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Abstract. This paper proposes an efficient method of robot learning by which a set of pairs of a
state and an action are constructed to achieve a goal. Basic ideas of our method are as follows: i)
Since autonomous construction of state and action spaces is generally a very difficult problem, we
construct a state space so that a group of situations in which an action command to achieve the
goal is the same can be merged into one state even if these situations appear to be different from
each other. An action is defined as a sequence of the same action command in such a state. ii)
Following the LEM (Learning from Easy Missions) paradigm (Asada et al., 1995), we first find a set
of states (in terms of action) closest to the goal state, and then find a set of states closest to the set
found previously. iii) In order to reduce an enormous number of trials to find such states, we place
a robot so that it can observe objects which the state space consists of (in our case, a ball and a
goal). iv) During the above process, the optimal action to achieve the goal is found in every state.
This means that a robot can take an adequate action to achieve the goal from every state. We show
the experimental results using a real robot system.
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1 Introduction

Building a robot that learns to perform a task has
been acknowledged as one of the major challenges
facing Robotics and AI. Reinforcement learning
has recently been receiving increased attention as
a method for robot learning with little or no a

priori knowledge and higher capability of reactive
and adaptive behaviors (Connel and Mahadevan,
1993a). In the reinforcement learning method, a
robot and an environment are modeled by two
synchronized finite state automatons interacting
in a discrete time cyclical processes. The robot
senses the current state of the environment and
selects an action. Based on the state and the
action, the environment makes a transition to a
new state and generates a reward that is passed
back to the robot. Through these interactions,
the robot learns a purposive behavior to achieve
a given goal.

To apply robot learning methods such as rein-
forcement learning to real robot tasks, we have
to deal with two issues. First, we need an enor-
mous number of trials (examples), which is a rea-
son why PbD (Programming by Demonstration)
researchers are disappointed with LfE (Learning
from Examples) methods. Second, we need well-
defined state and action spaces by which a robot

correctly learns to perform the task at hand.

For the first problem, human interventions from a
variety of aspects have been conducted so as to re-
duce the number of enormous trials. One of such
interventions, the learning by watching method
(hereafter, LBW), in real robot applications has
been done by Kuniyoshi et al. (Kuniyoshi and I-
noue, 1993). They directly showed performances
of a human operator in front of a robot with high
speed visual tracking routines so as to teach how
to perform a given task in a qualitative manner,
depending on the knowledge database on seman-
tics of human actions and their meanings. Here,
we call this kind of intervention “physical inter-
vention” in robot learning. The physical inter-
vention seems very efficient and useful for human
operators. However, the robot system seems to
need much amount of knowledge and sophisticat-
ed perception capabilities. Therefore, the number
of followers is not so many (Kang and Ikeuchi,
1994).

For the various kinds of situations and tasks, it
seems difficult to make the physical intervention
always possible. On the other hand, non-physical
intervention seems feasible for many kinds of sit-
uations although various kinds of non-physical in-
terventions have their own advantages and disad-



vantages. Task decomposition (Connel and Ma-
hadevan, 1993b) can be regarded as a typical non-
physical intervention in robot learning to reduce
the number of trials. Also, learning from external
critic (hereafter LEC) (Whitehead, 1991) is an-
other example of non-physical intervention tech-
nique in reinforcement learning to speed up the
learning time. These techniques need accurate
knowledge on the properties of the whole task.
For example, in the case of task decomposition,
decomposed tasks should be independent of each
other and no interference should occur. In the case
of LEC, the external critic should always correctly
advise the agent to guarantee the convergence of
the learning.

In our previous work (Asada et al., 1994b),(Asada
et al., 1994a) in which a soccer robot learned to
shoot a ball into a goal using only visual informa-
tion, we proposed a Learning from Easy Missions
paradigm to speed up the learning time with less
knowledge of the task performance such as when,
what, and how to do. In the LEM paradigm,
non-physical intervention is realized as a learning
schedule for the agent from where the trials should
start given the state and action spaces. The learn-
ing time depends on the accuracy of the knowledge
which situation is easier than other. Rather, the
plausible point of the LEM is that we can roughly
use less accurate knowledge. This is the differ-
ence from other non-physical interventions such
as task decomposition and LEC which need accu-
rate knowledge.

