needed to converge

the Q-learning, we use O(k) state space and simplify
the convergence such that the value of the action value
function in each state converges if it is updated from
the initial value (0).

Figure 4 shows an example of such state space. S-
ince we assume the problem solving task, the unbiased
Q-learning takes long time. From the above formula-
tion, it needs m trials 2 to transit from the initial
state Sk to the state Sk−1 in the worst case, therefore
it takes mk trials to achieve the goal for the first time
in the worst case, and the value of the action value
function for only the state S1 is updated. Next, it
needs mk−1 trials to update the value of the action
value function for the state S2, and totally it needs
(mk +mk−1 + · · ·+m) trials to converge the values of
the action value function for all the states. Therefore,
the unbiased Q-leaning can be expected time moder-
ately exponential in the size of k [10].

While, in the Learning from Easy Missions algorith-
m, we place the agent at the state S1 first and make
it try to achieve the goal. In the worst case, it takes
m trials. Then, we place the agent at the state S2

and repeat it. In the worst case, it needs m × k trials
to converge the action value function. Therefore, the
LEM algorithm requires the time about linear in the
size of k.

In actual situations like our task, the state tran-
sition is stochastic, the state space is not homoge-
neous, and therefore it seems difficult to correctly de-
cide which state is an easy one to achieve the goal and
when to shift the initial situations into more difficult
ones. Since the convergence to the optimal policy is
guaranteed in the Q-learning scheme with a problem
solving task, we roughly collect the states from which
the agent can achieve the goal with high probabili-
ty. We call the set of these states S1, a set of slightly
more difficult states S2, and then S3, · · ·, respectively.
Shifting to the next more difficult state set is occurs
when

∆Qt(Sk, a) < ε, (4)

where

∆Qt(Sk, a) =
∑

s∈Sk

∣

∣

∣

∣

max
a∈A

Qt(s, a) − max
a∈A

Qt−∆t(s, a)

∣

∣

∣

∣

(k = 1, 2, 3, · · ·).

∆t indicates a time interval for a number of steps of
state changes.

The closer to zero ε in eqn. (4) is, the earlier Q
converges to Q∗ in a deterministic world because it
takes longer time to converge Q-values in the state set
Sk if we shift the initial states to the state set Sk−1
earlier due to ε � 0. It is, however, not always true in
a non-deterministic world that ∆Qt(Sk, a) = 0 when
the learning is at its final stage. Therefore, we have
to set up an adequate value for ε.

2Here, we define one trial as one step state transition by one
action.



We suppose that the result of the stochastic state
transition of the current state set Sk−1 cannot be
every state but limited to the state in the neighbor
state sets Sk−2 and Sk. If the learning sufficiently

converged, we have the following from eqn. (3).

∆Q(s, a) =

∣

∣

∣

∣

α(r(s, a) + γ max
a′∈A

Q(s′, a′) − Q(s, a))

∣

∣

∣

∣

.

Since r(s, a) = 0 except the goal state,

∆Q(s, a) =







α 1−γ
γ

Q(s, a), for s′ ∈ Sk−2
0, for s′ ∈ Sk−1
α(1 − γ)Q(s, a). for s′ ∈ Sk

If Q(s, a) has converged,

∆Q(s, a) ≤ α
1 − γ

γ
Q(s, a).

Taking a summation in the state set Sk leads:

∆Q(Sk, a) ≤ α
1− γ

γ

∑

s∈Sk

max
a∈A

Q(s, a).

Note that the sampling time ∆t should be long to
exactly check the convergence without being affected
by small fluctuations of the summation of Q-values,
but also short to reduce the total learning time. S-
ince the above inequality supposes that the Q-values
in all s ∈ Sk are updated, an adequate ∆t should be
longer than |Sk| steps which correspond to the neces-
sary steps to make trials initiating from every s ∈ Sk.
From the above discussions, we adopt:

ε = α
1 − γ

γ

∑

s∈Sk

max
a∈A

Q(s, a). (5)

5.2 Simulation results
As a simple example, we consider the grid world

problem. In this example, the robot is free to roam
about a bounded 2-dimensional grid, n × n. It can
move one of four principle directions, left, right, up,
or down. The robot is reset after it reached the goal
or crossed over the grid world boundary. In order
to simulate the stochastic state transitions, the robot
can move to the desired grid with a 3/4 probability
but stays at the current grid with a 1/4 probability.
The goal is set at the top right corner and the state
is encoded as a coordinate of the grid. We assign a
reward value 1 when the robot achieves the goal or 0
otherwise. The depth of the state space, the maximum
distance to the goal of the optimal paths, is 2(n − 1).

