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Abstract

Sensor and motor systems are not separable for au-
tonomous agents to accomplish tasks in a dynamic
environment. However, almost computer vision re-
searchers have not investigated the relationship be-
tween the low level motion representation and the vi-
sual information. In this paper, we propose a method
by which a mobile robot learns sensorimotor apparatus
and target pursuit behavior without any calibrations
nor any 3-D reconstructions. Real-time visual tracking
routines are used to detect an optical flow of the en-
vironment which is correlated with motor commands
to obtain the sensorimotor apparatus, and to obtain
target pursuit behavior with obstacle avoidance. Tar-
get pursuit behavior and obstacle avoiding one are ob-
tained by Q-learning, one of the most widely used re-
inforcement learning methods. Computer simulation
and real experiments are given to show the validity of
the method.

1 Introduction

Sensor and motor systems are not separable for au-
tonomous agents to accomplish tasks in a dynamic
environment. Horridge [1] advocated that motion is
essential for perception in living systems such as bees.
In physiological psychology, Held and Hein [2] have
shown that self-produced movement with its concur-
rent visual feedback is necessary for the development
of visually-guided behavior. They tested two groups
of kittens, one was allowed to vary with its locomotor
movements while equivalent stimulation of the other
resulted from passive motion. The former could nor-
mally perform several visually guided behaviors but
the latter failed. These suggest that perception and
behavior are tightly coupled in autonomous agents
that perform tasks.

In computer vision area, so-called “active vision”

has been considered as a representative form of this
coupling since Aloimonos proposed it [3] as a method
that converts the ill-posed vision problems into the
well-posed ones. Hence, many researchers have been
using so-called active vision systems in order to recon-
struct 3-D information such as depth and shape from a
sequence of 2-D images given the motion information
of the observer or capability of controlling the observer
motion. This implies that people in computer vision
expect the motor system to output the ideal motion
descriptions in terms of 3-D translation and rotation
or to be able to precisely control any motions of its
end-effector such as camera or hand.

On the other hand, people in robot control expect
the sensor system to output the accurate data such as
3-D locations of feature points or lines extracted from
camera images to move its end-effector to the desti-
nation or along the desired trajectory with a specified
velocity. Since it is misunderstood that the recon-
structed 3-D information from 2-D images or encoder-
s of joint angles is the most powerful representation
as a general interface between two disciplines [4], per-
ception and motion control have been independently
studied. According to Brooks [5], this is just a deliber-
ative approach, and therefore, seems time-consuming,
difficult to obtain sufficient results, and brittle. As
many researchers replied [6, 7, 8] to a dialogue [4],
reconstruction of the 3-D environment is not always
necessary nor optimally encoded for the task.

Purposive vision does not consider vision in isola-
tion, but as a part of complex system that interacts
in specific ways with world [6]. However, very few
have tried to investigate the relationship between mo-
tor commands and visual information [9] because peo-
ple in computer vision have been assuming the motor
system as an ideal one and have not cared about it
any more (ex. [10, 11]). In order to realize tight cou-
pling between sensor and motor systems, we should
consider the relationship between the low level repre-



sentation of motion (motor commands to actuators)
and the visual information, and develop a learning ca-
pability to abstract the low level representation into
a form suitable for task accomplishment. Pierce and
Kuipers [12] proposed a method to learn sensorimotor
apparatus of a mobile robot with sonar sensor system.
They gathered sonar patterns in terms of each robot
action and obtained primitive motions which can pro-
duce a sonar pattern caused by every robot action. S-
ince the fluctuations in a sonar pattern of each motion
due to environmental factors such as obstacles, walls,
and so on are smoothed out by averaging a collection
of patterns, the primitive motions seem difficult to be
used to detect obstacles in the environment.

In this paper, we investigate the relationship be-
tween the motor commands and the visual information
due to the motor actions by extending the method [12]
to optical flow patterns on the floor, and then apply
Q-learning, one of the most widely used reinforcement
learning methods, to target pursuit task in a dynamic
environment. An agent has a PWS (Power Wheeled
Steering) system as a motor system and visual track-
ing routines [13] which are used to learn sensorimotor
apparatus first, and then to learn target pursuit with
obstacle detection and avoidance behaviors. Although
Aloimonos [6] pointed out two things which determine
agent behaviors: the characteristics of the system it-
self including mechanics and control, and the task it
needs to accomplish, one more thing should be added,
an “environment” in which an agent performs a task at
hand. Here, we assume that the agent does not know
the physical meaning of optical flow nor the effect of
its motion in the environment. Instead, we provide
the environments for the agent to learn behaviors to
accomplish these tasks: target pursuit in the environ-
ments without and with obstacles.

