
Machine Learning, 23, 279–303 (1996)
c© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Purposive Behavior Acquisition for a Real Robot by

Vision-Based Reinforcement Learning

MINORU ASADA, SHOICHI NODA, SUKOYA TAWARATSUMIDA, AND KOH HOSODA

asada@robotics.ccm.eng.osaka-u.ac.jp

Dept. of Mech. Eng. for Computer-Controlled Machinery

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan

Abstract. This paper presents a method of vision-based reinforcement learning by which a robot learns to
shoot a ball into a goal. We discuss several issues in applying the reinforcement learning method to a real
robot with vision sensor by which the robot can obtain information about the changes in an environment.
First, we construct a state space in terms of size, position, and orientation of a ball and a goal in an image,
and an action space is designed in terms of the action commands to be sent to the left and right motors of a
mobile robot. This causes a “state-action deviation” problem in constructing the state and action spaces that
reflect the outputs from physical sensors and actuators, respectively. To deal with this issue, an action set
is constructed in a way that one action consists of a series of the same action primitive which is successively
executed until the current state changes. Next, to speed up the learning time, a mechanism of Learning from

Easy Missions (or LEM) is implemented. LEM reduces the learning time from exponential to almost linear
order in the size of the state space. The results of computer simulations and real robot experiments are given.

Keywords: reinforcement learning, vision, learning from easy mission, state-action deviation

1. Introduction

Realization of autonomous agents that organize their own internal structure in order to take
actions towards achieving their goals is the ultimate goal of AI and Robotics. That is, the
autonomous agents have to learn. Reinforcement learning has recently been receiving increased
attention as a method for robot learning with little or no a priori knowledge and higher
capability of reactive and adaptive behaviors [1]. In the reinforcement learning method, a
robot and its environment are modeled by two synchronized finite state automatons interacting
in discrete time cyclical processes. The robot senses the current state of the environment and
selects an action. Based on the state and the action, the environment makes a transition to a
new state and generates a reward that is passed back to the robot. Through these interactions,
the robot learns a purposive behavior to achieve a given goal.

Although the role of reinforcement learning is very important to realize autonomous systems,
the prominence of that role is largely dependent on the extent to which the learning can be
scaled to solve larger and more complex robot learning tasks. Many researchers in the field
of machine learning have been concerned with the convergence time of the learning, and have
developed methods to speed it up. They have also extended these techniques from solving
single goal tasks to multiple goal ones [2]. However, almost all of them have only shown
computer simulations in which they assume ideal sensors and actuators, where they can easily
construct the state and action spaces consistent with each other. A typical example is the

280 M. ASADA ET AL.

2-D grid environment in which the robot can take an action of going forward, backward, left,
or right, and its state is encoded by the coordinate of the grid (i.e., an absolute (global)
positioning system is assumed). Although the uncertainties of sensor and actuator outputs are
considered by a stochastic transition model in the state space, such a model cannot account for
the accumulation of sensor errors in estimating the robot position. Further, from the viewpoint
of real robot applications, we should construct the state space so that it can reflect the outputs
of the physical sensors which are currently available and can be mounted on the robot.

Some applications are recently reported to control robot arms [3] or mobile robots [4] in
which the initial controller and the correct reward function are given in advance. Therefore,
the robot learns the control policy given a great deal of knowledge about the environment
and itself. We intend to apply the reinforcement learning algorithm to the task of purposive
behavior acquisition in the real world with less knowledge about the environment and the
robot.

Mahadevan and Connel [5] proposed a method of rapid task learning on a real robot. They
separated a pushing task into three subtasks of “finding a box”, “pushing a box”, and “getting
unwedged”, and applied Q-learning, a widely used reinforcement learning method, to each of
them. Since only proximity sensors such as bumper and sonar sensors are used, the acquired
behaviors are limited to local ones and therefore these behaviors are not suitable for more
global and goal-directed tasks such as carrying a box to a specified location. For such tasks,
visual sensors could be more useful because they might be able to capture the image of the
goal in a distant place. However, there are very few examples of use of visual information in
reinforcement learning 1, probably because of the cost of visual processing.

