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Abstract
We introduce our approach, a new direction of

robotics research that makes a robot learn to behave
adequately to accomplish a given task at hand through
the interactions with its environment with less a priori
knowledge about the environment or the robot itself.
We briefly present three research topics of vision-based
robot learning in each of which visual perception is
tightly coupled with actuator effects so as to learn an
adequate behavior. First, “motion sketch” for a one-
eyed mobile robot to learn several behaviors such as
obstacle avoidance and target pursuit is introduced.
Next, a method of vision-based reinforcement learn-
ing by which a robot learns to shoot a ball into a goal
is presented. Finally, we show a method of purpo-
sive visual control consisting of an on-line estimator
and a feedback/feedforward controller for uncalibrat-
ed camera-manipulator systems. All topics include the
real robot experiments.

1 Introduction
Realization of autonomous agents that organize

their own internal structure in order to take action-
s towards achieving their goals is the ultimate goal
of AI and Robotics. That is, the autonomous agents
have to learn. Recent research in artificial intelligence
has developed computational approaches of agent’s in-
volvements in their environments [1]. Our final goal,
in designing and building an autonomous agent with
vision-based learning capabilities, is to have it perfor-
m a variety of tasks adequately in a complex environ-
ment. In order to build such an agent, we have to
make clear the interaction between the agent and its
environment.

In physiological psychology, Held and Hein [2] have
shown that self-produced movement with its concur-
rent visual feedback is necessary for the development
of visually-guided behaviors. Their experimental re-
sults suggest that perception and behavior are tightly
coupled in autonomous agents that perform tasks. In
biology, Horridge [3] similarly has suggested that mo-
tion is essential for perception in living systems such
as bees.

In computer vision area, so-called “purposive ac-
tive vision paradigm” [4, 5, 6] has been considered
as a representative form of this coupling since Aloi-
monos et al. [7] proposed it as a method that converts
the ill-posed vision problems into the well-posed ones.
However, many researchers have been using so-called

active vision systems in order to reconstruct 3-D in-
formation such as depth and shape from a sequence
of 2-D images given the motion information of the ob-
server or capability of controlling the observer motion.
Furthermore, though purposive vision does not consid-
er vision in isolation but as a part of complex system
that interacts with world in specific ways [4], very few
have tried to investigate the relationship between mo-
tor commands and visual information [8].

In robot learning area, the researchers have tried
to make agents learn a purposive behavior to achieve
a given task through agent-environment interactions.
However, almost of them have only shown comput-
er simulations, and only a few real robot applications
are reported which are simple and less dynamic [9, 10].
there are very few examples of use of visual informa-
tion in robot learning, probably because of the cost of
visual processing.

In this paper, we introduce our approach, a new di-
rection of robotics research that makes a robot learn
to behave adequately to accomplish a given task at
hand through the interactions with its environment
with less a priori knowledge about the environment
or the robot itself. We briefly present three research
topics of vision-based robot learning in each of which
visual perception is tightly coupled with actuator ef-
fects so as to learn an adequate behavior.

The remainder of this article is structured as fol-
lows: First we introduce a method to represent an
interaction between the agent and its environment
which is called “motion sketch” for a one-eyed mo-
bile robot to learn several behaviors such as obsta-
cle avoidance and target pursuit. Next, a method of
vision-based reinforcement learning by which a robot
learns to shoot a ball into a goal is presented. Finally,
we show a method of purposive visual control consist-
ing of an on-line estimator and a feedback/feedforward
controller for uncalibrated camera-manipulator sys-
tems. All topics include the real robot experiments.

2 Motion Sketch [11]
2.1 Basic Ideas of Motion Sketch

The interaction between the agent and its environ-
ment can be seen as a cyclical process in which the
environment generates an input (perception) to the
agent and the agent generates an output (action) to
the environment. If such an interaction can be for-
malized, the agent would be expected to carry out



actions that are appropriate to individual situation-
s. “Motion sketch,” we proposed here, is one of such
formalizations of interactions by which a vision-based
learning agent that has real-time visual tracking rou-
tines behaves adequately against its environment to
accomplish a variety of tasks.
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Figure 1: Motion sketch

Figure 1 shows a basic idea of the motion sketch.
The basic components of the motion sketch are visual
motion cues and the motor behaviors.