In the next section, we propose a new method to
represent visual scenes called “motion sketch” for a
one-eyed mobile robot to learn several behaviors such
as obstacle avoidance and target pursuit. Then, we
give a method for acquisition of sensorimotor appa-
ratus, and describe a reinforcement learning method
to obtain target pursuit behavior avoiding obstacles
with computer simulation. Finally, real experimental
results are shown.

2 Motion Sketch and Task

Fig.1 shows a basic idea of “motion sketch” which
is a method to represent visual scenes for a one-eyed
mobile robot to learn several behaviors. The basic
components of the motion sketch are visual motion
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Fig.1: Motion sketch

cues detected by several visual tracking routines of
which visual behaviors are determined by individual
tasks, and are tightly coupled with the motor behav-
iors which are obtained by Q-learning. The image area
to be covered by these tracking routines are specified
or automatically detected depending on the individual
tasks, and the cooperative behaviors between tracking
routines are performed for task accomplishment. The
most fundamental task is to obtain the relationship be-
tween the visual motions and robot motor commands.
To do that, the visual tracking routines are scattered
over the whole image and an optical flow due to in-
stantaneous robot motion is detected. In this case,
the tracking routines are fixed to the individual image
positions. In the task of obstacle detection and avoid-
ance, the candidates for obstacles are first detected by
comparing the motion vector with that of non-obstacle
(ground plane) region, and then the detected region is
tracked by multiple templates each of which tracks the
inside of the moving obstacle region. For the target
pursuit task, the multiple templates are initialized and
every template looks for the target to realize the sta-
ble tracking. The motor behavior is a set of motor
commands obtained by Q-learning, one of the robot
learning methods, based on detected motion cues and
given task. The sizes and positions of the target and



the detected obstacle are used as components of a state
vector. Visual and motor behaviors work in parallel
in the image and compose a layered architecture. The
visual behavior for monitoring robot motion (detect-
ing the optical flow on the ground plane on which the
robot lies) is the lowest and might be subsumed in part
due to occlusion by other visual and motor behaviors
for obstacle detection/avoidance and target pursuits
which might occlude each other.

Fig.2: The task is to pursue a target avoiding
obstacles.

Fig.2 shows an environment in which an agent tries
to pursue a target, or to avoid obstacles. The robot
can select one action among an action set which con-
trols robot motion, and perceive the changes of the
environment due to its motion by using multiple visu-
al tracking routines.

The behavior acquisition scheme consists of the fol-
lowing four stages:

stage 1 Obtaining the fundamental relationship be-
tween visual and robot motions by correlating
motion commands and flow patterns on the floor
with very few obstacles.

stage 2 Learning target pursuit behavior by tracking
a target.

stage 3 Detection of obstacles and learning an avoid-
ance behavior.

stage 4 Coordination of the target pursuit and ob-
stacle avoidance behaviors.

3 Robot System

3.1 A configuration of the system
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Fig.3: A configuration of the real system.

Fig.3 shows a configuration of the real mobile robot
system. We have constructed the radio control system
of the robot[14]. The image processing and the vehi-
cle control system are operated by VxWorks OS on
MVME167(MC68040 CPU) computer which is con-
nected with host Sun workstations via Ether net.
The image taken by a TV camera mounted on the
robot is transmitted to a UHF receiver and subsam-
pled by scan-line convertor(Sony Corp.). Then, the
video signal is sent to a Fujitsu tracking module. The
tracking module has a function of block correlation
to track some pre-memorized patterns and can detect
motion vectors in real time. Then, the tracking mod-
ule feeds the flow vectors at each regions to the host
CPU(MC68040). The host CPU calculates the av-
eraged motion vector field (see Section 3.1 for more
detail) and stores them. The host Sun workstation
calculates the fundamental relationship bewteen visu-
al motions and motor commands off-line. Fig.4 shows
a picture of the real robot with a TV camera (Sony
camera module) and a video transmitter.

