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Abstract

Sensor and motor systems are not separable
for autonomous agents to accomplish tasks in
a dynamic environment. This paper proposes
a method to represent the interaction between
a vision-based learning agent and its environ-
ment. The method is called “motion sketch” by
which a one-eyed mobile robot can learn several
behaviors such as obstacle avoidance and target
pursuit. A motion sketch is a collection of vi-
sual motion cues detected by a group of visual
tracking routines of which visual behaviors are
determined by individual tasks, and is tight-
ly coupled with motor behaviors which are ob-
tained by Q-learning, a most widely used rein-
forcement learning method, based on the visu-
al motion cues. In order for the motion sketch
to work, first the fundamental relationship be-
tween visual motions and motor commands is
obtained, and then the Q-learning is applied
to obtain the set of motor commands tightly
coupled with the motion cues. Finally, the ex-
perimental results of real robot implementation
with real-time motion tracker are shown.

1 Introduction

Recent research in artificial intelligence has develope-
d computational approaches of agent’s involvements in
their environments [Agre, 1995]. An autonomous agent
is regarded as a system that has a complex and ongoing
interaction with a dynamic environment that is difficult
to predict its changes. Our final goal, in designing and
building an autonomous agent with vision-based learn-
ing capabilities, is to have it perform a variety of tasks
adequately in a complex environment. In order to build
such an agent, we have to make clear the interaction be-
tween the agent and its environment. There have been a
variety of approaches to analyze the relationship between
the agent with visual capabilities and its environment.

In physiological psychology, [Held and Hein, 1963]
have shown that self-produced movement with its con-
current visual feedback is necessary for the development
of visually-guided behaviors. Their experimental results
suggest that perception and behavior are tightly coupled

in autonomous agents that perform tasks. In biology,
[Horridge, 1987] similarly have suggested that motion is
essential for perception in living systems such as bees.

In computer vision area, so-called “purposive active
vision paradigm” [Aloimonos, 1994; Sandini and Grosso,
1994; Edelman, 1994] has been considered as a represen-
tative form of this coupling since [Aloimonos et al., 1987]
proposed it as a method that converts the ill-posed vi-
sion problems into the well-posed ones. However, many
researchers have been using so-called active vision sys-
tems in order to reconstruct 3-D information such as
depth and shape from a sequence of 2-D images given
the motion information of the observer or capability of
controlling the observer motion. Furthermore, though
purposive vision does not consider vision in isolation but
as a part of complex system that interacts with world in
specific ways [Aloimonos, 1994], very few have tried to
investigate the relationship between motor commands
and visual information [Sandini, 1993].

In robot learning area, the researchers have tried to
make agents learn a purposive behavior to achieve a giv-
en task through agent-environment interactions. How-
ever, almost of them have only shown computer simula-
tions, and only a few real robot applications are reported
which are simple and less dynamic [Maes and Brooks,
1990; Connel and Mahadevan, 1993]. The use of vision
in the reinforcement learning is very rare due to its high
costs of sensing and processing.

In order to realize tight coupling between visual sensor
and motor systems, we should consider the relationship
between the low level representation of motion (motor
commands to actuators) and the visual information, and
develop a learning capability to abstract the low level
representation into a form suitable for task accomplish-
ment. In this paper, we propose a method to represent
the interaction between the agent and its environmen-
t which is called “motion sketch” for a real one-eyed
mobile robot to learn several behaviors such as obsta-
cle avoidance and target pursuit. A motion sketch is a
collection of visual motion cues detected by a group of
visual tracking routines of which visual behaviors are de-
termined by individual tasks, and is tightly coupled with
motor behaviors which are obtained by Q-learning, a
most widely used reinforcement learning method, based
on the visual motion cues.

In the next section, we describe the basic idea of the



motion sketch for our example task. In section 3, we
give a method for acquisition of the fundamental rela-
tionship between visual motion cues and robot motor
commands. In section 4, we describe a reinforcement
learning method to obtain target pursuit behavior and
obstacle avoidance one. Then, in order to demonstrate
the validity of our method, we show the experimental
results of the real robot implementation with a real-time
visual motion tracker [Inoue et al., 1992] in section 5.

