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Abstract

We have been doing a research on vision-
based reinforcement learning and applied the
method to build real soccer playing robot-
s. In the first stage [Asada et al., 1994a],
a robot learned to shoot a ball into a goal.
In the second stage [Asada et al., 1994b;
Asada et al., 1994c], we set up an opponent
just before the goal, that is, a goal keeper,
and make the robot learn to shoot a ball into
a goal avoiding the goal keeper. This can be
considered as a problem of learning from oth-
er agents. The big difference from the exist-
ing schemes such as learning by demonstra-
tion [Kuniyoshi and Inoue, 1993] and social
learning [Mataric, 1994] is that the other a-
gents is not always friendly nor suggestive to
help the agent learn. Rather, the other a-
gents are involved in the task which the agent
has to accomplish. That is, they are compet-
itive agents. In this paper, we discuss several
issues on the problem of “learning from other
competitive agents” we are facing with in our
project.

1 INTRODUCTION

Building a robot that learns to perform a task has been
acknowledged as one of the major challenges facing
Robotics and AI. Reinforcement learning has recent-
ly been receiving increased attention as a method for
robot learning with little or no a priori knowledge and
higher capability of reactive and adaptive behaviors
[Connel and Mahadevan, 1993]. In the reinforcemen-
t learning scheme, a robot and an environment are
modeled by two synchronized finite state automatons
interacting in a discrete time cyclical processes. The
robot senses the current state of the environment and
selects an action. Based on the state and the action,
the environment makes a transition to a new state and
generates a reward that is passed back to the robot.

Through these interactions, the robot learns a purpo-
sive behavior to achieve a given goal.

We have been doing a research on vision-based rein-
forcement learning and applied the method to build
real soccer playing robots. In the first stage [Asa-
da et al., 1994a], we constructed the state space in
terms of the sizes, positions, and the orientation of
the ball and the goal in image captured by the robot,
and the action space in which the robot can send
one of motor commands (forward, stop, and back-
ward motions) into two independent motors (totally,
9 actions). In the second stage [Asada et al., 1994b;
Asada et al., 1994c], we set up an opponent just be-
fore the goal, that is, a goal keeper, and make the robot
learn to shoot a ball into a goal avoiding the goal keep-
er (See Figure 1). This can be considered as a problem
of learning from other agents. The big difference from
the existing schemes such as learning by watching [Ku-
niyoshi and Inoue, 1993] and social learning [Mataric,
1994] is that the other agents is not always friendly nor
suggestive to help the agent learn. Rather, the other
agents are involved in the task which the agent has to
accomplish. That is, they are competitive agents. In
this paper, we discuss several issues on the problem of
“learning from other competitive agents” we are facing
with in our project.

2 CLASSIFICATION AND SCOPE

There might be several ways to categories a method-
ology of “Learning from Other Agents” depending on
who are other agents. Colleagues, opponents, teachers,
critics, or gods. From a viewpoint of Robot Learning,
we classify the methodology in terms of character and
involvement of other agents in the context of learning
strategy. Cooperative or competitive? Are they in-
cluded in the environment or excluded from it? Table
1 shows this classification.

The most popular method of “learning from other a-
gents” is Learning by Demonstration by Kuniyoshi et
al. [Kuniyoshi and Inoue, 1993] in which other a-
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Figure 1: The task is to shoot a ball into the goal
avoiding an opponent.

cooperative competitive

Learning by Demonstration
excluded from [Kuniyoshi and Inoue, 1993]

environment Learning from External Critic ?
[Whitehead, 1991]

competition
included in social learning [Littman, 1994]

environment [Mataric, 1994] [Asada et al., 1994b]
[Asada et al., 1994c]

Table 1: Classification of the methodology

gents are kind and suggestive human operators. Learn-
ing from External Critic (hereafter LEC) [Whitehead,
1991] is also categorized into this class although an
critic (other agent) has not shown any demonstrations
but gives an advice each time an agent takes an action.
In these cases, other agents are cooperative but not in-
volved in the environment in which an agent learns to
to accomplish a given task. While, in the method of
group learning or social learning [Mataric, 1994], co-
operative agents are involved in the environment and
therefore other agents can be regarded as a part of the
environment for a learning agent.