In this paper, we present a method of vision-based reinforcement learning by which a robot
learns to shoot a ball into a goal. The robot does not need to know any parameters of the
3-D environment or its kinematics/dynamics. The image captured from a single TV camera
mounted on the robot is the only source of information on the changes in an environment.
Image positions and sizes of the ball and the goal are used as a state vector. We discuss
several issues from a viewpoint of robot learning: a) coping with a “state-action deviation”
problem which occurs in constructing the state and action spaces in accordance with outputs
from the physical sensors and actuators, and b) starting with easy missions (rather than task
decomposition) for rapid task learning.

The remainder of this article is structured as follows: In the next section, we explain the task
and assumptions, and give a brief overview of Q-learning. Next, we show how to construct the
state and action spaces for the task at hand, and describe ways to reduce the learning time by
Learning from Easy Missions (or LEM) mechanism. Finally, we show the experimental results
obtained by computer simulations and using the real robot system, followed by a discussion
and concluding remarks.

2. Task and Assumptions

The task for a mobile robot is to shoot a ball into a goal as shown in Figure 1(a). The
problem we address here is how to develop a method which automatically acquires strategies
for doing this. We assume that the environment consists of a ball and a goal; the mobile robot
has a single TV camera; and that the robot does not know the location/size of the goal, the

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 281

Closeup

Possible Actions

(a) The task is to shoot a ball into a goal. (b) A picture of the radio-controlled vehi-
cle.

Figure 1. Task and our real robot.

size/weight of the ball, any camera parameters such as the focal length and tilt angle, or the
kinematics/dynamics of itself. Figure 1(b) shows a picture of the real robot with a TV camera
(Sony handy-cam TR-3) used in the experiments.

3. Q-learning

Before getting into the details of our system, we will briefly review the basics of Q-learning.
For a more thorough treatment, see [6]. We follow the explanation of Q-learning by Kaelbling
[7].

We assume that the robot can discriminate the set S of distinct world states, and can take the
set A of actions on the world. The world is modeled as a Markov process, making stochastic
transitions based on its current state and the action taken by the robot. Let T (s, a, s′) be
the probability of transition to the state s′ from the current state-action pair (s, a). For each
state-action pair (s, a), the reward r(s, a) is defined.

The general reinforcement learning problem is typically stated as finding a policy 2 that
maximizes the discounted sum of rewards received over time. This sum is called the return
and is defined as:

∞
∑

n=0

γnrt+n, (1)

where rt is the reward received at step t given that the agent started in state s and executed
policy f . γ is the discounting factor, it controls to what degree rewards in the distant future
affect the total value of a policy. The value of γ is usually slightly less than 1.

Given definitions of the transition probabilities and the reward distribution, we can solve for
the optimal policy, using methods from dynamic programming [8]. A more interesting case

282 M. ASADA ET AL.

occurs when we wish to simultaneously learn the dynamics of the world and construct the
policy. Watkin’s Q-learning algorithm gives us an elegant method for doing this.

Let Q∗(s, a) be the expected return or action-value function for taking action a in a situation
s and continuing thereafter with the optimal policy. It can be recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′). (2)

Because we do not know T and r initially, we construct incremental estimates of the Q-values
on-line. Starting with Q(s, a) equal to an arbitrary value (usually 0), every time an action is
taken, the Q-value is updated as follows:

Q(s, a) ⇐ (1 − α)Q(s, a) + α(r(s, a) + γ max
a′∈A

Q(s′, a′)). (3)

where r is the actual reward value received for taking action a in a situation s, s′ is the next
state, and α is a learning rate (between 0 and 1).

4. Construction of State and Action Sets

Traditional notions of state in the existing applications of the reinforcement learning algorithms
fit nicely into deterministic state transition models (e.g. one action is forward, backward, left,
or right, and the states are encoded by the locations of the agent). However, this is not always
the case in the real world, where everything changes asynchronously [9]. Thus, we need to
have the following principles for the construction of state and action spaces.