2 Motion Sketch
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Figure 1: Motion sketch

The interaction between the agent and its environment
can be seen as a cyclical process in which the environ-
ment generates an input (perception) to the agent and
the agent generates an output (action) to the environ-
ment. If such an interaction can be formalized, the agent
would be expected to carry out actions that are appro-
priate to individual situations. “Motion sketch,” we pro-
posed here, is one of such formalizations of interactions
by which a vision-based learning agent that has real-time
visual tracking routines behaves adequately against its
environment to accomplish a variety of tasks.

Figure 1 shows a basic idea of the motion sketch. The
basic components of the motion sketch are visual motion
cues and the motor behaviors.

Visual motion cues are detected by several visual
tracking routines of which behaviors (called visual be-
havior) are determined by individual tasks. The visual
tracking routines are scattered over the whole image and
an optical flow due to an instantaneous robot motion is
detected. In this case, the tracking routines are fixed to
the image points. The image area to be covered by these
tracking routines are specified or automatically detect-
ed depending on the current tasks, and the cooperative
behaviors between tracking routines are performed for

the task accomplishment. For the target pursuit task,
the multiple templates are initialized and every tem-
plate looks for the target to realize stable tracking. In
the task of obstacle detection and avoidance, the candi-
dates for obstacles are first detected by comparing the
optical flow with that of non-obstacle (ground plane) re-
gion, and then the detected region is tracked by multiple
templates each of which tracks the inside of the moving
obstacle region.

The motor behaviors are sets of motor commands ob-
tained by Q-learning, based on the detected motion cues
and given task. The sizes and positions of the target and
the detected obstacle are used as components of a state
vector in the learning process.

Visual and motor behaviors work in parallel in the
image and compose a layered architecture. The visual
behavior for monitoring robot motion (detecting the op-
tical flow on the ground plane on which the robot lies)
is the lowest and might be subsumed in part due to oc-
clusion by other visual and motor behaviors for obstacle
detection/avoidance and target pursuits which might oc-
clude each other.

Thus, the “motion sketch” represents the tight cou-
pling between the agent that can perform an appropri-
ate action sequence so as to accomplish the given tasks
and its environment which is represented by visual mo-
tion cues from the visual tracking routines. The motion
sketch does not need any calibrations nor any 3-d recon-
struction so as to accomplish the given task. The visual
motion cues for representing the environment does not
seem dependent on scene components nor limited to the
specified situations and the task. Furthermore, the inter-
action is quickly obtained owing to the use of real-time
visual tracking routines.

The behavior acquisition scheme consists of the fol-
lowing four stages:

stage 1 Obtaining the fundamental relationship be-
tween visual and robot motions by correlating mo-
tion commands and flow patterns on the floor with
very few obstacles.

stage 2 Learning target pursuit behavior by tracking a
target.

stage 3 Detection of obstacles and learning an avoid-
ance behavior.

stage 4 Coordination of the target pursuit and obstacle
avoidance behaviors.

At each stage, we obtain the interaction between the
agent and its environment.

3 Obtaining sensorimotor apparatus

Before introducing the method for obtaining sensorimo-
tor apparatus, motion mechanism and visual tracking
routines we use in the experiment are shown.
(A) PWS system:

The robot has a Power Wheeled Steering (hereafter
PWS) system driven by two motors into each of which
we can send a motor command, independently. The ve-
locities of translation v and rotation ω of the robot can



be represented by two motor commands, more correctly
two angular velocities ωl and ωr.

In our experment, we quantized ωl(r) into five levels
which correspond to quick forward (qf), slow forward
(sf), stop (st), slow backward (sb), and quick backwrad
(qb), respectively. Totally, we have 25 actions. Note that
the robot does not know even any physical meanings of
these actions.
(B) Multiple visual tracking routines:

To detect changes due to an instantaneous robot mo-
tion, we use real-time visual tracking routines which can
track about 140 windows (each window consists of 8 by 8
pixcels) in real-time (video rate) by using a motion esti-
mation processor (MEP) [Inoue et al., 1992]. Searching
area is 16 by 16 pixcels and the MEP outputs the loca-
tion of each window where the following matching error
(SAD: sum of absolute difference) is minimum.

D[i, j] =
K−1∑

k=0

L−1∑

l=0

|R[k, l]−M [i + k, j + l]|,

i, j : 0 ≤ i, j ≤ 15,

where R[x, y], M [x, y], and D[x, y] denote a reference
block, a matching block, and an array of SAD, respec-
tively. The visual tracking routines are used to obtain
an optical flow of the floor, to track a target specified
by a human operator, and to detect and avoid obstacles.
We detect a motion vector in an image by applying the
block matching process with the reference block (t = ti)
and the search window images (t = ti+1) continuously.
Thus, we can obtain the optical flow vectors in the image
at any time.

