
How To Bring Up A One-Eyed Mobile Robo-Infant

Takayuki Nakamura and Minoru Asada
Dept. of Mechanical Eng. for Computer-Controlled Machinery,

Osaka University, Suita 565 JAPAN
Phone:+81-6-879-7349, Fax:+81-6-879-7348.

e-mail: nakamura@robotics.ccm.eng.osaka-u.ac.jp

Abstract
An animat, a simulated animal or a real robot, has

to learn a sequence of actions which reflect the dynam-
ic interplay between the animat and its environment,
mediated through the animat’s sensors and actuators.
This paper presents a method to bring up an animat,
a one-eyed mobile robo-infant in such a way that it
learns the sensorimotor apparatus first (in its baby-
hood), and then how to detect and avoid obstacles
and how to pursuit a target (in its childhood), and
finally how to combine these behaviors (in its youth).
Key issues dealt with in this paper are twofold:

• The robo-infant has visual tracking routines ca-
pable of realtime acquisition of optical flow (vi-
sual motion patterns) by which it can obtain the
sensorimotor apparatus, and target pursuit and
obstacle avoidance behaviors based on reinforce-
ment learning.

• The system’s (parents’) direct training (program-
ming or teaching how to do) is avoided. Instead,
the system changes the environments so as to
make the robo-infant learn several behaviors to
accomplish some tasks step by step.

Computer simulation and real experiments are given
to show the validity of the method.

1 Introduction
An animat, a simulated animal or a real robot, has

to learn a sequence of actions which reflect the dynam-
ic interplay between the animat and its environment,
mediated through the animat’s sensors and actuators.
In order for the animat to be able to learn behaviors,
many issues related to each other should be consid-
ered.

First, the animat has to find situated cues to asso-
ciate them with embedded motor commands. In the
subsumption architecture [1], these cues are embed-
ded, or more correctly specified by the programmer.
As a method of automatically finding these cues, the
researchers in robot learning have tried to make agents
learn to behave against the perceived data from the
external world [2]. The candidates for the cues, how-
ever, are selected in advance for behavior learning for
the specified task among the numerous number of per-
ceived data. Especially, in the reinforcement learning

scheme [3], the state which is the result of some action
should be predefined, which means that the candidates
for situated cues are involved in the state variables.
These cues seem dependent on scene components and
limited to the specified situations and the task. There-
fore, detection of such cues seems unstable in different
real situations.

Visual motion cues can be considered as robust ones
independent of scene components and capable of be-
ing tightly coupled with motor commands. The visual
motion cue such as an optical flow has been used in
CV area for 3-D scene reconstruction [4]. Recently,
the main trend of CV has been shifting to the pur-
posive active vision paradigm [5, 6, 7]. Further, tight
coupling between visual motion cues and motor com-
mands seems important as shown in biology [8] or
physiological psychology [9]

Second, the environment has a very important role
from a viewpoint of how to bring up a robo-infant. Al-
most of the all existing methods in robot learning as-
sume the fixed environment for their individual tasks
and have not considered to change the environments
so as to make the animat learn more complicated be-
haviors step by step. In [10], we proposed the Learn-
ing from Easy Missions (hereafter, LEM) paradigm in
which the reinforcement learning time can be reduced
from the exponential order into the linear order of the
state size by placing the animat near the goal state
at the beginning and farther from it later. Although
the environment is fixed in this case, the animat could
learn the shooting behavior successfully.

In this paper, we present a method to bring up an
animat, a one-eyed mobile robo-infant which has vi-
sual tracking routines capable of realtime acquisition
of optical flow of the environment that are used as
visual cues to be associated with several behaviors.
We extend the LEM paradigm from only the animat’s
placement in the fixed environment [10] to changing
the environments so that the animat can learn com-
plicated behaviors gradually. At the beginning the
animat learns the sensorimotor apparatus in its baby-
hood with almost no obstacles, and then learns sever-
al behaviors such as detecting and avoiding obstacles,
and pursuit a target in its childhood, and finally learns
to combine these behaviors in its youth.

In the next section, we describe our robo-infant;
the system, the actuators, the sensors, and the brain,

1

and then the tasks it tries to accomplish. Next, we
give a method for acquisition of the fundamental re-
lationship between visual motion cues and robot mo-
tor commands, and describe a reinforcement learning
method to obtain target pursuit behavior with com-
puter simulations and real experimental results.