Visual motion cues are detected by several visual
tracking routines of which behaviors (called visual be-
havior) are determined by individual tasks. The visual
tracking routines are scattered over the whole image
and an optical flow due to an instantaneous robot mo-
tion is detected. In this case, the tracking routines are
fixed to the image points. The image area to be cov-
ered by these tracking routines are specified or auto-
matically determined depending on the current tasks,
and the cooperative behaviors between tracking rou-
tines are performed for the task accomplishment. For
the target pursuit task, the multiple templates are ini-
tialized and every template looks for the target to re-
alize stable tracking. In the task of obstacle detection
and avoidance, the candidates for obstacles are first
detected by comparing the optical flow with that of
non-obstacle (ground plane) region, and then the de-
tected region is tracked by multiple templates each of
which tracks the inside of the moving obstacle region.

The motor behaviors are sets of motor commands
obtained by Q-learning [12], a most widely used re-

inforcement learning method, based on the detected
motion cues and given task. The sizes and position-
s of the target and the detected obstacle are used as
components of a state vector in the learning process.

Visual and motor behaviors work in parallel in the
image and compose a layered architecture. The vi-
sual behavior for monitoring robot motion (detecting
the optical flow on the ground plane on which the
robot lies) is the lowest and might be subsumed in part
due to occlusion by other visual and motor behaviors
for obstacle detection/avoidance and target pursuits
which might occlude each other.

The motion sketch does not need any calibrations
nor any 3-D reconstruction so as to accomplish the giv-
en task. The visual motion cues for representing the
environment does not seem dependent on scene com-
ponents nor limited to the specified situations and the
task. Furthermore, the interaction is quickly obtained
owing to the use of real-time visual tracking routines.

The behavior acquisition scheme consists of the fol-
lowing four stages: i) Obtaining the fundamental rela-
tionship between visual and robot motions by correlat-
ing motion commands and flow patterns on the floor
with very few obstacles. ii) Learning target pursuit be-
havior by tracking a target. iii) Detection of obstacles
and learning an avoidance behavior. iv) Coordination
of the target pursuit and obstacle avoidance behav-
iors. At each stage, we obtain the interaction between
the agent and its environment.

2.2 Obtaining sensorimotor apparatus

Action 1 (qb ,  qb) Action 24 (qf ,  sf)

(a) examples of flow pat-
terns

(b) obtained two princi-
pal flows

Figure 2: Acquisition of principal motion vectors

We place 49(7 × 7) visual tracking routines to de-
tect changes in the whole image. Therefore, we obtain
an optical flow composed of 49 flow vectors. In the
environment without obstacles, the robot randomly s-
elects a possible action among the action space, and
executes it. While randomly wandering, the robot s-
tores the flow patterns p

i
due to its actions i. After

the robot performed all possible actions, we obtain the
averaged optical flows p

i
removing the outliers due to

noise or small obstacles based on the LMeS method.
Figure 2 (a) shows examples of flows detected during
random motions.

Using the averaged optical flows obtained above, we
acquire principal motion patterns which characterize
the space of actions. This is done by analyzing the
space of averaged optical flow that robot is capable
of producing. We want to find a basis for this space,
i.e., a set of representative motion patterns from which
all the motion patterns may be produced by their lin-
ear combinations. We can obtain representative mo-



tion patterns by using Principal Component Analysis
that may be performed using a technique called Sin-
gular Value Decomposition(hereafter SVD). The first
two principal components obtained in the real exper-
iment are shown in Figure2 (b). Obviously, the left
corresponds to a pure rotation and the right to a pure
backward motion.

2.3 Behavior acquisition based on visual
motion cues

Target tracking behavior acquisition
We use the visual tracking routines in order to pursue
a target specified by a human operator and obtain the
information about the target in the image such as its
position and size which are used in the Q-learning al-
gorithm [12] for acquisition of target pursuit behavior.
Obstacle avoidance behavior acquisition
We know the flow pattern pi corresponding to the ac-
tion i in the environment without any obstacles. The
noise included in pi is not so much, because this flow
pattern is described as a linear combination of the two
principal motion vectors. Therefore, it makes motion
segmentation easy. Motion segmentation is done by
comparing the flow pattern pi with the flow pattern
p

obs

i
which is obtained in the environment with ob-

stacles. The area in the p
obs

i
is detected as the area

for obstacle candidates if its components are different
from that of pi. This information (position and size
in the image) is used to obtain the obstacle tracking
behavior. After obstacle detection, the visual tracking
routines are set up at the positions where the obstacle
candidates are detected and the regions are tracked
until the region disappears from the image.

Learning to avoid obstacles consists of two stages.
First, the obstacle tracking behavior is learned by the
same manner as in learning the target pursuit behav-
ior. Next, the obstacle avoidance behavior is generat-
ed by using the relation between the possible actions
and the obstacle tracking behavior.

