Vision-Based Reinforcement Learning for RoboCup :
Towards Real Robot Competition

Minoru Asada
Dept. of Mechanical Engineering for Computer-Controlled Machinerey
Osaka University, Suita, Osaka 565 Japan
asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract

We have been doing a research on vision-based
reinforcement learning and applied the method
to build real soccer playing robots toward-
s RoboCup Initiative. In the first stage
[Asada et al., 1994a; Asada et al., 1995b], a
robot learned to shoot a ball into a goal given
the state space in terms of the sizes and the
positions of both the ball and the goal in im-
age. As one extension of this first achievement,
the method for autonomous state space con-
struction is proposed [Asada et al., 1995a). In
the second stage [Asada et al., 1994b; Asada et
al., 1994c], we set up an opponent just before
the goal, that is, a goal keeper, and make the
robot learn to shoot a ball into a goal avoiding
the goal keeper. The behavior of the opponent
is scheduled for the learner to efficiently ob-
tain the desired behavior [Asada et al., 1995c].
This paper describes several research issues for
RoboCup with real robots along with our re-
search projects.

1 Introduction

Building robots that learn to perform a task has been
acknowledged as one of the major challenges facing Al
and Robotics. Reinforcement learning has recently been
receiving increased attention as a method for robot learn-
ing with little or no a prior: knowledge and higher
capability of reactive and adaptive behaviors [Connel
and Mahadevan, 1993b]. In the reinforcement learn-
ing scheme, a robot and an environment are modeled
by two synchronized finite state automatons interacting
in a discrete time cyclical processes. The robot senses
the current state of the environment and selects an ac-
tion. Based on the state and the action, the environment
makes a transition to a new state and generates a reward
that is passed back to the robot. Through these interac-
tions, the robot learns a purposive behavior to achieve a
given goal.

Although the role of reinforcement learning is very im-
portant to realize autonomous systems, the prominence
of that role is largely dependent on the extent to which
the learning can be scaled to solve larger and more com-
plex robot learning tasks. Many researchers in the field
of machine learning have been concerned with the con-
vergence time of the learning, and have developed meth-

ods to speed it up. They have also extended these tech-
niques from solving single goal tasks to multiple goal
ones [Sutton, 1992]. However, almost all of them have
only shown computer simulations in which they assume
ideal sensors and actuators, where they can easily con-
struct the state and action spaces consistent with each
other. A typical example is the 2-D grid environmen-
t in which the robot can take an action of going for-
ward, backward, left, or right, and its state is encoded
by the coordinate of the grid (i.e., an absolute (global)
positioning system is assumed). Although the uncertain-
ties of sensor and actuator outputs are considered by a
stochastic transition model in the state space, such a
model cannot account for the accumulation of sensor er-
rors in estimating the robot position. Further, from the
viewpoint of real robot applications, we should construct
the state space so that it can reflect the outputs of the
physical sensors which are currently available and can be
mounted on the robot.

Some applications are recently reported to control
robot arms [Saito and Fukuda, 1994] or mobile robots
[Fagg et al., 1994] in which the initial controller and the
correct reward function are given in advance. Therefore,
the robot learns the control policy given a great deal of
knowledge about the environment and itself. We intend
to apply the reinforcement learning algorithm to the task
of purposive behavior acquisition in the real world with
less knowledge about the environment and the robot.

Mahadevan and Connel [Connel and Mahadevan,
1993a] proposed a method of rapid task learning on a
real robot. They separated a pushing task into three
subtasks of “finding a box”, “pushing a box”, and “get-
ting unwedged”, and applied Q-learning, a widely used
reinforcement learning method, to each of them. Since
only proximity sensors such as bumper and sonar sen-
sors are used, the acquired behaviors are limited to local
ones and therefore these behaviors are not suitable for
more global and goal-directed tasks such as carrying a
box to a specified location. For such tasks, visual sensors
could be more useful because they might be able to cap-
ture the image of the goal in a distant place. However,
there are very few examples of use of visual information
in reinforcement learning, probably because of the cost
of visual processing.

As a test bed for real robot applications of the re-
inforcement learning method, we have selected soccer
playing robots because building such a system includes
various kinds of aspects of fundamental AI problems.