The second problem is called the “state-action de-
viation problem” (Asada et al., 1995) which oc-
curs when we construct state and action spaces
in a way that they reflect physical sensors and
actuators. In our previous work (Asada et al.,
1994b; Asada et al., 1994a), we had this problem
due to the difference in resolution between a robot
action in a 3-D space and its projection onto a 2-D
image. We solved this problem by restructuring
the action space so that one action may cause one
state transition. That is, first we fix the state s-
pace, and then construct the action space so that
the state and action spaces can be consistent with
each other. While, one can construct a state s-
pace fixing the action space first (Chapman and
Kaelbling, 1991; Dubrawski and Reingnier, 1994).
Generally, the optimal state space design should
be supported by the optimal action space design,
and vice versa. This resembles the well-known
“chicken and egg problem” (Figure 1). Again, the
“physical intervention” such as LBW seems much
more difficult to be applied in robot learning when
the state and action space are not specified a pri-

ori.

To cope with these two problems, in this paper

State Space Action Space?

Figure 1 The inter-dependence between state

and action spaces

we propose an efficient method of robot learning
by which a set of pairs of a state and an action
are constructed. Basic ideas of our method are as
follows:

1. Since autonomous construction of state and
action spaces is generally a very difficult
problem, we construct a state space so that a
group of situations in which an action com-
mand to achieve the goal is the same can be
merged into one state even if these situations
appear to be different from each other. An
action is defined as a sequence of the same
action command in such a state.

2. Following the LEM (Learning from Easy Mis-
sions) paradigm (Asada et al., 1995), we first
find a set of states (in terms of action) closest
to the goal state, and then find a set of states
closest to the set found previously.

3. In order to reduce an enormous number of
trials to find such states, we place a robot so
that it can observe objects which the state
space consists of (in our case, a ball and a
goal).

4. During the above process, the optimal action
to achieve the goal is found in every state.
This means that a robot can take an adequate
action to achieve the goal from every state.

The remainder of this article is structured as fol-
lows: In the next section, we review our previ-
ous work, including explanations for the task and
assumptions. Next, we show the method to au-
tomatically construct the state space, and finally,
we show the experimental results and give a dis-
cussion with concluding remarks.

2 The Domain and Our Previous
Work

2.1 Task and Assumptions

The task for a mobile robot is to shoot a ball into
a goal as shown in Figure 2(a). The environmen-
t consists of a ball and a goal, and the mobile
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(a) Task is to shoot a ball into the goal.

(b) A picture of a radio-controlled vehicle.

Figure 2 Task and our real robot.

robot has a single TV camera. The robot does
not know the location and the size of the goal,
the size and the weight of the ball, any camer-
a parameters such as focal length and tilt angle,
or kinematics/dynamics of itself. We applied Q-
learning (Watkins, 1989), a most widely used rein-
forcement learning method, with the reward value
to be 1 when the ball is kicked into the goal and 0
otherwise. Figure 2(b) shows a picture of the real
robot with a TV camera (Sony handy-cam TR-3)
used in the real experiments.

2.2 State and Action Spaces

(a) a state space S The image, supposed to
capture the ball and/or the goal, is the only source
of information the robot can obtain about the
environment. The ball image is classified into 9
sub-states, combinations of three classifications of
positions (left, center, or right) and three type-

s of sizes (large (near), middle, or small (far)).
The goal image has 27 sub-states, combinations
of three properties each of which is classified in-
to three categories (see Figure 3). Each sub-state
corresponds to one posture of the robot towards
the goal, that is, position and orientation of the
robot in the field. In addition to these 243 (27 ×

9) states, we add other states such as the cases in
which only the ball or only the goal is captured in
the image. In all, we have 319 states in the set S.