2.4 Experimental results

Figure 3 shows a configuration of the real mobile
robot system. We have constructed the radio control
system of the robot [13]. The image processing and
the vehicle control system are operated by VxWork-
s OS on MVME167(MC68040 CPU) computer which
are connected with host Sun workstations via Ether
net. The image taken by a TV camera mounted on the
robot is transmitted to a UHF receiver and subsam-
pled by the scan-line converter (Sony Corp.). Then,
the video signal is sent to a Fujitsu tracking module.
The tracking module has a function of block correla-
tion to track some pre-memorized patterns and can
detect motion vectors in real time.

Figures 4 and 5 show sequences of images where
the robot succeeded in target pursuit and avoiding a
moving obstacle, respectively. The top shows the im-
ages taken and processed by the robot and the bottom
images show how the robot behaves. In Figure 5, the
rectangles indicate the obstacle candidate regions.
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Figure 3: Configuration of the experimental system

Figure 4: The robot succeeded in pursuing a target.

3 Vision-Based Reinforcement Learn-
ing for Behavior Acquisition [14]

Reinforcement learning has recently been receiving
increased attention as a method for robot learning
with little or no a priori knowledge and higher ca-
pability of reactive and adaptive behaviors [15]. In
the reinforcement learning method, a robot and its
environment are modeled by two synchronized finite
state automatons interacting in discrete time cyclical
processes. The robot senses the current state of the
environment and selects an action. Based on the state
and the action, the environment makes a transition
to a new state and generates a reward that is passed
back to the robot. Through these interactions, the
robot learns a purposive behavior to achieve a given
goal.

Although the role of reinforcement learning is very
important to realize autonomous systems, the promi-
nence of that role is largely dependent on the extent
to which the learning can be scaled to solve larger and
more complex robot learning tasks. Many researchers
in the field of machine learning have been concerned
with the convergence time of the learning, and have
developed methods to speed it up. However, almost



Figure 5: The robot succeeded in avoiding a moving
obstacle.

all of them have only shown computer simulations in
which they assume ideal sensors and actuators, where
they can easily construct the state and action spaces
consistent with each other.

Here, we present a method of vision-based rein-
forcement learning by which a robot learns to shoot
a ball into a goal. The robot does not need to know
any parameters of the 3-D environment or its kine-
matics/dynamics. The image captured from a single
TV camera mounted on the robot is the only source of
information on the changes in an environment. Image
positions and sizes of the ball and the goal are used as
a state vector. We discuss several issues from a view-
point of robot learning: a) coping with a “state-action
deviation” problem which occurs in constructing the
state and action spaces in accordance with outputs
from the physical sensors and actuators, and b) start-
ing with easy missions (rather than task decomposi-
tion) for rapid task learning.

3.1 Task and assumptions
The task for a mobile robot is to shoot a ball into a

goal. The problem we address here is how to develop
a method which automatically acquires strategies for
doing this. We assume that the environment consists
of a ball and a goal; the mobile robot has a single
TV camera; and that the robot does not know the
location/size of the goal, the size/weight of the ball,
any camera parameters such as the focal length and
tilt angle, or the kinematics/dynamics of itself.

3.2 Construction of State and Action S-
paces
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Figure 6: The ball sub-states and the goal sub-states

Figure 6 shows sub-states of ball and goal in which
the position and the size of the ball or goal are nat-

Near

Medium

Far

Figure 7: A state-action deviation problem

urally and coarsely classified into each state. Due to
the peculiarity of visual information, that is, a small
change near the observer results in a large change in
the image and a large change far from the observer
may result in a small change in the image, one action
does not always correspond to one state transition. We
call this the “state-action deviation problem”:
Figure 7 indicates this problem, the area represent-
ing the state “the goal is far” is large, therefore the
robot frequently returns to this state if the action is
forward. This is highly undesirable because the varia-
tions in the state transitions is very large, consequent-
ly the learning does not converge correctly.

To avoid this problem, we reconstruct the action s-
pace as follows. Each action defined is regarded as an
action primitive. The robot continues to take one ac-
tion primitive at a time until the current state changes.
This sequence of the action primitives is called an ac-
tion. In the above case, the robot takes a forward
motion many times until the state “the goal is far”
changes into the state “the goal is medium”.

3.3 Learning from Easy Missions
In order to improve the learning rate, the whole

task was separated into different parts in [10]. By
contrast, we do not decompose the whole task into
subtasks of finding, driblling, and shooting a ball. In-
stead, we first used a monolithic approach. That is,
we place the ball and the robot at arbitrary position-
s. In almost all the cases, the robot crossed over the
field line without shooting the ball into the goal. This
means that the learning did not converge after many
trials. This is the famous delayed reinforcement prob-
lem due to no explicit teacher signal that indicates the
correct output at each time step. To avoid this diffi-
culty, we construct the learning schedule such that the
robot can learn in easy situations at the early stages
and later on learn in more difficult situations. We call
this Learning from Easy Missions (or LEM).