Fig.4: A picture of the radio-controlled vehicle.



3.2 PWS system

The robot has a Power Wheeled Steering (hereafter P-
WS) system driven by two motors into each of which
we can send a motor command, independently. The
velocities of translation v and rotation w of the robot
can be represented by two motor commands, more cor-
rectly two angular velocities w; and w,. The follow-
ing equation shows the relationship between (v, w) and
(wr,w;) to be sent to the right and left motors.

Ry Ry
(2)-(2 2)(2) o
T 7T l
where R,, R;, and T denote the radii of the right
and left wheels, and the distance between two wheels,
respectively.

In our experiment, we quantized wy(, into five levels
which correspond to quick forward, slow forward, stop,
slow backward, and quick backwrad, respectively. To-
tally, we have 25 actions. Note that the robot does not
even know any physical meanings of these actions.

3.3 Multiple visual tracking routines

To detect changes due to robot motion, we use real-
time visual tracking routines which can track about
140 windows (each window consists of 8 by 8 pixcels)
in real-time (video rate) by using a motion estima-
tion processor (MEP) [13]. Searching area is 16 by
16 pixcels and MEP output the location of each win-
dow where the following matching error (SAD: sum of
absolute difference) is minimum.

K-1
D[%]] = Z
k=0 1
1,7:0<1,5 <15,
where R[z,y], M[z,y], and D[z,y] denote a refer-
ence block, a matching block, and an array of SAD,
respectively. The visual tracking routines are used to
obtain an optical flow of the floor, to track a target
specified by human operator, and to detect and avoid
obstacles. We detect a motion vector in an image by
applying the block matching process with the refer-
ence block (t = t;) and the search window images
(t = t;4+1) continuously. Thus, we can obtain the op-
tical flow vectors in the image any time.
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4 Obtaining sensorimotor ap-
paratus

Here, we show how to learn sensorimotor apparatus by
correlating sensor information with motion command.

We assume that the robot is given no knowledge of
the structure of its sensory system nor of the effects.
We extend the method [12] as follows:

e Instead of sonar information (3-D range informa-
tion), we use an optical flow of the floor which can
be obtained by multiple visual tracking routines.

e In order to remove fluctuations of a flow pattern
of each action due to the environmental factors,
we set up the environment with very few obsta-
cles. In averageing flow patterns, we used the
least median of squares method [15] to remove
the outliers due to noise or small obstacles.

We can compress the visual motion patterns by the
obtained fundamental relationship in order to include
the ego-motion information in the internal state space
of the agent.

We place 49(7 x 7) visual tracking routines to detect
changes in the whole image. Examples of averaged
optical flows from a real environment are shown in
Fig.5.

Action 1(gb, gb) Action 24 (gf , sf)

Fig.5: Examples of averaged optical flows from
a real environment.

Using the set of the averaged optical flows for all
actions, we acquire mapping between the optical flows
and the actions. This is done by analyzing the space
of averaged optical flows that robot is capable of pro-
ducing. We want to find a basis for this space, i.e., a
set of representative motion vector fields from which
all the motion vector fields may be produced by a lin-
ear combination. We can obtain the representative
motion vectors by using Principal Component Anal-
ysis that may be performed using a technique called
Singular Value Decomposition(hereafter SVD).

The sample values of p; (the averaged optical flow)
corresponding to the actioin i(7;,7;) are organized
as the rows of matrix P. There are 25 rows each of
which have 98 components (49 vectors per one box).
The SVD of P is

men = anSanE;J;Xn; (2)



where S is a diagonal matrix whose elements are the
singular values of P and the rows of ET" are the desired
orthonormal basis vectors. Here, m = 25, the num-
ber of averaged optical flows and n = 98, the number
of components in each averaged optical flow (two for
each local visual tracking routine). U is an orthogo-
nal matrix in terms of the row. The averaged optical
flow p,; can be described by a linear combination of
the vectors in E7 from the quation (2), using the K
principal components:

K
pi R Y uiksker (3)
k=1

Thus, we have found a basis set (the row vectors of
ET) for the space of averaged optical flow. In fact, we
obtain 26 principal components by caluculating SVD
for the P which consist of 25 flow patterns. Fig.6
shows the singular values with respect to the principal
components.
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Fig.6: Singular values of principal components.