Other agents involved in the environment are not al-
ways cooperative. Some of them might be competitive
with the learning agent in real robot environments.
Littman [Littman, 1994] proposed Markov game as a
framework for multi-agent reinforcement learning in
which one to one competition (a soccer-like game) was
dealt. Both agents try to shoot a ball into the oppo-
nent’s goal and at the same time to block an oppo-
nent to shoot a ball into its own goal. Asada et al.
[Asada et al., 1994b; Asada et al., 1994c] proposed a
method of behavior coordination for the similar task
to Littman’s, but the task is to shoot a ball into a goal

avoiding an opponent (a goal keeper) and blocking be-
havior is not included. In these two cases, other agents
are competitive and involved in the environment.

In the current state, we cannot find any sense in the
learning from other competitive agents who are ex-
cluded from the environment (“?” in the table).

In this paper, we discuss the issues in the learning
from other competitive agents method, intending to
apply the method to real robot applications such as
real robot soccer playing (ex., [Asada et al., 1994a]).

The remainder of this article is structured as follows:
In the next section, we give a brief overview of the Q
learning and three kinds of coordinations of multiple
behaviors. We then explain the task, and how to con-
struct state and action spaces in our method. Next,
we show the experiments with computer simulations
and on-going real robot system. Finally, we give dis-
cussions.

3 Q-LEARNING

Before getting into the details of our system, we will
briefly review the basics of Q-learning. For a more
thorough treatment, see [Watkins, 1989]. We follow
the explanation of Q-learning by Kaelbling [Kaelbling,
1993].

We assume that the robot can discriminate the set S of
distinct world states, and can take the set A of actions
on the world. The world is modeled as a Markov pro-
cess, making stochastic transitions based on its current
state and the action taken by the robot. Let T (s, a, s′)
be the probability of transition to the state s′ from the
current state-action pair (s, a). For each state-action
pair (s, a), the reward r(s, a) is defined.

The general reinforcement learning problem is typi-
cally stated as finding a policy 1 that maximizes the
discounted sum of rewards received over time. This
sum is called the return and is defined as:

∞∑
n=0

γnrt+n, (1)

where rt is the reward received at step t given that the
agent started in state s and executed policy f . γ is the
discounting factor, it controls to what degree rewards
in the distant future affect the total value of a policy.
The value of γ is usually slightly less than 1.

Given definitions of the transition probabilities and the
reward distribution, we can solve for the optimal pol-
icy, using methods from dynamic programming [Bell-
man, 1957]. A more interesting case occurs when we
wish to simultaneously learn the dynamics of the world
and construct the policy. Watkin’s Q-learning algo-
rithm gives us an elegant method for doing this.

1A policy f is a mapping from S to A.



Let Q∗(s, a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′).

(2)
Because we do not know T and r initially, we construct
incremental estimates of the Q-values on-line. Starting
with Q(s, a) equal to an arbitrary value (usually 0),
every time an action is taken, the Q-value is updated
as follows:
Q(s, a) ⇐ (1−α)Q(s, a)+α(r(s, a)+γ max

a′∈A
Q(s′, a′)).

(3)

where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is
a learning rate (between 0 and 1).

To speed up the learning time, we generate actions
probabilistically based on Q values using a Boltzmann
distribution. Given a situation s, we choose an action
a with probability:

eQ(a,s)/T

∑
a∈A eQ(a,s)/T

(4)

This serves to make actions whose values are much
better than the others be chosen with much greater
likelihood. The temperature parameter T controls the
amount of exploration (the degree to which actions
other than the one with the best Q value are taken).