We implemented LEM as follows. The state set S1
consists of two states one grid neighbor to the goal, S2
three states one grid neighbor to S1, and so on. We
shift the initial grids of Sk to that of Sk+1 according

to eqns. (4) and (5) with ∆Q(Sj, a) = |Sj|.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 5 10 15 20 25 30 35 40

tim
e 

st
ep

depth

with LEM
without LEM

without LEM(random)

Figure 5: Search time complexity in terms of the size
of state space.

Figure 5 shows a plot of the search time (number
of steps) versus maximum distance k, where one step
Q-learning algorithm is applied with the learning rate
α = 0.25 and the discounting factor γ = 0.9. As we
expected, the search time of the normal Q-learning
without LEM (dotted and broken lines) indicates the
exponential order in the size of k. The initial posi-
tion is fixed at the bottom left corner (broken line)
or randomly placed (dotted line). While, the search
time with LEM (solid line) is almost linear in the size
of k although the curve is a little bit upward because
some inadequate trials wasted much time due to use-
less search such as backward motions.

0

20

40

60

80

100

120

140

0 2 4 6 8 10

S
1+

S
2+

S
3

Time step [M]

Sum of Q
Sum of Delta Q

Figure 6: Change of the sum of Q and ∆Q-values in
S1 + S2 + S3

6 Experiments
The experiment consists of two parts: first, learning

the optimal policy f through the computer simulation,
then apply the learned policy to a real situation.



6.1 Computer simulation

0

20

40

60

80

100

120

140

0 2 4 6 8 10

S
um

 o
f Q

 (
S

1+
S

2+
S

3)

Time step [M]

with LEM
without LEM

Figure 7: Changes of the sum of Q-values with and
without LEM

We performed the computer simulation with the
following specifications. The field is a square of 3.0[m]
× 3.0[m]. The goal post is located at the center of
the top line of the square (see Figure 1) and its height
and width are 0.23[m] and 0.9[m], respectively. The
robot is 0.31[m] wide and 0.45[m] long and kicks a ball
of diameter 0.09[m]. The maximum translation veloc-
ity is 1.1[m/s], and the maximum angular velocity is
4.8[rad/s]. The camera is horizontally mounted on the
robot (no tilt), and its visual angle is 36 degrees. The
velocities of the ball before and after being kicked by
the robot is calculated by assuming that the mass of
the ball is negligible compared to that of the robot.
The ball speed is temporally decreased by a factor 0.8
in order to reflect the so-called “viscous friction.” The
values of these parameters are determined so that they
can roughly simulate the real world.

We applied the LEM algorithm to the task in which
Si (i=1,2, and 3) correspond to the state sets of “the
goal is large, medium, and small,” respectively, regard-
less of the orientation and the position of the goal, and
the size and position of the ball. ε is determined by
eqns. (4) and (5). Since |S1| = |S2| = |S3| = 81, we
fixed ∆Q(Sj, a) = 3000 that is much larger than |Sj|.

Figure 6 shows the changes of Q and ∆Q where the
solid and broken lines indicate the maximum value of
Q and the summation of ∆Q in states ∈ S1+S2+S3,
respectively. The axis of time step is scaled by M (106)
that corresponds to about 9 hours in real world since
one time step is about 30[ms]. Two arrows indicate
the time steps (around 1.4M and 5M) when a set of
the the initial states changed from S1 to S2 and from
S2 to S3, respectively. Just after these steps, ∆Q
drastically increased, which means the Q-values in the
inexperienced states are updated.

Figure 7 shows the changes of the sum of Q-values
with (solid line) and without (broken line) LEM. The
Q-learning with LEM is much better than that with-
out LEM. The fine and coarsely dotted lines show the

curves when the initial positions were not changed
from S1 to S2, and from S2 to S3, respectively. This
simulates the LEM with the partial knowledge. If we
know only the easy situation of S1, and nothing any-
more, the learning curve follows the coarse dotted line
in Figure 7. The sum of Q values is slightly less than
that of the LEM with more knowledge, but much bet-
ter than without LEM.

6.2 Experimental results on a real robot

MC68040

MaxVideo 200

A/D 

UHF Receiver

Parallel I/O

D/A

DigiColor

MC68040

VME BOX

Ether Net
Sun WS Sun WS

++ + ++ +

Transmitter

Receiver

Radio Controller

Figure 8: A configuration of the real system.

(a) input image (b) detected ball and goal

Figure 9: Result of image processing.