Ball

position

    left   center right

size

    small   medium   large

Goal

  left   center  right

small                   medium                  large

left-oriented    front               right-oriented

position

size

orientation

Figure 3 The ball sub-states and the goal

sub-states

(b) an action space A The robot can select
an action to be taken in the current state of the
environment. The robot moves around using a P-
WS (Power Wheeled Steering) system with two
independent motors. Since we can send the mo-
tor control command to each of the two motors
separately, we construct the action set in terms
of two motor commands ωl and ωr, each of which
has 3 sub-actions, forward, stop, and back. All
together, we have 9 actions in the action set A.
An action is defined by a sequence of the same
action command as explained later.

3 State and Action Space Con-
struction

3.1 Problems with Our Previous Work

In our previous work, we divided a state space
very coarsely in order to reduce the size of the s-
tate space on which the learning time depends (it
is generally an exponential order in the size of the
state space (Whitehead, 1991)). We have consid-
ered only the perceived data, that is, the visual
information, and ignored the effects on the image
caused by robot actions. Due to the peculiarity of
the visual information, that is, the same motion
in the 3-D space results in a large change in the
image if it happens near the observer but a smal-
l change in the image if it happens far from the
observer, one action does not always corresponds
to one state transition. We called this “state-
action deviation problem.” Then, we recon-
structed the action space by redefining an action



so that every action can cause one state transi-
tion. However, the state space construction was
designed by the programmer. The agent should
find a state space by itself through interactions
with the environment. The following are the re-
quirements for the problem:

1. The state and action spaces should reflec-
t physical sensor(s) and actuator(s) of a
robot. The deterministic state transition
models (e.g. one action is forward, backward,
left, or right, and the states are encoded by
the locations of the agent) are useful only for
simple toy problems in computer simulations.

2. Since everything changes asynchronously in
real world (Mataric, 1994), the state and ac-
tion spaces directly reflecting the physical
sensors and actuators suffer from the state
- action deviation problem. The state and
action spaces should be restructured to cope
with this problem.

3. The state space should be robust against the
various disturbances such as sensor noise, de-
lay, and uncertainty of action execution.

3.2 The Method

Basic ideas of our method are that input vectors
are merged into one state unless the optimal ac-
tion changes, that an action is defined as a se-
quence of one kind command actions (the length
of the sequence has no meaning in our method,
it depends on the state changes), and that such
states are found in the order of closeness to the
goal state (Figure 4). In order to efficiently real-
ize the idea, a robot and a ball are initially placed
so that the robot can see the ball and the goal re-
gardless of the distance to the goal. In every trial,
the same action command is repeatedly executed,
and observed vectors during the robot motion are
recorded in the state space if the robot reached
the goal state.

Algorithm

1. Set the goal state as a target zone ZT .

2. Store an input state vector x ∈ Rm (m: the
size of the vector) with an index of the action
a ∈ A the robot took when it could succeed in
achieving ZT from x. Do not include the vec-
tors that have been already categorized into
the previously divided states.

3. Fit a multi-dimensional uniform distribution
function (a concentration ellipsoid (Cramër,
1951)) to a cluster of stored vectors with the
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Figure 4 The goal-directed and action-based
state space construction

same action index a ∈ A obtained above, and
construct a state sa (a ∈ A). The boundary
surface of the ellipsoid is given by:

(x − µ)T Σ−1(x − µ) = m + 2, (1)

where µ and Σ denote the mean vector and
the covariance matrix, respectively.

4. Update the target zone ZT as a union of s-
tates sa(a ∈ A) obtained in the previous step.
If a vector is categorized into plural states
saj

(j = 1, ..) (clusters are overlapped), se-
lect one state so that the following distance
normalized by its covariance can be the min-
imum:

∆j = (x − µj)
T Σ−1

j (x − µj)

5. Stop if the state space is almost covered by
the divided clusters. Else, go to 2.

We call a set of states sa (a ∈ A) the i-th closest to
the goal state Si. By the above algorithm, we can
obtain not only the state and action spaces but
also the optimal path to the goal from everywhere.

4 Experimental Results

The experiment consists of three stages. First, we
collect the data obtained by real robot motions.
Next, we construct the state and action spaces
based on the sampled data. Finally, we control
the robot based on the acquired state and action
map.