• Natural segmentation of the state and action spaces: The state (action) space should reflect
the corresponding physical space in which a state (an action) can be perceived (taken).

• Real-time vision system: Physical phenomena happen continuously in the real world.
Therefore, the sensor system should monitor the changes of the environment in real time.
This means that the visual information should be processed in video frame rate (33ms).

The state and action spaces are not discrete but continuous in the real world, therefore it
is difficult to construct the state and action spaces in which one action always corresponds
to one state transition. We call this the “state-action deviation problem” as one of the
so-called “perceptual aliasing problem” [10] (i.e., a problem caused by multiple projections of
different actual situations into one observed state). The perceptual aliasing problem makes
it very difficult for a robot to take an optimal action. In this section, we first show how to
construct the state and action spaces, and then how to cope with the state-action deviation
problem.

4.1. Construction of Each Space

(a) a state set S

The image, supposed to capture the ball and/or the goal, is the only source of information
the robot can obtain about the environment. The ball image is classified into 9 sub-states,

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 283

combinations of three classifications of positions (left, center, or right) and three types of
sizes (large (near), middle, or small (far)). The goal image has 27 sub-states, combinations of
three properties each of which is classified into three categories (see Figure 2). Each sub-state
corresponds to one posture of the robot towards the goal, that is, position and orientation of
the robot in the field. In addition to these 243 (27 × 9) states, we add other states such as
the cases in which only the ball or only the goal is captured in the image. In all, we have 319
states in the set S.

Ball

position

 left center right

size

 small medium large

Goal

 left center right

small medium large

left-oriented front right-oriented

position

size

orientation

Figure 2. The ball sub-states and the goal sub-states

After some simulations, we realized that as long as the robot captures the ball and the goal
positions in the image it succeeds in shooting a ball into the goal. However, once it cannot
view the ball, the robot moves randomly because it does not know in which direction it should
move to find the ball. This occurs because “ball-lost” is just one state, therefore the robot
cannot discriminate between the various directions in which the ball may be lost. Thus, we
separate the ball-lost state into two states; the ball-lost-into-right and ball-lost-into-left states.
Similarly, we set up the goal-lost-into-right and goal-lost-into-left states. These additional
classifications improved the robot behavior.

(b) an action set A

The robot can select an action to be taken in the current state of the environment. The
robot moves around using a PWS (Power Wheeled Steering) system with two independent
motors. Since we can send the motor control command to each of the two motors separately,
we construct the action set in terms of two motor commands ωl and ωr, each of which has 3
sub-actions, forward, stop, and back. All together, we have 9 actions in the action set A.

284 M. ASADA ET AL.

(c) a reward and a discounting factor γ

We assign the reward value to be 1 when the ball is kicked into the goal and 0 otherwise. This
makes the learning very time-consuming. Although adopting a reward function in terms of
distance to the goal state makes the learning time much shorter in this case, it seems difficult
to avoid the local maxima of the action-value function Q.

A discounting factor γ is used to control to what degree rewards in the distant future affect
the total value of a policy. In our case, we set the value at slightly less than 1 (γ = 0.8).

4.2. Solving A State-Action Deviation Problem

Near

Medium

Far

Figure 3. A state-action deviation problem

In the previous section, we constructed the state space so that the position and the size of the
ball or goal are naturally and coarsely classified into each state. Due to the peculiarity of visual
information, that is, a small change near the observer results in a large change in the image
and a large change far from the observer may result in a small change in the image, one action
does not always correspond to one state transition. We call this the “state-action deviation
problem”: Figure 3 indicates this problem, the area representing the state “the goal is far”
is large, therefore the robot frequently returns to this state if the action is forward. This is
highly undesirable because the variations in the state transitions is very large, consequently
the learning does not converge correctly.