One can see the details of this reason in [Kitano et al.,
1995]. In this paper, we show our research projects a-
long with research issues involved in realizing RoboCup
Initiative with real robots. They are

e mechanical design and system suitable for various
kinds of plays,

e real time sensing capability mounted on each player,
and

e learning capability coping with various formation of

team playing.

The remainder of this article is structured as fol-
lows: In the next section, we give a brief overview of
Q-learning. Next, we show a soccer robot that learn-
s how to shoot a ball into a goal using the Q-learning
method based on only visual information. In the first
stage [Asada et al., 1994a], we prepared the state space
in terms of the sizes, positions, and the orientation of
the ball and the goal in image captured by the robot,
and the action space in which the robot can send one
of motor commands (forward, stop, and backward mo-
tions) into two independent motors (totally, 9 actions).
As one extension of this first achievement, the method
for autonomous state space construction was proposed
[Asada et al., 1995a]. In the second stage [Asada et
al., 1994b; Asada et al., 1994c], we set up an opponent
just before the goal, that is, a goal keeper, and make
the robot learn to shoot a ball into a goal avoiding the
goal keeper. The behavior of the opponent is scheduled
for the learner to efficiently obtain the desired behavior
[Asada et al., 1995¢].

2 Q-learning

Before getting into the details of our system, we will
briefly review the basics of Q-learning. For a more thor-
ough treatment, see [Watkins, 1989]. We follow the ex-
planation of Q-learning by Kaelbling [Kaelbling, 1993].

We assume that the robot can discriminate the set S
of distinct world states, and can take the set A of actions
on the world. The world is modeled as a Markov process,
making stochastic transitions based on its current state
and the action taken by the robot. Let T'(s, a, s’) be the
probability of transition to the state s’ from the current
state-action pair (s, a). For each state-action pair (s,a),
the reward r(s,a) is defined.

The general reinforcement learning problem is typical-
ly stated as finding a policy ! that maximizes the dis-
counted sum of rewards received over time. This sum is
called the return and is defined as:

oo
Z 7"7“t+m (1)
n=0

where r; is the reward received at step t given that the
agent started in state s and executed policy f. = is the
discounting factor, it controls to what degree rewards in
the distant future affect the total value of a policy. The
value of v is usually slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve for the optimal

LA policy f is a mapping from S to A.

policy, using methods from dynamic programming [Bell-
man, 1957]. A more interesting case occurs when we
wish to simultaneously learn the dynamics of the world
and construct the policy. Watkin’s Q-learning algorithm
gives us an elegant method for doing this.

Let Q*(s,a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q*(s,a) =r(s,a) +72

s'es

s,a,s") maXQ (s',d"). (2)

Because we do not know 7" and r initially, we construct
incremental estimates of the @-values on-line. Starting
with Q(s, a) equal to an arbitrary value (usually 0), every
time an action is taken, the QQ-value is updated as follows:

Qs,a) <= (1=)Q(s,a) + a(r(s, a) + ymax Q(s', a')).
(3)

where r is the actual reward value received for taking
action a in a situation s, s’ is the next state, and « is a
learning rate (between 0 and 1).

To speed up the learning time, we generate actions
probabilistically based on @ values using a Boltzmann
distribution. Given a situation s, we choose an action a
with probability:

eQ(a,S)/T
ZaeA eQ(a,s)/T

This serves to make actions whose values are much
better than the others be chosen with much greater
likelihood. The temperature parameter 1" controls the
amount of exploration (the degree to which actions other
than the one with the best @) value are taken).

(4)

3 Shooting Behavior Acquisition
[Asada et al., 1995b]

3.1 Task, Assumptions, and a Real Robot
System

Possible Actions

(a) The task is to shoot (b)
a ball into a goal.

A picture of the
radio-controlled vehicle.

Figure 1: Task and our real robot.

The task for a mobile robot is to shoot a ball into a goal
as shown in Figure 1(a). The problem we address here is
how to develop a method which automatically acquires

strategies for doing this. We assume that the environ-
ment consists of a ball and a goal; the mobile robot has
a single TV camera; and that the robot does not know
the location/size of the goal, the size/weight of the bal-
I, any camera parameters such as the focal length and
tilt angle, or the kinematics/dynamics of itself. Figure
1(b) shows a picture of the real robot with a TV camera
(Sony handy-cam TR-3) used in the experiments.