Figure 8 shows a configuration of the real mobile
robot system. The image taken by a TV camera
mounted on the robot is transmitted to a UHF receiv-
er and processed by Datacube MaxVideo 200, a real-
time pipeline video image processor. We constructed



the radio control system of the vehicle [11]. The im-
age processing and the vehicle control system are op-
erated by VxWorks OS on MC68040 CPUs which are
connected with host Sun workstations via Ether net.
We have shown a picture of the real robot in Figure
1(b).

1

2

3

4

5

6

Figure 10: The robot succeeded in shooting a ball into
the goal.

In order to simplify and speed up the image process-
ing time, we painted the ball in red and the goal in
blue. The input NTSC color video signal is first con-
verted into HSV color components in order to make
the extraction of the ball and the goal easy. Then,
the image size is reduced to speed up the image pro-
cessing time more, and the boundaries of the ball and
goal regions are extracted for the state discrimination.
The result of image processing is sent to the host CPU
to decide an optimal action against the current state.
Figure 9 (a) and (b) show an example of input image
captured by the robot and the result of the ball and
the goal detection for the input image, respectively.
Their positions and orientation are calculated in real
time (totally, about 30ms).

The shooting rate in the real robot system was less
than 50% which was about 20% worse than the simu-
lation. The main reason is that the ball often moves
towards unpredictable directions due to its eccentric-
ity of the centroid. The second one is noise of the
image processing explained in the following.

Figure 10 shows a sequence of the images in which
the robot succeeded in shooting a ball into the goal by
the method. Table 1 shows the image processing and

state mapping result in each time step (about 30ms)
for the sequence of the images captured by the robot,
examples of which are shown in Figure 10. Each col-
umn indicates time step, the state transition step, the
mapped state, the action command, and the number of
errors in the state discrimination process, respective-
ly. The mapped state consists of five substates: two
for the ball position (Left, Center, or Right) and size
(large (Near), Middle, or small (Far)), and three for
the goal position, size, and orientation (Left-oriented,
Front-oriented, or Right-orinented). “D” means a
lost state (disappear). Incorrectly mapped substates
are with “*”s, and the number of these substates are
shown in the error box. An action command consists
of a combination of two independent motor commands
(Forward, Stop, or Backward).

Table 1: State-Action data

time state state action error
step step ball goal L R

1 1 (C,F) (C,F,Fo) F F
2 2 (R*,F) (C,F,Fo) F F 1
3 3 (D*,D*) (C,F,Ro*) B B 3
4 4 (C,F) (C,F,Lo*) B S 1
5 5 (C,F) (C,F,Fo) F F
6 (C,F) (C,F,Fo) F F
7 (C,F) (C,F,Fo) F F
8 (C,F) (C,F,Fo) F F

9 6 (C,F) (C,F,Ro*) B S 1

10 7 (C,F) (C,F,Fo) F F
11 8 (C,F) (R,M,Fo) F F
12 9 (R,F) (R,M,Fo) F F
13 10 (R,M*) (R,F*,Lo*) F B 3
14 11 (L*,F) (R,M,Ro*) F S 2
15 12 (L*,F) (R,M,Fo) F S 1
16 13 (R,M) (R,M,Fo) S B
17 14 (C,M) (C,M,Fo) F F
18 15 (L,M) (L,M,Fo) S F
19 16 (L,N) (L,M,Fo) B S
20 (L,N) (L,M,Fo) B S
21 17 (L,M*) (L,M,Fo) S F 1
22 18 (L,N) (L,M,Fo) B S
23 (L,N) (L,M,Fo) B S

24 19 (C,N) (C,M,Fo) F B
25 20 (C,M) (C,M,Fo) F F
26 (C,M) (C,M,Fo) F F
27 21 (C,M) (C,N,Fo) F S
28 22 (C,M) (C,M*,Lo*) F S 2
29 23 (C,M) (C,M*,Ro*) S B 2

30 24 (C,F) (D,D,D) F S

Amazingly, the ratio of the completely correct map-
pings is about 60%. Most of the incorrect mappings
occur when the size of the ball is misjudged as small-
er one due to failures in edge detection. As long as
the ball and the goal are captured at the center of the
image, this does not cause a serious situation because
the optimal action is just forward. However, it fails
to shoot a ball when the ball is captured at the right
or left of the image because it misjudges the distance



to the ball. Due to the noise of the transmitter, com-
pletely incorrect mappings occur at the ratio of 15%.
Unless this situation continues two or more time step-
s, this does not cause a serious situation because the
robot can take the correct action once the correct state
mapping is obtained.