4 CONSTRUCTING STATE AND
ACTION SPACES

In order to apply the Q-learning scheme to each of two
subtasks, we define a number of sets and parameter-
s for each of them. The existing applications of the
reinforcement learning have constructed the state and
action spaces in such a way that each action causes
the state transition (ex. one action is forward, back-
ward, left, or right, and states are encoded by the lo-
cations (coordinates) of the agent) in order to make
the quantization problem (the structural credit assign-
ment problem) easy. This makes a gap between the
computer simulations and real robot systems. Each s-
pace should reflect the corresponding physical space in
which a state or an action can be perceived or taken.
Then, we construct these spaces considering the sen-
sor resolution and control parameter resolution for the
actuator. Figure 2 shows sub-states used in each sub-
task. For the shooting task, ball and goal sub-states
are used (Sg), and for the avoiding behavior, opponent
sub-state is used (Sr).

The robot moves around the field by a PWS (Power
Wheeled Steering) system with two independent mo-
tors. Since we can send the motor control command

Ball

11 substates

11 substates

29 substates

Goal

Opponent

Figure 2: Sub-states for both tasks

to each of two motors independently, we quantized the
action set in terms of two motor commands ωl and ωr,
each of which has 3 sub-actions (forward, stop, and
backward motions, respectively). Totally, we have 9
actions in the action set A.

We assign a reward value 3 when the ball is entered
into the goal or 0 otherwise for the shooting task, and
-1 when a collision with a moving obstacle occurs. A
discounting factor γg is used to control to what degree
rewards in the distant future affect the total value of a
policy. In the shooting task, we set the value a slightly
less than 1 (γg = 0.8), and for the avoiding task γr =
0.1.

5 LEARNING A REFLEXIVE
BEHAVIOR

The Q-learning method can obtain not only goal-
directed behaviors but also reflexive ones as well by
slightly changing some parameters and updating equa-
tions. Unlike the goal-directed behaviors to find the
path from the current state to the goal state, reflexive
behaviors are reactive, and therefore, the discounting
factor γr should be much smaller so that the action-
value for the distant future action cannot be affected.

A typical example of such behaviors is “collision avoid-
ance” which has another different property from that



of goal-directed behaviors. That is, any action can
be allowed to be taken unless it causes collisions with
other objects (agents). In order to learn such a be-
havior, the negative reward should be assigned for the
state-action pair which causes a collision with a mov-
ing obstacle, and such actions should be learned by
using the following update equations instead of eqns.

Qr(s, a) ⇐ (1− α)Qr(s, a) +
α(r + γa min

a′∈A
Qr(s′, a′)). (5)

fr(s) ← a such that (6)
Qr(s, a) = min

b∈A
Qr(s, b). (7)

After learning, the decision of action selection is done
based on eqn.(7). That is, the agent tries to make col-
lisions with other objects during the learning process,
and it does not take such actions after the learning.
We studied the following situations:

1. Stationary Obstacles: This is the simplest case
for the agent to avoid. What the agent has to
learn is the relationship between the action com-
mands and its effects in the environment. To do
that the state space is constructed in terms of the
size and position of the other agent. The learning
has converged quickly and the agent could avoid
the other agent adequately as long as the agent
can observe the other agent.

2. Moving Agents: The next step is that the other
agent is not stationary but moving around. This
case is also separated into two cases according
to the property of motions, that is, random mo-
tion or intended motion such as approaching to-
ward the agent. In the case of random motions,
the learning has not converged because the pol-
icy cannot be constructed due to randomness of
other agent motions. While, if the other agent
has a fixed policy to behave such as an intention
to block the learner, the learning has converged.
Then, we studied other cases in which the other
agent shows random motions or the fixed policy
actions stochastically. According to the ratio of
the random motion, the learning time changed or
the learning has not converged. If the other agent
shows block motions against the learner with the
ratio of 50% as long as it can observe the learner
otherwise random motions, the learning has con-
verged but the policy shows that the difference
of the action values between the optimal action
(collision) and other actions is not so large. To
improve this situation, we add the changes in size
and position of other agent in image captured by
the learner into the state space. Although the size
of the state space has increased, the learner could
behave adequately whatever actions the other a-
gent shows.

6 COORDINATION OF MULTIPLE
BEHAVIORS

We consider three kinds of coordinations in which
the previously learned behaviors are combined; simple
summation of different action value functions, switch-
ing action value functions according to situations, and
learning given the learned policies as a priori knowl-
edge. The state spaces Sc for the coordinated behav-
ior in these coordinations are a little bit different from
each other according to their methods. To simplify
the following explanatins, let us consider to combine a
goal-directed behavior (Qg(sg, a)) and a reflexive be-
havior (Qr(sr, a)) into a new one.