3.2 Construction of State and Action Spaces

Goal _
=4
position
left center right
.00

small medium large size

position

O 00

left center right

CTjIL_|

small medium large
orientation
left-oriented front right-oriented

Figure 2: The ball sub-states and the goal sub-states

i i i)

:‘eANeer

%, Medium

Far

Figure 3: A state-action deviation problem

Figure 2 shows sub-states of ball and goal in which
the position and the size of the ball or goal are natu-
rally and coarsely classified into each state. Due to the
peculiarity of visual information, that is, a small change
near the observer results in a large change in the im-
age and a large change far from the observer may result
in a small change in the image, one action does not al-
ways correspond to one state transition. We call this
the “state-action deviation problem”: Figure 3 in-
dicates this problem, the area representing the state “the
goal is far” is large, therefore the robot frequently returns
to this state if the action is forward. This is highly unde-
sirable because the variations in the state transitions is
very large, consequently the learning does not converge
correctly.

To avoid this problem, we reconstruct the action s-
pace as follows. Each action defined is regarded as an
action primitive. The robot continues to take one action
primitive at a time until the current state changes. This
sequence of the action primitives is called an action. In
the above case, the robot takes a forward motion many
times until the state “the goal is far” changes into the
state “the goal is medium”.

3.3 Learning from Easy Missions

In order to improve the learning rate, the whole task was
separated into different parts in [Connel and Mahadevan,
1993al. By contrast, we do not decompose the whole task
into subtasks of finding, driblling, and shooting a ball.
Instead, we first used a monolithic approach. That is,
we place the ball and the robot at arbitrary positions. In
almost all the cases, the robot crossed over the field line
without shooting the ball into the goal. This means that
the learning did not converge after many trials. This
is the famous delayed reinforcement problem due to no
explicit teacher signal that indicates the correct output
at each time step. To avoid this difficulty, we construct
the learning schedule such that the robot can learn in
easy situations at the early stages and later on learn
in more difficult situations. We call this Learning from
Easy Missions (or LEM).

3.4 Action-Based State Space Construction
[Asada et al., 1995a]

In the previous section, first we divided the sensor s-
pace by hand, and then constructed the action space so
that the sensor and action spaces can be consistent with
each other. While, one can construct a state space fix-
ing the action space first [Chapman and Kaelbling, 1991;
Dubrawski and Reingnier, 1994]. Generally, the optimal
state space design should be supported by the optimal
action space design, and vice versa. This resembles the
well-known “chicken and egg problem”.

From a viewpoint of state space construction, the
problem is twofold :

1. how to determine which information among the per-
ceived data is necessary for the task, and

2. how to divide the selected parameter space into non-
overlapping areas called “states” so that the robot
can take an adequate action to perform the task.

Since the whole problem, that is, simultaneous con-
struction of state and action spaces seems very difficult
one to be solved, we propose a method for the second
problem, and apply the method to the the same task.
Basic ideas of our method are as follows:

e We construct a state space so that a group of sensa-
tion vectors in which an action command to achieve
the goal is the same can be merged into one state
even if these vectors appear to be different from each
other.

e An action is defined as a sequence of the same action
command in such a state. That is, we parameterized
the length of action sequence in order to divide the
sensor space.

3.5 Experimental results

Figure 4 shows a configuration of the real mobile robot
system. The image taken by a TV camera mounted on
the robot is transmitted to a UHF receiver and processed
by Datacube MaxVideo 200, a real-time pipeline video
image processor. We constructed the radio control sys-
tem of the vehicle [Inaba, 1993]. The image processing
and the vehicle control system are operated by VxWork-
s OS on MC68040 CPUs which are connected with host

* Ether Net

MC68040 _i

MaxVideo 200
DigiColor
M UHF Receiver

MC68040 —

Parallel /0
A/D
D/IA

VME BOX

1

-
/

Transmitter

Receiver

Radio Controller

Figure 4: A configuration of the real system.

igure o: Result of image processing.