To avoid this problem, we reconstruct the action space as follows. Each action defined in
4.1 is regarded as an action primitive. The robot continues to take one action primitive at a
time until the current state changes. This sequence of the action primitives is called an action.
In the above case, the robot takes a forward motion many times until the state “the goal is

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 285

far” changes into the state “the goal is medium”. The number of action primitives needed for
one state change is not used in the algorithm. Once the state has changed, we update the
action-value function by Eqn.(3).

5. Learning from Easy Missions

In order to improve the learning rate, the whole task was separated into different parts in
[5]. By contrast, we do not decompose the whole task into subtasks of finding, driblling, and
shooting a ball. Instead, we first used a monolithic approach. That is, we place the ball and
the robot at arbitrary positions. In almost all the cases, the robot crossed over the field line
without shooting the ball into the goal. This means that the learning did not converge after
many trials (execution time of one week on SGI Elan with R4000). This situation resembles
a case where a small child tries to shoot a ball into a goal, but (s)he cannot imagine in which
direction and how far the goal is because a reward is received only after the ball is kicked into
the goal. Further, (s)he does not know which action is to be selected. This is the famous
delayed reinforcement problem due to no explicit teacher signal that indicates the correct
output at each time step. To avoid this difficulty, we construct the learning schedule such that
the robot can learn in easy situations at the early stages and later on learn in more difficult
situations. We call this Learning from Easy Missions (or LEM).

In the following, we first show the complexity analysis of LEM assuming that the agent
knows the order of state transitions completely. Although it does not make any sense if we
know it because the learning is no longer necessary, we intend to show the difference in learning
times between with and without LEM. Then, we describe how to cope with two problems in
implementing the LEM in real tasks: how to decide which state is easier to achieve the goal
and when to shift from easy situations to more difficult ones.

5.1. Complexity analysis of LEM

S GS1S iSk-1k

Figure 4. The simplest state space.

We roughly estimate the time complexity for LEM following the complexity analysis by White-
head [11]. In order to show the difference in the learning time with and without LEM, we
assume complete knowledge of the order of the states to the goal. However, as mentioned
above, the LEM does not always need completeness of the knowledge.

We assume a “homogeneous” state space uniformly k-bounded with polynomial width of
depth k, and zero-initialized Q-learning with a problem solving task. The problem solving
task is defined as any learning task where the system receives a reward only upon entering a
goal state. Further, we assume that state transition is deterministic and the robot can take
one of m kinds of actions with equal probability. In order to figure out how many steps are

286 M. ASADA ET AL.

needed for Q-learning to converge, we use O(k) state space and simplify the convergence such
that the action-value function in each state converges if it is updated from the initial value
(0).

Figure 4 shows an example of such a state space. Since we consider a problem solving task,
the unbiased Q-learning takes a long time. From the above formulation, it needs m trials 3 to
transit from the initial state Sk to the state Sk−1 in the worst case, therefore it takes mk trials
to achieve the goal for the first time in the worst case, and the action-value function for only
the state S1 is updated. Next, it needs mk−1 trials to update the action-value function for
the state S2, and in total it needs (mk + mk−1 + · · ·+ m) trials for the action value function
to converge for all the states. Therefore, the unbiased Q-learning can be expected to take
execution time exponential in the size of k [11].

For the Learning from Easy Missions algorithm, we first place the agent at the state S1 and
then try to make it achieve the goal. In the worst case, it takes m trials. Then, we place the
agent at the state S2 and repeat the process. In the worst case, it needs m × k trials for the
action-value function to converge. Therefore, the LEM algorithm requires time linear in the
size of k.

5.2. Implementing LEM

In actual situations like our task, the state transition is stochastic, and the state space is
not homogeneous. Therefore, it seems difficult to correctly decide which state is an easy one
to achieve the goal and when to shift the initial situations into more difficult ones. In the
following, we show how to cope with this problem.