There are several sources of disturbances which
make the method unstable. Two major sources
are delay due to sensory information processing
and uncertainty of action execution. The contents
of the image processing are color filtering (a ball



and a goal are painted in red and blue, respec-
tively), edge enhancement, localizing and count-
ing edge points, and vector calculation (Asada et

al., 1994a). We have been using a pipeline im-
age processor and it takes about 33ms to perform
these processings, that is, a period of one action
command. The latter is caused by the delay neces-
sary to stabilize motor rotation after sending mo-
tor commands, and it is about 100ms. Therefore,
the uncertainty of the action execution increases
when motor commands often change.

The size of the observed image is 512 by 480 pix-
els, and the center of image is the origin of the
image coordinate system (see Figure3). Each s-
tate vector x for a shooting task consists of:

• x1: the size of the ball, the diameter that
ranges from 0 to about 270 pixels,

• x2: the position of the ball ranging from -270
to +270, considering the partial observation,

• x3: the size of the goal, the height average
of the left and right poles (or ends in image)
that ranges from 0 to 480 pixels,

• x4: the position of the goal, the average of the
positions of the left and right poles (or ends
in image) that ranges from -256 to +256, and

• x5: the orientation of the goal, the ratio of the
height difference between the left and right
poles (or ends) to the size of the goal x3. x5

ranges from -1.00 to +1.00.

Figure 5 shows the process of state space division.
The state space in terms of ball size, ball position,
and goal size is indicated when the position and
the orientation of the goal (x4 and x5) are both
zeros (in front of the goal). In the first step, only
one big ellipsoid (S1) is obtained that correspond-
s to the forward motion (Figure 5 (a)). In the
second step, two ellipsoids (S2) corresponding to
forward and backward motions are obtained (Fig-
ure 5 (b)). The state divided by programmer in
the previous work (Asada et al., 1994a) would be
a rectangular parallelepiped parallel to the axes in
Figure 5. The remainder of the state space in Fig-
ure 5 (b) corresponds to infeasible situations such
as “the goal is near and the ball is far” although
we did not recognize such a meaningless state in
the previous work.

Figure 6 shows a real robot experiment using the
state and action map obtained by the method.
The robot succeeded in finding and shooting a ball
into the goal.

Table 1 compares the method with our previous
work (Asada et al., 1994a). The search time in the

Table 1 Comparison of the methods with our

previous work

# of Search Success
States Time Rate (%)

Previous work 243 500M∗ 77.4

Proposed method 33 41M 83.3

∗ indicates the Q-learning time.

previous work means the learning time in terms
of the period of one action command (33ms) s-
ince the state space is given a priori. It takes
about 500M (M=106) steps because the number
of states is much larger. The proposed method
performs better than the previous work. The size
of the state space is about 1/8 of that of the pre-
vious work. The search time is about 1/12 of the
previous work.

Only the problem is that the size of one state
is considerably larger, and therefore the possibil-
ity of the incorrect merging of input vectors into
wrong states seems high. This might be partly a
reason why the success rate is less than 90%.

5 Discussion and Concluding Re-
marks

We have proposed an efficient robot learning
method by which the robot learned to achieve the
goal by constructing the state and action spaces
based on experiences. To speed up the learning
(search), we assumed that the state space is s-
mooth and uniform, by which we could place the
robot at places where the possibility to achieve
the goal is very high and could apply a multi-
dimensional uniform distribution function (a con-
centration ellipsoid (Cramër, 1951)) to represent
a region of one state.

There is no guarantee that states can be approxi-
mated by the concentration ellipsoids. We have
tried another function, a Gaussian probability
density one. The performance was not so different
from the concentration ellipsoid, but the Gaussian
function needs a threshold to define the boundary
to what extent a state can be expanded. While,
the concentration ellipsoid does not need such a
threshold because we assume that the distribution
of the input vector is uniform. The reason why the
success rate is less than 90% is that some vectors
do not hold this assumption.

Popular methods for clustering such as kd-trees

(Samet, 1984), ID-3 (Quinlan, 1983), and k near-

est neighbor do not seem suitable for the method
because we intended to construct a state which



consists of various kinds of situations that might
be quite different in their appearance. If we apply
these methods, we would have a large number of
states.
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Figure 6 The robot succeeded in finding and shooting a ball into the goal