Sun workstations via Ether net. We have shown a pic-
ture of the real robot in Figure 1(b).

Figure 6 shows the projected map of the final result
onto the ball-size and goal-size space when other parame-
ters are all zeros. The intensity indicates the order of the
division: the darker is the earlier. Grid lines indicate the
boundaries divided by programmer in the previous work.
The remainder of the state space in Figure 6 corresponds
to infeasible situations such as “the goal is near and the
ball is far” although we did not recognize such a mean-
ingless state in the previous work. As we can see, the
sensor space categorization by the proposed method (a
set of ellipsoids) is quite different from the one designed
by the programmer (rectangular grids) in the previous
work.

Figure 7(a) shows how a real robot shoots a ball into a
goal by using the state and action map obtained by the
method. 16 images are shown in raster order from the
top left to the bottom right in every 1.5 seconds, in which
the robot tried to shoot a ball, but failed, then moved
backward so as to find a position to shoot a ball, finally
succeeded in shooting. Figure 7(b) shows a sequence
of images taken by the robot during the task execution
shown in Figure 7(a). Note that the backward motion for
retry is just the result of learning and not hand-coded.

Table 1 compares the method with our previous work
[Asada et al., 1995b]. The search time in the previous
work means the learning time in terms of the period of
one action command (33ms) since the state space is given
a priori. It takes about 500M (M=10°) steps because the
number of states is much larger. The proposed method
performs better than the previous work. The size of the

450 I~ state boundary o

400

350

300

200

Goal Height (pixel)

150 - B2

100

F2

50 =

B2

0 50

100. 150) 200
Ball Diameter (pixel)

Figure 6: 2-D projection of the state space division

Table 1: Comparison of the methods with our previous
work

of | Search | Success

States | Time | Rate (%)
Previous work 243 500M* 77.4
Proposed method 33 41M 83.3

* indicates the Q-learning time.

state space is about 1/8 of that of the previous work.
The search time is about 1/12 of the previous work.

4 Shooting a Ball with Avoiding an
Opponent [Asada et al., 1994b;
Asada et al., 1994c;

Asada et al., 1995c]

In the second stage, we set up an opponent just before
the goal, that is, a goal keeper, and make the robot learn
to shoot a ball into a goal avoiding the goal keeper (See
Figure 8). The basic idea is first to obtain the desired
behavior for each subtask, and then to coordinate two
learned behaviors. For the first subtask (shooting be-
havior), we have already obtained the learned policy by
using the state space shown in 2. For the second sub-
task (avoiding behavior), we add the sub-states for the
opponent that consist of the size and position of it in
image.

We assign a reward value 3 when the ball is entered
into the goal or 0 otherwise for the shooting task, and
-1 when a collision with a moving obstacle occurs. A
discounting factor «9 is used to control to what degree
rewards in the distant future affect the total value of a
policy. In the shooting task, we set the value a slightly
less than 1 (79 = 0.8), and for the avoiding task v" = 0.1.

Goal

Ball
.W.

Opponent

@Leamer

Figure 8: The task is to shoot a ball into the goal avoid-
ing an opponent.

4.1 Learning a Reflexive Behavior

The Q-learning method can obtain not only goal-
directed behaviors but also reflexive ones as well by s-
lightly changing some parameters and updating equa-
tions. Unlike the goal-directed behaviors to find the path
from the current state to the goal state, reflexive behav-
iors are reactive, and therefore, the discounting factor v"
should be much smaller so that the action-value for the
distant future action cannot be affected.

A typical example of such behaviors is “collision avoid-
ance” which has another different property from that of
goal-directed behaviors. That is, any action can be al-
lowed to be taken unless it causes collisions with other
objects (agents). In order to learn such a behavior, the
negative reward should be assigned for the state-action
pair which causes a collision with a moving obstacle. The
agent tries to make collisions with other objects during
the learning process, and it does not take such actions
after the learning.

(a) The robot succeeded in finding and shooting a
ball into the goal

4.2 Coordination of Multiple Behaviors

We consider three kinds of coordinations in which the
previously learned behaviors are combined; simple sum-
mation of different action value functions, switching ac-
tion value functions according to situations, and learning
given the learned policies as a priori knowledge. The
state spaces S¢ for the coordinated behavior in these
coordinations are a little bit different from each other
according to their methods. To simplify the following
explanatins, let us consider to combine a goal-directed
behavior (Q9(s?,a)) and a reflexive behavior (Q"(s", a))
into a new one.