Basically, a state sc ∈ Sc can be defined as a combined
state of Sg and Sr. We denote this combination as
Sg×Sr or (Sg,Sr). The number of Sc is theoretically
a product of numbers of states of Sg and Sr.

(a) Simple summation of different action value
functions

The action value function of simple summation
Qc

ss(s
c, a) for the coordinated behavior is given by;

Qc
ss(s

c, a) = max
a∈A

(Qg((sg, ∗), a) + Qr((∗, sa), a)) (8)

where Qg((sg, ∗), a) and Qa((∗, sa), a) denote the ex-
tended action value functions for the goal-directed and
reflexive behaviors in the new state space, respectively.
∗ means any states, therefore each of these functions
considers only the original states and ignores the s-
tates of other behaviors. In this scheme, the selected
action sometimes might not make any sense for both
behaviors because the simple summation cannot con-
sider combined new situations.

(b) Switching action value functions

The switching action value function Qc
sw(sc, a) for the

coordinated behavior is given by the following equation
depending on a situation.

Qc
sw(sc, a) =

{
Qr(sr, a), in some situations
Qg(sg, a), otherwise (9)

It seems hard to appropriately determine the situa-
tions to switch the functions Qg(sg, a) and Qr(sr, a).
Simple situations we tried are the cases where only an
opponent can be seen or where an opponent can be
seen. In the former, the robot does not care about
collisions with the opponent when the ball or the goal
can be observed, while in the latter the robot tries to
avoid the opponent even if it is likely able to shoot
a ball into the goal. Therefore, we need a carefully
designed decision rule to switch the policies. The fol-
lowing method provides us with this rule by learning
a new policy coping with new situations.



(c) Learning a new behavior

In the above methods, the previously learned ac-
tion value functions are simply summed or switched.
Therefore these methods ignore some situations incon-
sistent with the state spaces Sg or Sr. Eventually,
an action suitable for these situations has never been
learned. To cope with these new situations, the robot
needs to learn a new behavior by using the previously
learned behaviors. The method is as follows;

1. Construct a new state space Sc:

(a) construct the directly combined state space
Sg × Sr.

(b) find such states that are inconsistent with Sg

or Sr.
(c) resolve the inconsistent states by adding new

substates sc
sub ∈ Sc.

2. Learn a new behavior in the new state space Sc:

(a) use the values of the action value function
Qc

ss as the initial values of Qc
rl for both the

normal states sc and the new substates sc
sub.

For the new substates, we use the original val-
ue of Qc

ss(s
c, a) before generating these new

states. That is,

Qc
rl(s

c, a) = Qc
ss(s

c, a)
Qc

rl(s
c
sub, a) = original value of Qc

ss(sc, a)
(10)

(b) control the temperature parameter T in
eqn(4) for the action selection in such a way
that low temperature (conservative) is used
around the normal states sc and high tem-
perature (random) around the new substates
sc

sub in order to reduce the learning rate.

A typical example is the case where a ball and the
opponent are located at the same area and the bal-
l is occluded by the opponent from the viewpoint of
the robot. In this case, the robot cannot observe the
ball, and therefore the corresponding state sg ∈ Sg

might be the state of “ball-lost,” but it is not correct.
Of course, if both the ball and the opponent can be
observed, this situation can be considered consisten-
t. This problem is resolved by adding new substates
sc

sub ∈ Sc. In the above example, a new situation “oc-
cluded” is added, and the corresponding new substates
are generated.

The learning scheme is applied to both normal states
and newly generated ones with different temperature
parameters T in eqn(4) for the action selection in such
a way that low temperature (conservative) is used
around the normal states sc and high temperature
(random) around the new substates sc

sub in order to
reduce the learning time.