(a) Rough ordering of easy situations

Generally, it seems difficult to know which state is easier than others to achieve the goal,
unless a priori knowledge on ease of achieving the goal is given. However, in real applications,
we can assume that the sensor space is smooth and the goal state is known. Therefore, the
agent roughly knows the order of state transitions such as the size of a goal or a ball in the
image regardless of other sub-states in our task:“small” → “medium” → “large” → “goal
state”. Similarly, the position of the goal and ball are also ordered such as “left (or right)”
→ “center” → “goal state”. However, the orientation of the goal is not ordered because the
agent can achieve the goal from any direction.

This ordering is possible if the state space is categorized into sub-states such as ball size,
ball position, and so on. Figure 5 shows a state space in which a number of states are ordered
along the sub-state axis. The LEM paradigm can be applied when such a sub-state axis exists
or partial ordering along the axis is known. Let n and m be the size of the state space (the
number of states) and the number of ordered sets (e.g., 3, when the sub-state axis is the goal
size and states are “small”, “medium”, and “larg e”). When the agent learns without LEM it
takes O(en). If we apply the LEM with m ordered state sets, it would take O(m× m

√
en).

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 287

Goal
State

Goal
Size

Small
Medium

Large

Other axis

Figure 5. State space part of which divided into sub-states

(b) When to shift?

Another problem in implementing the LEM paradigm is to decide when to shift the initial
situations into more difficult ones. From the above discussion, we suppose that the agent
knows the ordering of situations along one sub-state axis according to the closeness of the goal
state. We call a set of states S1 that is closest to the goal along the current sub-state axis
regardless of other sub-state axes, the set of second closest states S2, the set of third closest
states S3, and so on. Shifting to the next set occurs when

∆Qt(Sk, a) < ε, (4)

where

∆Qt(Sk, a) =
∑

s∈Sk

∣

∣

∣

∣

max
a∈A

Qt(s, a) − max
a∈A

Qt−∆t(s, a)

∣

∣

∣

∣

(k = 1, 2, 3, · · ·). (5)

∆t indicates a time interval for a number of steps of state changes.
The closer to zero ε is in inequality (4), the earlier Q converges to Q∗ in a deterministic

world, because it takes longer time to converge Q-values in the state set Sk if we shift the
initial states to the state set Sk−1 earlier than the case where ε ≈ 0. It is, however, not always
true in a non-deterministic world that ∆Qt(Sk, a) = 0 when the learning is at its final stage.
Therefore, we have to set up an appropriate value for ε.

We suppose that the current state set Sk−1 cannot transit to any state but is limited to
transitions to states in the neighborhood of sets Sk−2 and Sk. When the learning has converged
sufficiently, we have the following from Eqn. (3).

∆Q(s, a) =

∣

∣

∣

∣

α(r(s, a) + γ max
a′∈A

Q(s′, a′) − Q(s, a))

∣

∣

∣

∣

. (6)

288 M. ASADA ET AL.

Since r(s, a) = 0 except the goal state,

∆Q(s, a) =

α 1−γ
γ

Q(s, a), for s′ ∈ Sk−2

0, for s′ ∈ Sk−1

α(1 − γ)Q(s, a). for s′ ∈ Sk

(7)

If Q(s, a) has converged, then:

∆Q(s, a) ≤ α
1− γ

γ
Q(s, a).

Taking summation over elements in the state set Sk leads to:

∆Q(Sk, a) ≤ α
1 − γ

γ

∑

s∈Sk

max
a∈A

Q(s, a).

Note that the sampling time ∆t should be long enough to check the convergence exactly
without being affected by small fluctuations of the summation of Q-values, but also short
enough to reduce the total learning time. Since the above inequality supposes that the Q-
values for all s ∈ Sk are updated, an adequate ∆t should be longer than |Sk| attempts 4 to
make attempts starting from every s ∈ Sk. Following the above discussions, we adopt:

ε = α
1− γ

γ

∑

s∈Sk

max
a∈A

Q(s, a). (8)

From the above, the LEM algorithm is formulated as follows:

1. Find a sub-state axis along which rough ordering of state transition to a goal state is
known.

2. Let Si (i = 1, 2, .., m) be a set of states that is closest to the goal along the current sub-state
axis regardless of other sub-state axes, a set of second closest states, a set of third closest
states, and so on.