Basically, a state s¢ € §° can be defined as a combined
(b) Images taken by the robot during the task exe- state of §9 and S”. We denote this combination as S9 x
cution S" or (89,8"). The number of S is theoretically a
product of numbers of states of SY and S”.

Figure 7:
(a) Simple summation of different action value
functions

The action value function of simple summation
¢.(s% a) for the coordinated behavior is given by;

Qss(s%a) = géfﬁ(@g((sg, *),a) + Q" ((x,5%),a)) (5)

where Q9((s7,%),a) and Q%((,s%),a) denote the ex-
tended action value functions for the goal-directed and
reflexive behaviors in the new state space, respective-
ly. * means any states, therefore each of these functions
considers only the original states and ignores the states
of other behaviors. In this scheme, the selected action
sometimes might not make any sense for both behaviors
because the simple summation cannot consider combined
new situations.

(b) Switching action value functions

The switching action value function Q¢,, (s, a) for the
coordinated behavior is given by the following equation
depending on a situation.

i ={ G

It seems hard to appropriately determine the situa-
tions to switch the functions Q9(s9,a) and Q"(s",a).
Simple situations we tried are the cases where only an
opponent can be seen or where an opponent can be seen.
In the former, the robot does not care about collisions
with the opponent when the ball or the goal can be ob-
served, while in the latter the robot tries to avoid the
opponent even if it is likely able to shoot a ball into the
goal. Therefore, we need a carefully designed decision
rule to switch the policies. The following method pro-
vides us with this rule by learning a new policy coping
with new situations.

in some situations
: (6)
otherwise

(c) Learning a new behavior

In the above methods, the previously learned ac-
tion value functions are simply summed or switched.
Therefore these methods ignore some situations incon-
sistent with the state spaces SY or S”. Eventual-
ly, an action suitable for these situations has never
been learned. To cope with these new situations, the
robot needs to learn a new behavior by using the pre-
viously learned behaviors (see [Asada et al., 1994b;
Asada et al., 1994c] for more details).

A typical example is the case where a ball and the op-
ponent are located at the same area and the ball is oc-
cluded by the opponent from the viewpoint of the robot.
In this case, the robot cannot observe the ball, and there-
fore the corresponding state might be the state of “ball-
lost,” but it is not correct. Of course, if both the ball
and the opponent can be observed, this situation can
be considered consistent. This problem is resolved by
adding new substates. In the above example, a new sit-
uation “occluded” is added, and the corresponding new
substates are generated.

The learning scheme is applied to both normal states
and newly generated ones with different temperature pa-
rameters T in eqn(4) for the action selection in such a
way that low temperature (conservative) is used around
the normal states s and high temperature (random)
around the new substates s¢,, in order to reduce the
learning time.

4.3 Experiments

In addition to three kinds of coordination methods, we
show the performance data by only using the policy Q9

which completely ignores the existence of the opponent.
Table 2 shows the simulation result where the success
rate of shooting per trial, the mean steps between colli-
sions with the opponent, and the mean steps needed to
get a shoot (success). In the case of only using Q9, the
robot tries to shoot a ball ignoring the opponent, and
therefore it collides with the opponent many times and
needs much more steps to get a shoot although the rate
is as good as the learning method. The simple sum seem-
s better in collision because avoiding behavior becomes
dominant when the opponent approaches to it. Howev-
er, it sometimes settles at one of the local maxima near
the goal where shooting and avoiding behaviors are bal-
anced, and therefore the shooting rate is the worst. The
switching condition we set is to use shooting behavior
unless only the opponent can be observed very largely.
The robot got more shoots than the simple sum because
it can avoid the local maxima. However, when it uses
avoiding one, many actions not related to shooting be-
havior are chosen, and therefore it takes longest time
step to get a shoot as a result. The learning method is
the best in shooting rate, collision avoidance, and speed
of shooting per trial.