2 The Robo-Infant and Task

(a) System

V
M

E
 B

us

Tuner

Monitor

D/A A/D

Visual Processing Boards
(Fujitsu Tracking Visioin)

MVME 167

MC 68040

RAM

P I/O
(Printer Port)

Video Boards

MVME 167

Wireless Servo
Controller

Real robot

Im
ag

e
B

us

Figure 1: A configuration of the system.

Fig.1 shows a configuration of our one-eyed mobile
robo-infant. We have constructed the radio control
system of the robot[10]. The image processing and
the vehicle control system are operated by VxWork-
s OS on MVME167(MC68040 CPU) computer which
are connected with host Sun workstations via Ether
net. The image taken by the robo-infant is transmit-
ted to a UHF receiver and subsampled by scan-line
convertor(Sony Corp.). Then, the video signal is sen-
t to a Fujitsu tracking module. The tracking mod-
ule has a function of block correlation to track some
pre-memorized patterns and can detect motion vec-
tors in real time. The Datacube MaxVideo 200, a
real-time pipeline video image processor is used to syn-
thesized pre-memorized reference block images. Then
the tracking module feeds the flow vectors at each re-
gions to the host CPU(MC68040). The host CPU cal-
culates the averaged motion vector field (see Section
3.1 for more detail) and stores them. The host Sun
workstation calculates the SVD off-line. Fig.2 shows
a picture of the robo-infant with a TV camera (Sony
camera module) and video transmitter.

(b) Actuators
The robo-infant has a Power Wheeled Steering sys-

tem driven by two motors into each of which we can
send a motor command, independently. The velocities
of translation v and rotation ω of the robot can be rep-
resented by two motor commands, more correctly two
anglur velocities ωl and ωr. The following equation
shows the relationship between (v, ω) and (ωr, ωl) to

(a) robo-infant (b) detected image

Figure 2: A picture of the robo-infant and mo-
tion detection.

be sent to the right and left motors.
(

v
ω

)
=

(
Rr

2
Rl

2
Rr

T −Rl

T

)(
ωr
ωl

)
(1)

where Rr, Rl, and T denote the radii of the right and
left wheels, and the distance between two wheels, re-
spectively.

In our experment, we quantized ωl(r) into five levels
which correspond to quick forward, slow forward, stop,
slow backward, and quick backwrad, respectively. To-
tally, we have 25 actions. Note that the robot does not
even know any physical meanings of these actions.
(c) Sensors

To detect changes due to the robot motion, we
use real-time visual tracking routines which can track
about 140 windows (each window consists of 8 by 8
pixcels) in real-time (video rate) by using a motion
estimation processor (MEP) [11]. Searching area is 16
by 16 pixcels and MEP outputs the location of each
window where the following matching error (SAD: sum
of absolute difference) is minimum.

D[i, j] =
K−1∑

k=0

L−1∑

l=0

|R[k, l]−M [i + k, j + l]|

i, j : 0 ≤ i, j ≤ 15,

where R[x, y], M [x, y], and D[x, y] denote a reference
block, a matching block, and an array of SAD, respec-
tively. The visual tracking routines are used to obtain
an optical flow of the floor, to track a target specified
by human operator, and to detect and avoid obstacles.
(d) Brain and Task

Fig.3 shows a basic idea of visual motion guided be-
havior. The visual motion guided behavior construct-
ed in the brain consists of visual and motor behaviors
for each task. The basic component of the visual be-
havior is a set of visual tracking routines based on
template matching method for optical flow detection
or target tracking. The image area to be covered by
these tracking routines are specified or automatically
detected depending on the individual tasks, and the

2

Visual behavior

Visual Motion Guided
 Behavior

ground-plane
 tracker

target tracker

obstacle tracker

Image

Principal Motion

Obstacle Detection

Target tracking

Obstacle tracking

Q-Learning

Motor behavior

Figure 3: Visual Motion Guided Behavior

cooperative behavior between tracking routines are
conducted for the task accomplishment.

The most fundamental task is to obtain the rela-
tionship between the visual motion and robot motor
commands. To do that, the visual tracking routines
are scattered over the whole image and an optical flow
due to instantaneous robot motion is detected. In this
case, the tracking routines are fixed to the individual
image positions. In the task of obstacle detection and
avoidance, the candidates for obstacle are first detect-
ed by comparing the motion vector with that of non-
obstacle (ground plane) region, and then this region
is tracked by multiple templates each of which track-
s the inside of the moving obstacle region. For the
target pursuit task, the multiple templates are set up
and every template looks for the target for the stable
tracking.