We assume that the robot is given no knowledge of
the structure of its sensory system nor of the effects. We
extend the method [Pierce and Kuipers, 1994] as follows:

• Instead of sonar information (3-D range informa-
tion), we use an optical flow of the floor which can
be obtained by multiple visual tracking routines.

• In order to remove fluctuations of flow pattern of
each action due to the environmental factors, we set
up the environment with almost no obstacles. In av-
erageing flow patterns, we used the least median of
squares method [P. Meer and D.Y.Kim, 1990] (here-
after, LMeS method) to remove the outliers due to
noise or small obstacles.

3.1 Optical flows due to agent actions

We place 49(7 × 7) visual tracking routines to detec-
t changes in the whole image. Therefore, we obtain
an optical flow composed of 49 flow vectors. In the
environment without obstacles, the robot randomly s-
elects a possible action i(τli, τri) among the action space
τli, τri ∈ {qf, sf, st, sb, qb}, and executes it. While ran-
domly wandering, the robot stores the flow patterns pi
due to its actions i (i = 1 ∼ 25). After the robot per-
formed all possible actions (here, 25 actions), we obtain
the averaged optical flows pi removing the outliers due
to noise or small obstacles based on the LMeS method.

Action 1 (qb ,  qb) Action 24 (qf ,  sf)

Figure 2: Examples of averaged optical flows

3.2 Aquisition of principal motion patterns
Using the averaged optical flows obtained in the last sub-
section, we acquire principal motion patterns which char-
acterize the space of actions. This is done by analyzing
the space of averaged optical flow that robot is capable
of producing. We want to find a basis for this space,
i.e., a set of representative motion patterns from which
all the motion patterns may be produced by their linear
combinations. We can obtain representative motion pat-
terns by using Principal Component Analysis that may
be performed using a technique called Singular Value
Decomposition(hereafter SVD).

[Tomasi and Kanade, 1992] also utilize the SVD for
analyzing the image sequence mainly attempting at re-
covery of the 3-d geometry by the SVD technique. Here,
we attempt to obtain the sensorimotor apparatus by the
technique.

The sample values of pi (the averaged optical flow)
corresponding to the actioin i(τli, τri) are organized as
the rows of matrix P . There are 25 rows each of which
have 98 components (49 flow vectors each of which con-
sist of two components). The SVD of P is

Pm×n = Um×nSn×nET
n×n, (1)

where S is a diagonal matrix whose elements are the
singular values of P , and the rows of ET are the desired
orthonormal basis vectors. Here, the number of averaged
optical flows, m = 25 and the number of components
in each averaged optical flow (two for each local visual
tracking routine), n = 98. U is the orthogonal matrix
in terms of the row. The averaged optical flow pi can be
described as a linear combination of the vectors in ET

from the quation (1), using the K principal components:

pi ≈
K∑

k=1

uikskeT
k ≡ pi(K) (2)

Thus, we have found a basis set (the row vectors of ET )
for the space of averaged optical flow. In fact, we obtain
26 principal components by caluculating SVD for the P
which consist of 25 flow patterns.

From these 26 principal components, we have to se-
lect some principal components which are necessary for
characterizing the space of actions. Here, we decide the
number of the principal components as follows. E(K) is
the error function in the case of describing the averaged
optical flow pi as a linear combination of K principal
components.

E(K) =
2

mn

m∑

i=1

|pi − pi(K)|,



|pi − pi(K)| ≡
n/2∑

j=1

√
(vi

xj
− vi

xj
(K))2 + (vi

yj
− vi

yj
(K))2

Furthermore, using this error function E(K), ∆E(K) is
defined as follows.

∆E(K) =
{

E(1) (K = 1)
E(K − 1)− E(K) (K > 1)

∆E(K) indicates the decreasing degree of E(K) by us-
ing the 1 ∼ K principal components for obtaining the
approximation of pi

Figure 3 shows the relationship between ∆E(K) and
K. From this figure, it is sufficient to use the first two
principal components for describing pi as a linear combi-
nation of principal components. That is, including more
than the third pricipal components does not have influ-
ence on decreasing more than 1 pixel error per a point.
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Figure 3: The change rate of Error values per a
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Thus, vector pi may be approximated by

pi ≈ ui1s1e
T
1 + ui2s2e

T
2 .