Table 2: Simulation result

coordination || success mean steps mean steps
method rate(%) | between collisions | to success
only QY 46.7 43.1 286.9
simple sum 33.2 77.5 231.2
switching 39.2 98.0 414.4
learning 46.7 238.1 128.3
N N b\

scorei18, gs;270, as: 9, s:3141 ,a; B score:18, gs;318, as; 9, 5:3189 ,a; 6 score;18, gs:117, as; 9, 5:2988 ,a; 8

‘s

'/Q

'/Q
&,

ore;18, gs;274, as; 9, 5:3145 ,a; 6 score;

‘s
&,

Figure 9: A shooting behavior of the learning method

Fig.9 shows a sequence of shooting behavior by the
learning method. In these figures, the robot and the op-
ponent are colored in black and gray, respectively. The

lines emerged from them shows their visual angles. The
opponent tries to chase after the robot with the proba-
bility of 50% as long as it can see the robot. Otherwise,
it randomly moves.

4.4 Efficient Learning by Scheduling Opponent
Behaviors (Another LEM)

Next, we studied how the learning agent can improve its
performance by the behavior of other agents. Intuitive-
ly, we can see the learning agent cannot learn at all if
the opponent has the optimal policy to block the learner
because of no success. Therefore, according to the basic
idea of Learning from Easy Missions Paradigm (hereafter
LEM) [Asada et al., 1995b], we started with a station-
ary opponent (stationary obstacle), and then increase its
velocity until the maximum one of the agent. Figure 10
shows the succeeded shooting rate in terms of number
of trials 2 with and without LEM. With LEM, the agent
started learning with a stationary opponent, and then
with one of half speed (from the first arrow), and finally
with one of the maximum speed (from the second arrow).
While, without LEM, the agent starts from an opponent
with the maximum speed, therefore the success ratio has
not achieved the level with LEM. This figure tells that
LEM seems essential for the learning from other compet-
itive agents. Fig.11 shows a sequence of images where
the robot achieved the goal avoiding an enemy that is
currently static.

90 T T T T T

| with_LEM ——
80 without LEM :

70 ¢ \
60 - 1
50 1
40]

Shooting ratio (%)

30 | T e o |
20 I ,/_,V,,—»-N,,../,, |
10 o A

0 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

. . Number of trials .

Figure 10: Learning curves with and without LEM

5 Discussion

We review the research issues involved in RoboCup
with real robots. In order to build a team of robots,
each robot should be compact and simple, therefore im-
plementation of only “pushing behavior” would be a rea-
sonable strategy. Currently, realization of a humanoid
type robot seems only for the demonstration track, and
to the best of our knowledge, Prof. Inaba, University of
Tokyo, is challenging this problem.

Realtime sensing capability is indispensable for quick
motions of each player. Conventional methods of mea-

2one trial ends when the agent succeeds in shooting or

crosses over the field line

:l

Figure 11: The robot succeeded in shooting a ball into
a goal avoiding an opponent.

surement and planning does not seem suitable. As
we have shown, learning method seems encouraging al-
though learning team plays such as passing and forma-
tion has not been attacked yet.

The state space construction problem is closely related
to “segmentation” problem, one of the most fundamental
AT ones. We expect that our problem formulation of the
state space construction based on action could project
a light to this difficult problem becasue we believe that
segmentation of sensory information and action cannot
be performed without any physiacl interactions with the
environment, and RoboCup provides us a good test bed
for this problem.

Acknowledgements

The research topics described here are supported by
the Japanese Sience Research Program under the Project
Numbers 06650301, 07455112, and 07243214 and of the
Grand-in-Aid for sientific research from the Ministry of
Education, Sience, and Culture.

The author thanks Koh Hosoda, Shoichi Noda, Eiji
Uchibe, and Sukoya Tawaratsumida for their construc-
tive discussions and invaluable efforts to realize the work
described in this paper.

References

[Asada et al., 1994a] M. Asada, S. Noda, S. Tawarat-
sumida, and K. Hosoda. “purposive behavior acqui-
sition on a real robot by vision-based reinforcement
learning”. In Proc. of MLC-COLT (Machine Learning
Conference and Computer Learning Theory) Work-
shop on Robot Learning, pages 1-9, 1994.