7 Discussion
Coarse segmentation of the state space (“right” or

“left” and “small” or “large”) is useful in two folds:
one is to reduce the size of the state space and the
other one to absorb the image processing noise. Ide-
ally, the agent should find these properties necessary
for goal achievement automatically from the visual in-
formation. Although some works are reported on this
problem [12, 13], we need much more works to make
clear what kind of information is necessary to achieve
the goal and how to construct (segment) the state s-
pace from it.

The LEM algorithm differs in some aspects from
the existing approaches to speed up the search time.
In the task decomposition approach [5], the Q-learning
is closed inside each subtask. In LEM, however, the
robot wanders around the field crossing over the states
easy to achieve the goal even if we initially place it at
such states. We just advise the positions of the easy
states. In other words, we do not need to care so much
about the segmentation of the state space in order to
decompose the whole task, and the partial knowledge
about the easiness of the missions can be used in LEM
scheme. However such knowledge seems difficult to be
applied in the task decomposition scheme.

In the Learning with an External Critic (or LEC)
[10], the robot receives an advise in each state from
the external critic. In order to let LEC work correctly,
the complete knowledge about the evaluation for the
action taken in any state is needed. While, the partial
knowledge is available in LEM. The completeness of
the knowledge does not make any effect on the correct
convergence of Q-learning, but on the search time in
LEM.

8 Concluding Remarks
We have shown a vision-based reinforcement learn-

ing method which is, to the best of our knowledge,
the first attempt at applying reinforcement learning
(Q-learning) to a real robot task with real time vision
system. We adopted the Learning from Easy Mission-
s algorithm similar to a “shaping” technique in ani-
mal learning in order to speed up the learning time
instead of task decomposition. The state-action de-
viation problem due to the peculiarity of the visual
information is pointed out as one of the perceptual
aliasing problem in applying Q-learning to real robot
tasks, and we constructed an action space to cope with
this problem.

Although the real experiments are encouraging,
still we have a gap between the computer simulation
and the real system. We have not made the real robot
learn but only execute the optimal policy obtained by
the computer simulation. We are planning to make the
real robot learn with the policy obtained by comput-
er simulation as the initial values of the action-value

function to be determined.

References
[1] J. H. Connel and S. Mahadevan, editors. Robot

Learning. Kluwer Academic Publishers, 1993.

[2] R. S. Sutton. “Special issue on reinforcement
learning”. In R. S. Sutton(Guest), editor, Ma-
chine Learning, volume 8, pages –. Kluwer Aca-
demic Publishers, 1992.

[3] F. Saito and T. Fukuda. “Learning architecture
for real robot systems – extension of connectionist
q-learning for continuous robot control domain”.
In Proc. of 1994 IEEE Int. Conf. on Robotics and
Automation, pages 27–32, 1994.

[4] A. H. Fagg, D. Lotspeich, and G. A. Bekey. “A re-
inforcement learning approach to reactive control
policy design for autonomous robots”. In Proc. of
1994 IEEE Int. Conf. on Robotics and Automa-
tion, pages 39–44, 1994.

[5] J. H. Connel and S. Mahadevan. “Rapid task
learning for real robot”. In J. H. Connel and
S. Mahadevan, editors, Robot Learning, chap-
ter 5. Kluwer Academic Publishers, 1993.

[6] S. D. Whitehead and D. H. Ballard. “Active per-
ception and reinforcement learning”. In Proc. of
Workshop on Machine Learning-1990, pages 179–
188, 1990.

[7] C. J. C. H. Watkins. Learning from delayed re-
wards”. PhD thesis, King’s College, University of
Cambridge, May 1989.

[8] L. P. Kaelbling. “Learning to achieve goals”. In
Proc. of IJCAI-93, pages 1094–1098, 1993.

[9] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[10] S. D. Whitehead. “A complexity analysis of co-
operative mechanisms in reinforcement learning”.
In Proc. AAAI-91, pages 607–613, 1991.

[11] M. Inaba. “Remote-brained robotics: Interfacing
ai with real world behaviors”. In Preprints of
ISRR’93, Pitsuburg, 1993.

[12] D. Chapman and L. P. Kaelbling. “Input general-
ization in delayed reinforcement learning: An alo-
gorithm and performance comparisons”. In Proc.
of IJCAI-91, pages 726–731, 1991.

[13] S. Mahadevan and J. Connell. “Automatic pro-
gramming of behavior-based robots using rein-
forcement learning”. In AAAI-’91, pages 768–
773, 1991.