The first two principal components obtained in the real
experiment are shown in Figure4. Obviously, the first
(a) corresponds to a pure rotation and the second (b) to
a pure backward motion.

Principal component 1

(a)

Principal component 2

(b)

Figure 4: First two principal components

Next step is to make a relation between the possi-
ble actions pi by representing each of them in terms
of the coeficient ai

k = uiksk in the action space which
consists of two principal components. The relation be-
tween possible actions of the real robot are shown in
Figure5, where the number indicates the action index
i (i = 1 ∼ 25).
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Figure 5: Relation among the possible actions

Thus, we can compress the visual motion patterns by
the obtained fundamental relationship and then use it to
include the ego-motion information in the internal state
space of the agent in the learning process.

4 Behavior acquisition based on visual
motion cues

4.1 Basics of Reinforcement Learning
Reinforcement learning agents improve their perfor-
mance on tasks using reward and punishment received
from their environment. They are distiguished from su-
pervised learning agents in that they have no “teacher”
that tells the agent the correct response to a situation
when an agent responds poorly. An agent’s only feed-
back indicating its performance on the task at hand is
a scalar reward value. One step Q-learning [Watkins,
1989] has attracted much attention as an implementa-
tion of reinforcement learning because it is derived from
dynamic programing [Bellman, 1957]. The following is
a simple version of the 1-step Q-learning algorithm we
used here.

Initialization: Q ← a set of initial values for the
action-value function (e.g., all zeros).
Repeat forever:

1. s ∈ S ← the current state
2. Select an action a ∈ A that is usually consistent

with the policy f but occasionally an alternate.
3. Execute action a, and let s′ and r be the next state

and the reward received, respectively.
4. Update Q(s, a):

Q(s, a) ← (1− α)Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)).

(3)5. Update the policy f :

f(s) ← a such that Q(s, a) = max
b∈A

Q(s, b) (4)

4.2 Target tracking behavior acquisition
According to the above formalization of the state set,
the action set, and other functions and parameters, we
apply the Q-learning to a target pursuit task.

We use the visual tracking routines in order to pur-
sue a target specified by a human operator and obtain
the information about the target in the image such as
its position and size which are used in the Q-learning
algorithm for acquisition of target pursuit behavior.



Visual functions of tracking routine
Our visual tracking routine has the following visual func-
tions.

(a) An initial image specified
      by an human operator

1 2

3 4
5

normal resolution

1/2 resolution

1/4 
resolution

(b) Tracking by 
      multiple windows

(c) Tracking by different
      image resolutions

Figure 6: Visual functions of tracking routine

1. A target image is specified by a human operator in
advance as shown in Figure 6(a). A target is tracked
by an object tracker which consists of 5 visual track-
ing routines fixed together as shown in Figure 6(b).
Even if the pattern of the target is deformed by oc-
clusion or the vibration of the robot body, the object
tracker can continue to the track target owing to the
use of multiple visual tracking routines.

2. We prepare three kinds of resolutions(a normal, a
half and a quarter resolutions) as shown in Figure
6(c). Even if the the pattern of the target becomes
large or small, the object tracker can continue to
track it by changing the image resolution and the
search area for the block matching.

3. When the target detection fails, a search-whole-
image routine is called in order to detect the target
again outside the pre-defined search area.

We define the state of the target in the image based on
its position and size (three levels) obtained by the visual
tracking routines.

State and action spaces in Q-learning
In order to apply the Q-learning scheme to a target pur-
suit task, we define a number of sets and parameters.
The state of the target, S in the image is quantized into
9 sub-states, combinations of three positions (left, cen-
ter, and right) and three sizes (large (near), medium,
and small (far)). Similarly, changes in position and size
of the target in the image are quantized into 9 sub-states,
combination of three states for position changes (move
left, no move and move right) and three states for size
changes (enlarge, no change, shrink). We add two lost
situations (target is lost into the left side or the right
side) in the state space. Futhermore, we add the ac-
tion index (totally 25 actions) just taken on observing
the current situation into the state space in order that
we deal with the so-called perceptual aliasing problem.