The motor behavior is a set of motor commands ob-
tained by Q-learning, one of the robot learning meth-
ods, based on detected motion cues and given task.
The size and position of the target or the detected
obstacle which are successfully tracked are used as a
state vector.

The visual motion guided begaviors work in par-
allel in the image and compose the layered architec-
ture. The visual motion guided behavior for monitor-
ing robot motion (detecting the optical flow on the
ground plane on which the robot lies) is the lowest
and might be subsumed in part due to occlusion by
other visual motion guided behaviors for obstacle de-
tection/avoidance and target pursuits which might oc-

clude each other.

3 Babyhood (Acquisition of Sensori-
motor Apparatus)

Here, we show how to learn sensorimotor apparatus
by correlating sensor information with motion com-
mand. We assume that the robot is given no knowl-
edge of the structure of its sensory system nor of the
effects. We extend the method [12] as follows:

• Instead of sonar information (3-D range informa-
tion), we use optical flow of the floor which can
be obtained by multiple visual tracking routines.

• In order to remove fluctuations of flow pattern of
each action due to the environmental factors, we
set up the environment with almost no obstacles.
In averageing flow patterns, we used the least me-
dian of squares method [13] to remove the outliers
due to noise or small obstacles.

Finally, we can condense the visual motion patterns by
the obtained fundamental relationship and then use it
to include the ego-motion information in the internal
state space of the agent.
3.1 Aquisition of Sensorimotor Appara-

tus
Here, we call an optical flow pattern due to a par-

ticular action a primal motion vector field (hereafter,
pmvf). We place 49(7× 7) visual tracking routines to
detect changes in the whole image.

We obtain a mapping that gives the averaged pmvf
for any particular actions. This mapping is obtained
as follows: The space of actions is divided into a set
of boxes. In a real system, the robot moves around
the floor by a PWS (Power Wheeled Steering) system
with two independent motors. We can send the mo-
tor control command to each of two motors indepen-
dently. Two motor commands ωl and ωr have 5 sub-
actions (quick forward(qf), slow forward(sf), stop(st),
slow backward(sb) and quick backward(qb) motions),
respectively. The entire space of actions is thus divid-
ed into 25 boxes. These boxes can be specified by two
indices where the first component of the index is the
right motor command and the other is the left mo-
tor command. An averaged pmvf is obtained for each
of these boxes. Each time the robot takes an action
i(τli, τri) τli, τri ∈ {qf, sf, st, sb, qb}, the averaged
pmvf pi is updated for the box corresponding to the
action just taken. Examples of these vector fields in a
real environment are shown in Fig.4. In the environ-
ment without obstacles, the robot randomly selects a
possible action among the action space and executes
it. While random wandering, the robot stores the flow
patterns for each actions.
3.2 Aquisition of principal motions

Using the mapping from the actions to the aver-
aged pmvfs obtained in the last subsection, we acquire
principal motions which characterize the space of ac-
tions. This is done by analyzing the space of averaged
pmvf that robot is capable of producing. We want to
find a basis for this space, i.e., a set of representative

3

Action 1 (qb , qb) Action 24 (qf , sf)

Figure 4: Examples of averaged pmvfs in a real
environment.

motion vector fields from which all the motion vec-
tor fields may be produced by linear combination. We
can obtain the representative motion vectors by using
Principal Component Analysis that may be performed
using a technique called Singular Value Decomposi-
tion(hereafter SVD). The sample values of pi (the av-
eraged pmvf) corresponding to the actioin i(τli, τri) are
organized as the rows of matrix P . There are 25 of
these fields each having 98 components (49 vectors per
one box). The SVD of P is

Pm×n = Um×nSn×nET
n×n, (2)

where S is a diagonal matrix whose elements are the
singular values of P and the rows of ET are the de-
sired orthonormal basis vectors. Here, m = 25, the
number of averaged pmvfs and n = 98, the number of
components in each averaged pmvf (two for each local
visual tracking routine). U is the orthogonal matrix in
terms of the row. The averaged pmvf pi can be writ-
ten as a linear combination of the vectors in ET from
the quation (2), using the K principal components:

pi ≈
K∑

k=1

uikskeT
k (3)

Thus, we have found a basis set (the row vectors of
ET) for the space of averaged pmvf. In fact, we ob-
tain 26 principal components by caluculating SVD for
the P which consist of 25 flow patterns. Fig.5 shows
the singular values with respect to the principal com-
ponents.