[Asada et al., 1994b] M. Asada, E. Uchibe, S. Noda,
S. Tawaratsumida, and K. Hosoda. “A vision-based
reinforcement learning for coordination of soccer play-
ing behaviors”. In Proc. of AAAI-94 Workshop on Al
and A-life and Entertainment, pages 16-21, 1994.

[Asada et al., 1994c] M. Asada, E. Uchibe, S. Noda,
S. Tawaratsumida, and K. Hosoda. “coordination of
multiple behaviors acquired by vision-based reinforce-

ment learning”. In Proc. of IEEE/RSJ/GI Interna-
tional Conference on Intelligent Robots and Systems
1994 (IROS ’94), pages 917-924, 1994.

[Asada et al., 1995a] M. Asada, S. Noda, and K. Hoso-
da. Non-physical intervention in robot learning based
on lfe method. In Proc. of Machine Learning Con-
feren Workshop on Learning from Ezamples vs. Pro-
gramming by Demonstration, pages 25-31, 1995.

[Asada et al., 1995b] M. Asada, S. Noda, S. Tawarat-
sumida, and K. Hosoda. Vision-based reinforcement
learning for purposive behavior acquisition. In Proc. of
IEEE Int. Conf. on Robotics and Automation, pages
146-153, 1995.

[Asada et al., 1995¢] M. Asada, E. Uchibe, and K. Hoso-
da. Agents that learn from other competitive agents.
In Proc. of Machine Learning Conferen Workshop on
Agents That Learn from Other Agents, pages 1-7,
1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ, 1957.

[Chapman and Kaelbling, 1991] D. Chapman and L. P.
Kaelbling. “Input generalization in delayed reinforce-
ment learning: An alogorithm and performance com-
parisons”. In Proc. of IJCAI-91, pages 726—731, 1991.

[Connel and Mahadevan, 1993a]
J. H. Connel and S. Mahadevan. “Rapid task learning
for real robot”. In J. H. Connel and S. Mahadevan,

editors, Robot Learning, chapter 5. Kluwer Academic
Publishers, 1993.

[Connel and Mahadevan, 1993b] J. H. Connel
and S. Mahadevan, editors. Robot Learning. Kluw-
er Academic Publishers, 1993.

[Dubrawski and Reingnier, 1994]
A. Dubrawski and P. Reingnier. Learning to catego-
rize perceptual space of a mobile robot using fuzzy-art
neural network. In Proc. of IEEE/RSJ/GI Interna-
tional Conference on Intelligent Robots and Systems
1994 (IROS ’94), pages 1272-1277, 1994.

[Fagg et al., 1994] A. H. Fagg, D. Lotspeich, and G. A.
Bekey. “A reinforcement learning approach to reactive
control policy design for autonomous robots”. In Proc.
of 1994 IEEFE Int. Conf. on Robotics and Automation,
pages 39-44, 1994.

[Inaba, 1993] M. Inaba. “Remote-brained robotics: In-
terfacing ai with real world behaviors”. In Preprints
of ISRR’93, Pitsuburg, 1993.

[Kaelbling, 1993] L. P. Kaelbling. “Learning to achieve
goals”. In Proc. of IJCAI-93, pages 1094-1098, 1993.

[Kitano et al., 1995] H. Kitano, M. Asada, Y. Ku-
niyoshi, I. Noda, and E. Osawa. “robocup: The robot
world cup initiative”. In Proc. of IJCAI-95 Workshop
on Entertainment and AI/A-life, 1995.

[Saito and Fukuda, 1994] F. Saito and T. Fukuda.
“Learning architecture for real robot systems — exten-
sion of connectionist g-learning for continuous robot
control domain”. In Proc. of 1994 IEEE Int. Conf. on
Robotics and Automation, pages 27-32, 1994.

[Sutton, 1992] R. S. Sutton. “Special issue on reinforce-
ment learning”. In R. S. Sutton(Guest), editor, Ma-
chine Learning, volume 8, pages — Kluwer Academic
Publishers, 1992.

[Watkins, 1989] C. J. C. H. Watkins. Learning from de-
layed rewards”. PhD thesis, King’s College, University
of Cambridge, May 1989.