6.1 EXPERIMENTS

In addition to three kinds of coordination methods,
we show the performance data by only using the pol-
icy Qg which completely ignores the existence of the
opponent. Table 2 shows the simulation result where
the success rate of shooting per trial, the mean steps
between collisions with the opponent, and the mean
steps needed to get a shoot (success). In the case of
only using Qg, the robot tries to shoot a ball ignoring
the opponent, and therefore it collides with the oppo-
nent many times and needs much more steps to get
a shoot although the rate is as good as the learning
method. The simple sum seems better in collision be-
cause avoiding behavior becomes dominant when the
opponent approaches to it. However, it sometimes set-
tles at one of the local maxima near the goal where
shooting and avoiding behaviors are balanced, and
therefore the shooting rate is the worst. The switch-
ing condition we set is to use shooting behavior unless
only the opponent can be observed very largely. The
robot got more shoots than the simple sum because
it can avoid the local maxima. However, when it uses
avoiding one, many actions not related to shooting be-
havior are chosen, and therefore it takes longest time
step to get a shoot as a result. The learning method
is the best in shooting rate, collision avoidance, and
speed of shooting per trial.

Table 2: Simulation result

coordination success mean steps mean steps
method rate(%) between collisions to success
only Qg 46.7 43.1 286.9

simple sum 33.2 77.5 231.2
switching 39.2 98.0 414.4
learning 46.7 238.1 128.3

Fig.3 shows a sequence of shooting behavior by the
learning method. In these figures, the robot and the
opponent are colored in black and gray, respectively.
The lines emerged from them shows their visual angles.
The opponent tries to chase after the robot with the
probability of 50% as long as it can see the robot.
Otherwise, it randomly moves. In this case, we did not
add the changes in size and position of the opponent
into the state space because it causes too huge state
space to learn within reasonable time.

Next, we studied how the learning agent can improve
its performance by the behavior of other agents. In-
tuitively, we can see the learning agent cannot learn
at all if the opponent has the optimal policy to block
the learner because of no success. Therefore, accord-
ing to the basic idea of Learning from Easy Mission-
s Paradigm (hereafter LEM) [Asada et al., 1995], we
started with a stationary opponent (stationary obsta-
cle), and then increase its velocity until the maximum



Figure 3: A shooting behavior of the learning method

one of the agent. Figure 4 shows the learning curve
(summation of maximum Q-values in terms of action)
in terms of number of trials 2 with and without LEM.
Since the initial value is overestimated due to simple
summation of two action values, the learning curve
starts from the high value. With LEM, the agent s-
tarted learning with a stationary opponent, and then
with one of half speed (from the first arrow), and final-
ly with one of the maximum speed (from the second
arrow). While, without LEM, the agent starts from
an opponent with the maximum speed, therefore the
summation of Q-values drastically decreased, and has
not converged to the level with LEM. This figure tells
that LEM seems essential for the learning from other
competitive agents.

Fig.5 shows a picture of the real robot with a TV cam-
era (Sony handy-cam TR-3) and video transmitter.

Fig.6 shows the result of the image processing where
a ball (front left), a goal (center-back), and an enemy
(right) are detected and their positions are calculated
in real time (1/30 seconds). Fig.7 shows a sequence
of images where the robot achieved the goal avoiding
an enemy that is currently static.

7 DISCUSSION

We have shown one aspect of the learning methods
from other agents. In our experiments, we have not
made the opponent learn because the learning seems
hard unless the opponent policy has been fixed. If the

2one trial ends when the agent succeeds in shooting or
crosses over the field line
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Figure 4: Learning curves with and without LEM

state space is very small, multi-agent learning might
be possible [Littman, 1994]. However, in applying the
learning method in real robot applications, we need
to reduce the huge search space by controlling other
agents’ behaviors. From this sense, we have not dealt
with complete competitive agents.

Intuitively, simultaneous learning of two competitive
agents seems very difficult because the policy to be
learned cannot obtained from other agent of which
policy has not been fixed. If it is possible [Littman,
1994], there should be some constraints. Otherwise, it
cannot be justified. We need more study on this topic.

Our final goal is to build up a team of soccer playing
robots in which not only the learning from competitive
agents but from cooperative agents as well should be s-
tudied to realize team plays such as centering, passing,
and so on.
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