We select two important basis vectors among them
which have larger singular value than others. The av-
eraged optical flow may be approximated by throwing
away all but the important basis vectors. Thus, for
example, vector p; may be approximated by

- T T
Pi = U;181€] + Uj2S82€5

if we keep only the first two components. The first
two principal components obtained in the real envi-
ronment are shown in Fig.7. Evidently, the first (a)
corresponds to a pure rotation and the second (b) to
a pure backward motion.

Next step is to make a relation between the possible
actions p, by representing each of them in terms of
the coeficient a}; = u;,Sk in the action space which
consists of two principal components. The relation
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Fig.7: The first two principal components.

between possible actions of the real robot are shown
in Fig.8, where the number indicates the number of
the action ¢ (i =1 ~ 25).
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Fig.8: The relation between the possible ac-
tions of the real robot.

5 Behavior acquisition based
on visual motion cues

5.1 Basics of Reinforcement Learning

Reinforcement learning agents improve their perfor-
mance on tasks using reward and punishment received
from their environment. They are distiguished from
supervised learning agents in that they have no “teach-
er” that tells the agent the correct response to a situ-
ation when an agent responds poorly. An agent’s on-
ly feedback indicating its performance on the task at
hand is a scalar reward value. One step Q-learning|[16]
has attracted much attention as an implementation of
reinforcement learning because it is derived from dy-



namic programing[17]. The following is a simple ver-
sion of the 1-step Q-learning algorithm we used here.

Initialization: () <« a set of initial values for the
action-value function (e.g., all zeros).
Repeat forever:
1. s € S « the current state
2. Select an action a € A that is usually consistent
with the policy f but occasionally an alternate.
3. Execute action a, and let s’ and r be the next
state and the reward received, respectively.
4. Update Q(s,a):

Q(s,a) «— (1 —a)Q(s,a)+alr +7ymax Q(s',a")).
5. Update the policy f: (4)

f(s) —a such that Q(s,a)=maxQ(s,b)
beA
, : (%)
5.2 Target tracking behavior acquisi-
tion
We use visual tracking routines in order to pursue a
target specified by an human operator and obtain the
information about the target in the image such as it-

s position and size which are used in the Q-learning
algorithm for acquisition of target pursuit behavior.

5.2.1 State of visual tracking routine

Our visual tracking routine has the following visual
functions.

(8 Aninitia image specified
by an human operator

(b) Tracking by
multiple windows

normal resolutiol

1/2 resolution

(c) Tracking by different
image resolutions

resolution

Fig.9: Visual functions of tracking routine.

1. Tracking by multiple windows with different im-
age resolutions: A target is tracked by an object
tracker which consists of 5 visual tracking rou-
tines fixed together as shown in Fig.9. Even if
the pattern of the target is fluctuated by occlu-
sion or the vibration of the robot body, the object
tracker can continue to track target by the effec-
t of multiple visual tracking routines. Further,
we prepare three kinds of resolutions(a normal, a
half and a quarter resolution). Even if the the
pattern of the target become large or small, the
object tracker can continue to track by chang-
ing the image resolution and the search area for
the block matching. Fig.9 shows an inital image
specified by an human operator (a), tracking by
multiple windows (b), and tracking by different
image resolutions (c), respectively.

2. When the target detection fails, search-whole-
image routine is called in order to detect the tar-
get again.

We define the state of the target in the image based
on the target position and the target size (three levels)
obtained by a visual tracking routine.

5.2.2 State and action spaces in Q-learning

In order to apply the Q-learning scheme to target pur-
suit task, we define a number of sets and parameters.
The state of the target S in the image is quantized in-
to 9 sub-states, combinations of three positions (left,
center, and right) and three sizes (large (near), medi-
um, and small (far)). Similarly, changes in terms of
target position and size in the image are quantized in-
to 9 sub-states, combination of three states in terms of
position changes (move left, no move and move right)
and three states in terms of size changes (enlarge, no
change, shrink). We add two lost situations (target
is lost into the left side or the right side) in the state
space. Futhermore, we add the action (totally 25 ac-
tions) just taken on observing the current situation
into the state space. Totally, we have 92x25 states in
the set S. We have 25 actions in the action set A.
We assign a reward value 1 when the robot touched
the target or 0 otherwise. A discounting factor v is
used to control to what degree rewards in the distant
future affect the total value of a policy. In our case,
we set the value a slightly less than 1 (y = 0.9).