3.4 Experimental results
We applied the LEM algorithm to the task in

which the order of easy situations are S1 (“the goal is
large”), S2 (“the goal is medium”, and S3 (“the goal
is small”). Figure 8 shows the changes of the summa-
tions of Q-values of the action-value function in the
Q-learning method with and without LEM, and its
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temporal derivative ∆Q. The axis of time step is s-
caled by M (106), which corresponds to about 9 hours
in the real world since one time step is 33ms. The solid
and broken lines indicate the summations of the max-
imum value of Q in terms of action in all states with
and without LEM, respectively. The Q-learning with-
out LEM was implemented by setting initial positions
of the robot at completely arbitrary ones. Evidently,
the Q-learning with LEM is much better than that
without LEM. The broken line with empty squares
indicates the change of ∆Q. Two arrows indicate the
time steps (around 1.5M and 4.7M) when a set of the
initial states changed from S1 to S2 and from S2 to
S3, respectively. Just after these steps, ∆Q drastical-
ly increased, which means the Q-values in the inex-
perienced states are updated. The coarsely and finely
dotted lines expanding from the time steps indicated
by the two arrows show the curves when the initial
positions were not changed from S1 to S2, nor from
S2 to S3, respectively. This simulates the LEM with
partial knowledge. If we know only the easy situations
(S1), and nothing more, the learning curve follows the
finely dotted line in Figure 8. The summation of Q-
values is slightly less than that of the LEM with more
knowledge, but much better than that without LEM.

We used the same experimental set up as that de-
scribed in the previous section. In Figure 9 (raster
order), the images are taken every second. First, the
robot lost the ball due to noise, and then it turned
around to find the ball, and finally it succeeded in
shooting.

4 Purposive Visual Control for uncali-
brated camera-manipulator systems
[16]

Recently, there have been several studies on visu-
al servoing, using visual information in the dynamic
feedback loop to increase robustness of the closed loop
system (we can find a summary in [17]). In most of
the previous works on visual servoing, they assumed

Figure 9: The robot succeeded in shooting a ball into
the goal.

that the system structure and parameters are known,
or that the parameters can be identified in an off-
line process or on-line parameter identification with
restrictions and assumptions on the system.

On the other hand, the previous works payed atten-
tion only to feedback servoing. They sensed positions
of targets and made feedback inputs subtracting the
sensed positions from the desired ones. Using these
controllers, the manipulator does not work until error
is observed, which can be considered as reactive move-
ment. For intelligent control of camera-manipulator
systems, not only the reactive but also purposive vi-
sual movement must be realized. At the level of con-
trol, we believe that feedforward terms should play a
great part in realizing the purposive movement, but no
one has mentioned to the effectiveness of feedforward
terms to the best of our knowledge.

Here, we propose purposive visual control consist-
ing of an on-line estimator and a feedback/feedforward
controller for uncalibrated camera-manipulator sys-
tems. It has the following features:

1. The estimator does not need any a priori knowl-
edge on the kinematic structure nor the system
parameters. We can eliminate the tedious cali-
bration process owing to this feature.

2. There are no restrictions on the camera-
manipulator system: the number of cameras,
kinds of images features, structure of the
system (camera-in-manipulator or camera-and-
manipulator) ,the number of inputs and outputs
(SISO or MIMO). The proposed method is appli-
cable to all cases. It is strongly related with the
fact that the estimator does not need any a priori
knowledge on the system.



3. The aim of the estimator is not to estimate the
true parameters, but to ensure asymptotical con-
vergence of the image features to the desired val-
ues under the proposed controller. Therefore, the
estimated parameters do not necessarily converge
to the true values. The existing methods such as
[18, 19] tried to estimate the true parameters, and
therefore they need restrictions and assumptions.

4. The proposed controller can realize purposive
movement of the system utilizing its feedforward
terms. The feedforward terms of the proposed
scheme are based on estimated parameters in-
tending to realize visual tasks on the image planes
(mentioned in 3). In this sense, this feedforward
terms help realizing purposive movement at the
control level.

robot controller

Kawasaki Js−5

image processor
MV200

Fujitsu
tracking module

MVME167
(68040,33MHz)

host computer
Sun Sparc 2

VME−VME
bus adapter

cameras

Figure 10: Experimental system

Figure 10 shows the experimental system we used.
Figure 11 (a) shows an experimental set up with two
cameras fixed, and (b) indicates the result of step re-
sponse with and without on-line estimator, where ver-
tical and horizontal axes indicate the error in pixels
and time steps (second), respectively. Evidently, the
performance without the estimator was much worse
that with the estimator.
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