That is, incluing the self-motion index into the agen-
t’s internal state enables the agent to discriminate both
changes caused by the observer motion and an actual
changes happened in the environment.

Totally, we have 92×25 states in the set S. We have
25 actions in the action set A. We assign a reward value
1 when the robot touched the target or 0 otherwise. A
discounting factor γ is used to control to what degree
rewards in the distant future affect the total value of a
policy. In our case, we set the value a slightly less than
1 (γ = 0.9).

4.3 Obstacle avoidance behavior
acquisition

(a) Detection and tracking of obstacles by flow
differences
We know the flow pattern pi corresponding to the action
i in the environment without any obstacles. The noise
included in pi is not so much, because this flow pattern
is described as a linear combination of the two principal
motion vectors. Therefore, it makes motion segmenta-
tion easy. Motion segmentation is done by comparing
the flow pattern pi with the flow pattern pobs

i which is
obtained in the environment with obstacles. The area in
the pobs

i is detected as the area for obstacle candidates if
its components are different from that of pi. This infor-
mation (position and size in the image) is used to obtain
the obstacle tracking behavior. After obtacle detection,
the visual tracking routines are set up at the positions
where the obstacle candidates are detected and the re-
gions are tracked until the region disappears from the
image.

(b) Learning obstacle avoidance behavior
Learning to avoid obstacles consists of two stages. First,
the obstacle tracking behavior is learned by the same
manner as in learning the target pursuit behavior. Nex-
t, the obstacle avoidance behavior is generated by using
the relation between the possible actions and the obsta-
cle tracking behavior as follows: (1) the relationship be-
tween the possible actions is divided into four categories
by clustering the action space in terms of the coefficients
(ai

1, a
i
2) (See Figure7(b)), (2) the obstacle tracking be-

havior is mapped on the relationship, and the category
Ctwhich includes the obstacle tracking action is found,
(3) the obstacle avoidance action is selected among the
categories except for Ct. More correctly, the obstacle
avoidance action is obtained by finding the action hav-
ing the smallest action-value function with respect to the
obstacle tracking behavior among the categories except
for Ct.

5 Experimental results for a real system

5.1 A configuration of the system
Figure 8 shows a configuration of the real mobile robot

system. We have constructed the radio control system of
the robot [Asada et al., 1994]. The image processing and
the vehicle control system are operated by VxWorks OS
on MVME167(MC68040 CPU) computer which are con-
nected with host Sun workstations via Ether net. The
image taken by a TV camera mounted on the robot is
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tem

transmitted to a UHF receiver and subsampled by the
scan-line convertor (Sony Corp.). Then, the video sig-
nal is sent to a Fujitsu tracking module. The tracking
module has a function of block correlation to track some
pre-memorized patterns and can detect motion vectors
in real time. In the Figure 8, a picture of the real robot
with a TV camera (Sony camera module) and a video
transmitter is shown.

5.2 Target tracking with no obstacles

The experiment consists of two phases: first, learning
the optimal policy f through the computer simulation,
then apply the learned policy to a real situation. Figure
9 shows a sequence of images where the robot succeeded
in pursuing a target. The top of Figure 9 (a) shows the
initial position of the target. The top figures in the Fig-
ure 9 (b), (c) and (d) shows the processed images. The
white rectangle in each image shows the target position
which is tracked. The white lines in these images show
the optical flows. In this way, based on the hierachical
architecture of the visual tracking routine, we can per-
form the target tracking and the optical flow detection
in parallel on the real system.

(a) (b)

(c) (d)

Figure 9: The robot succeeded in pursuing a tar-
get.

5.3 Obstacle detection and avoidance
Figure 10 shows a sequence of images where the robot
succeeded in avoiding a moving obstacle. The top figures
in the Figure 10 (a) and (b) show the processed images.
In (a), the rectangles indicate the obstacle candidate re-
gions.

6 Concluding Remarks and Future
Work

As one of the method for representing the interaction be-
tween the agent and its environment which enables the
situated agents to behave adequately against the exter-
nal world, we proposed “motion sketch” which is inde-
pendent of scene components and tightly coupled with
motor commands. Now, we are planning to develop a
new program which tightly connects MaxVideo 200 and



Fujitsu Tracking module to speed up and finish the final
stage of behavior integration.
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Figure 10: The robot succeeded in avoiding a mov-
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