We select two important basis vectors among them
which have larger singular value than others. The av-
eraged pmvf may be approximated by throwing away
all but the important basis vectors. Thus, for exam-
ple, vector pi may be approximated by

pi ≈ ui1s1e
T
1 + ui2s2e

T
2

if we keep only the first two components. The first
two principal components obtained in the real envi-
ronment are shown in Fig.6. Clearly, the first (a)
corresponds to a pure rotation and the second (b) to
a pure backward motion.

Next step is to make a relation between the possible
actions pi by representing each of them in terms of

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0.00 5.00 10.00 15.00 20.00 25.00

Singular value

of principal component

Figure 5: Singular values of principal compo-
nents.

Principal component 1

(a)

Principal component 2

(b)

Figure 6: The first two principal components.

the coeficient ai
k = uiksk in the action space which

consists of two principal components. The relation
between possible actions of the real robot are shown
in Fig.7, where the number indicates the number of
the action i (i = 1 ∼ 25).

4 Childhood (Behavior Acquisition
Based on Reinforcement Learning)

4.1 Basics of Reinforcement Learning
Reinforcement learning agents improve their per-

formance on tasks using reward and punishment re-
ceived from their environment. They are distiguished
from supervised learning agents in that they have no
“teacher” that tells the agent the correct response to a
situation when an agent responds poorly. An agent’s
only feedback indicating its performance on the task at
hand is a scalar reward value. One step Q-learning[14]
has attracted much attention as an implementation of
reinforcement learning because it is derived from dy-
namic programing[15] and because it works well. Here,
we briefly review the basics of the Q-learning. We fol-
low the explanation of the Q learning by Kaelbling
[16].

We assume that the robot can discriminate the set
S of distinct world states, and can take the set A
of actions on the world. The world is modeled as a
Markov process, making stochastic transitions based
on its current state and the action taken by the robot.

4

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

-200.00 -100.00 0.00 100.00 200.00

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

a i
1coeficient

a i
2coeficient

(qb , qb)

(qb , qf)
(qf , qb)

(qf , qf)

Figure 7: The relation between the possible ac-
tions of the real robot.

Let T (s, a, s′) be the probability that the world will
transit to the next state s′ from the current state-
action pair (s, a). For each state-action pair (s, a),
the reward r(s, a) is defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. A pol-
icy f is mapping from S to A. This sum called the
return and is defined as:

∞∑
n=0

γnrt+n, (4)

where rt is the reward received at step t given that
the agent started in state s and executed policy f . γ
is the discounting factor, it controls to what degree
rewards in the distant future affect the total value of
a policy and is just slightly less than 1.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal poli-
cy, using methods from dynamic programming [15]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct
the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value
function for taking action a in a situation s and con-
tinuing thereafter with the optimal policy. It can be
recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′).

(5)
Because we do not know T and r initially, we construct
incremental estimates of the Q values on line. Starting
with Q(s, a) at any value (usually 0), every time an
action is taken, update the Q value as follows:

Q(s, a) ⇐ (1−α)Q(s, a)+α(r(s, a)+γ max
a′∈A

Q(s′, a′)).

(6)
where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is
a leaning rate (between 0 and 1).

According to the above formalization of the state
set, the action set, and other functions and parame-
ters, we apply the Q-learning to target pursuit task.
4.2 Learning Method

We use visual tracking routines in order to pursuit
a target specified by an human operator and obtain
the information about the target in the image. This
information is used in the Q-learning algorithm for
aquisition of target pursuit behavior. Here, we show
the relation between the state of visual tracking rou-
tine and the state used in Q-learning scheme.

4.2.1 Visual functions of tracking routine

Our visual tracking routine have the following visual
functions.

(a) Initial image specified by
 an human operator

(b) Scaling template

(c) Rotational template

Figure 8: The target image and the reference
block images.

1. Scalable and rotatable matching: We can gen-
erate three level scaling images and eleven level
rotational images as reference block images. For
example, Fig.8 shows an inital image specified by
an human operator (a), three scaling images (b),
and eleven rotational images (c), respectively.

2. When the visual tracking routine tracks an image,
it applies the block matching process with the
reference block stored in the initial frame and the
search window selected to be centered around the
last tracking position from the current frame. By
this function, we can obtain the target position
in the image while pursuiting the target.