5.2.3 Target tracking with no obstacles

We performed the computer simulation with the fol-
lowing specifications (the unit is an arbitrary-scaled



length). The target is a ball of which diameter is 6.
The robot is 16 wide and 20 long. The camera is
mounted on the robot and looks toward the floor (15
degree tilt). Its visual angle is 30 degrees. These and
other parameters such as friction between the floor and
the crawler and bounding factor between the robot
and the ball are chosen to simulate the real world.
The target is moving randomly. Fig.10 shows the
pursuit behavior aquired by Q-learning. The robot
initially looked around because the target was not ob-
served from its initial position. Once the robot found
the target, the robot ran to the target quickly. Finally,
the robot reached the target.
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Fig.10: The target pursuit behavior in simula-
tion.

5.3 Acquisition of obstacles avoidance
behavior

(a) Detection and tracking of obstacles by flow
differences

We know the flow pattern p, corresponding to the
action ¢ in the environment without any obstacles.
Therefore, it makes motion segmentation easily. Mo-
tion segmentation is done by comparing the flow pat-

tern p, with the flow pattern p?*® which is obtained

K2

in the environment with obstacles.
The area in the p?®* which differs from the same
area in the p,; is detected as the one in which the
obstacle candidates are projected. This information
(position and size in the image) is used to obtain the

obstacle tracking behavior. After obtacle detection,
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Fig.11: Obstacle Detection.

the visual tracking routines are set up at the position
where the obstacle candidates are detected and the
region is tracked until the region disappears from the
image.

Fig.12 show the result of obstacle detection in the
real environment, where (a) displays the environment
in which the robot detected candidates for obstacles
(see (b)). The circles in the image indicate the obstacle
candidate regions.

Fig.12: A picture of the environment with an
obstacle and obstacle detection.

(b) Learning an obstacle avoidance behavior

Learning an obstacle avoidance consists of two stages.
First, the obstacle tracking behavior is learned by the
same manner as in learning the target pursuit behav-
ior. Next, the obstacle avoidance behavior is generat-
ed by using the relation between the possible actions
and the obstacle tracking behavior as follows: (1) the
relationship between the possible actions is divided in-
to four categories by clustering the action space repre-
sented by the coefficients (af, a) (See Fig.13(a)), (2)
the obstacle tracking behavior is mapped on the rela-
tionship, and the category C'which includes the ob-
stacle tracking action is found, (3) the obstacle avoid-
ance actions are selected among the categories except



for C*. More correctly, the obstacle avoidance action
is obtained by finding the action having the small-
est action-value function with respect to the obstacle
tracking behavior among the categories except for C?.
Fig.13(b) shows the obstacle avoidance behavior ac-
quired by the proposed scheme in computer simula-
tion.

Optimal action at a state

Generated action

The relation between possible actions

(a) Generation of obsta-
cle avoidance behavior

(b) Obstacle avoidance
behavior in simulation.

Fig.13: Obstacle avoidance behavior

5.4 Coordination of obstacle avoidance
and target tracking behaviors

We consider coordinations in which the previously
learned behaviors are combined: switching action val-
ue functions according to the situation. We used the
subsumption architecture [5] to combine previously
learned behaviors. The switching condition is to s-
elect target pursuit behavior unless only the obstacle
can be observed very largely. Fig.14 shows the results
of the coordinated behavior acquired by our method.

6 Future Work

As one of the method for representing the visual scenes
for situated agents to behave adequately against the
external world, we proposed “motion sketch” which is
independent of scene components and tightly coupled
with motor commands. Now, we are planning to de-
velop a new program which tightly connects MaxVideo
200 and Fujitsu Tracking module to speed up and add
other higher level visual functions.
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Fig.14: Coordinated behavior in simulatoin.
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