3. When the target detection fails, search-whole-
image routine is called in order to detect the tar-
get again.

We define the state of the target in the image based
on the target position and the target size (three levels)
obtained by visual tracking routine. We detect motion
vector in an image by applying the block matching
process with the reference block (t = ti) and the search

5

window images (t = ti+1) continuously. Thus, we can
obtain the optical flow vectors in the image at any
time.

4.2.2 State and action spaces in Q-learning

In order to apply the Q-learning scheme to target pur-
suit task, we define a number of sets and parameters.

A state set S: the state of the target in the im-
age is quantized into 9 sub-states, combinations of
three positions (left, center, and right) and three sizes
(large (near), medium, and small (far)). Similarly,
changes in terms of target’s position and size in the
image are quantized into 9 sub-states, combination of
three states in terms of position’s change (move left,
no move and move right) and three state in terms of
size’s change (enlarge, no change, shrink). We add
the two lost situations (target is lost into the left side
or the right side) into the state space. Furthermore,
we add the action(totally 25 actions) just taken on
observing the current situation into the state space.
Totally, we have 2300 states in the set S.

A action set A: Totally, we have 25 actions in the
action set A. We assign a reward value 1 when the
robot touched the target or 0 otherwise. A discounting
factor γ is used to control to what degree rewards in
the distant future affect the total value of a policy.
In our case, we set the value a slightly less than 1
(γ = 0.9).

4.2.3 Target tracking with no obstacles

The experiment consists of two phases: first, learning
the optimal policy f through the computer simula-
tion, then apply the learned policy to a real situation.
The merit of the computer simulation is not only to
check the validity of the algorithm but also to save
the running cost of the real robot during the learn-
ing process. Fig.9 shows a sequence of images where
the robot succeeded in pursuiting a target. The top
left figure in Fig.9 (a) shows the initial position of
the target. The top right shows the reference block
images which is synthesized for tracking the target.
The left figures in the Fig.9 (b), (c) and (d) shows
the processed images. Each white rectangle in these
images shows the tracked target position. The white
lines shows the optical flow. In this way, based on the
hierachical architecture of the visual tracking routine,
we can perform the target tracking and the optical
flow detection in parallel on the real system.

(a)

(b)

(c)

(d)

Figure 9: The robot succeeded in pursuiting a
moving target.

6

4.3 Obstacles Detection and Tracking
(a) Detection and tracking of obstacles by flow
differences

We know the flow pattern pi corresponding to the ac-
tion i in the environment without any obstacle. Mo-
tion segmentation is done by comparing the flow pat-
tern pi with the flow pattern pobs

i which is obtained
in the environment with obstacles.

p
i

p
i

obs

(a) (b)

detected area

Figure 10: Obstacle Detection.

The area in the pobs
i which differs from the same

area in the pi is detected as the area in which the
obstacle candidates are projected. This information
(position and size in the image) is used to obtain the
obstacle tracking behavior.

Fig.11 show the result of obstacle detection in the
real environment, where (a) displays the environment
in which the robot detected candidates for obstacles
(see (b)). The circles in the image indicate the obstacle
candidate regions.

Figure 11: A picture of the environment with an
obstacle and obstacle detection.

(b) Learning obstacle avoidance behavior

The learning obstacle avoidance consist of two stages.
First, the obstacle tracking behavior is learned by the
same manner as in learning the target pursuit behav-
ior. Next, the obstacle avoidance behavior is generat-
ed by using the relation between the possible actions
and the obstacle tracking behavior as follows: (1) the
relationship between the possible actions is divided
into four categories by clustering the action space rep-
resented by the coefficients (ai

1, a
i
2) (See Fig.12(a)),

(2) the obstacle tracking behavior is mapped on the
relationship, and the category Ctwhich includes the

obstacle tracking action is found out, (3) the obstacle
avoidance actions are selected among the categories
excluding the Ct. More correctly, the obstacle avoid-
ance action is obtained by finding the action having
the smallest action-value function with respect to the
obstacle tracking behavior among the categories ex-
cept for Ct. Fig.12(b) shows the obstacle avoidance
behavior acquired by the proposed scheme in comput-
er simulation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

The relation between possible actions

Optimal action at a state

Generated action

(a) Generation of obsta-
cle avoidance behavior

Obstacle

Initial position

(b) Obstacle avoidance
behavior in simulation.

Figure 12: Obstacle avoidance behavior

5 Youth (Coordination of Behaviors)
We consider coordinations in which the previous-

ly learned behaviors are combined: switching action
value functions according to the situation. We used
the subsumption architecture [1] to combine previous-
ly learned behaviors. The switching condition is to use
target pursuit behavior unless only the obstacle can be
observed very largely. Fig.13 shows the results of the
coordinated behavior acquired by our method.

Initial position
Obstacle

Target trajectory

Initial position

Figure 13: Coordinated behavior in simulatoin.

7

6 Discussions ans Future Work
We proposed a method to bring up a robo-infant

by letting it learn from a single behavior in a simple
environment to combined behavior in a comlicated en-
vironment. As one of the general cues for situated a-
gents to behave against the external world, we utilized
visual motion cue which is independent of scene com-
ponents and tightly coupled with motor commands.
Although the cue does not depend on the scene compo-
nents, the tracking routines for detecting optical flow
and pursuiting a target depends on the fluctuations of
intensities due to the change of the lighting conditions
during the robot actions. Normalization technique of
the intensity might be useful but it takes too long time.
We must make the tracking routines more robust by
applying other techniques.

Due to the limit of the current hardware system,
it takes some time to set up the multi templates for
obstacle tracking after obstacle detection. Therefore,
the current system loses the quickly moving obstacles.
Now, we are planning to develop a new program which
tightly connects MaxVideo 200 and Fujitsu Tracking
module to speed up and add other higher level visual
functions.

Since the number of DOFs of the robot motion is
currently too few, just two, we have a plan to extend
our system by adding an active stereo camera head
which has at least four DOFs in order to increase the
capability of robot behaviors by visual motion. Fur-
thermore, it is useful to pursuit a target which is often
likely to be lost in a fixed camera system.

References
[1] R. A. Brooks. “A robust layered control system

for a mobile robot”. IEEE J. Robotics and Au-
tomation, Vol. RA-2, pp. 14–23, 1986.

[2] J. H. Connel and S. Mahadevan, editors. Robot
Learning. Kluwer Academic Publishers, 1993.

[3] R. S. Sutton. “Special issue on reinforcement
learning”. In R. S. Sutton(Guest), editor, Ma-
chine Learning, Vol. 8, pp. –. Kluwer Academic
Publishers, 1992.

[4] M. Tarr and M. Black. “Dialogue: A computa-
tional and evolutionary persepctive on the role of
representation in vision”. CVGIP: Image Under-
standing, Vol. 60:1, pp. 65–73, 1994.

[5] Y. Aloimonos. “Reply: What I have learned”.
CVGIP: Image Understanding, Vol. 60:1, pp. 74–
85, 1994.

[6] G. Sandini and E. Grosso. “Reply: Why Purpo-
sive Vision”. CVGIP: Image Understanding, Vol.
60:1, pp. 109–112, 1994.

[7] S. Edelman. “Reply: Representatin without Re-
construction”. CVGIP: Image Understanding,
Vol. 60:1, pp. 92–94, 1994.

[8] G. A. Horridge. “The evolution of visual process-
ing and the construction of seeing systems”. In

Proc. of Royal Soc. London B230, pp. 279–292,
1987.

[9] R. Held and A. Hein. “Movement-produced s-
timulation in the development of visually guided
behaviors”. Jounal of Comparative and Physio-
logical Psycology, Vol. 56:5, pp. 872–876, 1963.

[10] M. Asada, S. Noda, S. Tawaratsumida, and
K. Hosoda. “Vision-Based Behavior Acquisition
For A Shooting Robot By Using A Reinforcement
Learning”. In Proc. of IAPR / IEEE Workshop
on Visual Behaviors-1994, pp. 112–118, 1994.

[11] H. Inoue, T. Tachikawa, and M. Inaba. “Robot
vision system with a correlation chip for real-time
tracking, optical flow and depth map generation”.
In Proc. IEEE Int’l Conf. on Robotics and Au-
tomation, pp. 1621–1626, 1992.

[12] D. Pierce and B. Kuipers. “Learning to Explore
and Build Maps’. In Proc. of AAAI’94, pp. 1264–
1271, 1994.

[13] A.Rosenfeld P. Meer, D.Mintz and D.Y.Kim.
“Robust Regression Methods for Computer Vi-
sion: A Review”. IJCV, Vol. 6:1, pp. 59–70, 1990.

[14] C. J. C. H. Watkins. Learning from delayed re-
wards”. PhD thesis, King’s College, University of
Cambridge, May 1989.

[15] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[16] L. P. Kaelbling. “Learning to achieve goals”. In
Proc. of IJCAI-93, pp. 1094–1098, 1993.

8