3. Set i = 1.

4. Repeat many attempts starting with various kinds of initial situations which are classified
into the state set Si until the inequality (4) is satisfied (Action selection is random).

5. If i = m, then terminate. Else, i = i + 1 and go to step 4.

5.3. Simulation results

To start with a simple example, we consider the grid world problem. In this example, the
robot is free to roam about a bounded 2-dimensional grid n × n. It can move to one of four
principle directions, left, right, up, or down. The robot is reset after it reaches the goal or
crosses over the grid world boundary. In order to simulate the stochastic state transitions,

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 289

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 5 10 15 20 25 30 35 40

tim
e

st
ep

depth

with LEM
without LEM

without LEM(random)

Figure 6. Search time complexity in terms of the size of state space.

the robot can move to a desired grid with probability 3/4 but stays at the current grid with
probability 1/4. The goal is set at the top right corner and the state is encoded as a coordinate
of the grid. We assign a reward value 1 when the robot achieves the goal and 0 otherwise. The
depth of the state space, the maximum distance to the goal of the optimal path, is 2(n − 1).

We implemented the LEM as follows. The state set S1 consists of two states (each of which
is a grid neighbor to the goal), S2 consists of three states (each of which is a grid neighbor to
S1), and so on. We shift the initial grids of Sk to that of Sk+1 according to Eqns. (4) and (8)
with ∆t = |Sj| attempts.

Figure 6 shows a plot of the search time (number of steps) versus maximum distance k,
where the one step Q-learning algorithm is applied with the learning rate α = 0.25 and the
discounting factor γ = 0.9. As we expected, the search time of the normal Q-learning without
LEM (dotted and broken lines) indicates the exponential order in the size of k. The initial
position is fixed at the bottom left corner (broken line) or randomly placed (dotted line). In
comparison with Q-learning without LEM, the search time with LEM (solid line) is almost
linear in the size of k although the curve is a little bit upward because some inadequate
attempts wasted much time due to useless search such as backward motions.

6. Experiments

The experiment consists of two parts: first, learning the optimal policy f through the computer
simulation, then applying the learned policy to a real situation.

290 M. ASADA ET AL.

6.1. Computer simulation

We performed the computer simulation with the following specifications. The field is a square
of 3.0m × 3.0m. The goal post is located at the center of the top line of the square (see Figure
1) and its height and width are 0.23m and 0.9m, respectively. The robot is 0.31m wide and
0.45m long and kicks a ball of diameter 0.09m. The maximum translation velocity is 1.1m/s,
and the maximum angular velocity is 4.8rad/s. The camera is horizontally mounted on the
robot (no tilt), and its visual angle is 36 degrees. The velocities of the ball before and after
being kicked by the robot is calculated by assuming that the mass of the ball is negligible
compared to that of the robot. The speed of the ball is temporally decreased by a factor 0.8 in
order to reflect the so-called “viscous friction.” The values of these parameters are determined
so that they can roughly simulate the real world.

Goal

(a) finding, dribbling, and
shooting

Goal

(b) shooting (γ = 0.999)

Goal

(c) shooting (γ = 0.6)

Figure 7. Some kinds of behaviors obtained by our method

Figure 7 shows some kinds of behaviors obtained by our method. In (a), the robot started
at a position from where it could not view a ball and a goal, then found the ball by turning,
driblled it towards the goal, and finally shot the ball into the goal. This is just a result of
learning. We did not decompose the whole task into these three tasks. The difference in the
character of robot player due to the discounting factor γ is shown in (b) and (c) in which the
robot started from the same position. In the former, the robot takes many steps in order to
ensure the success of shooting because of a small discount, while in the latter the robot tries
to shoot a ball immediately because of a large discount. In the following experiments, we used
the average value of γ 0.8 as an appropriate discount.

We applied the LEM algorithm to the task in which Si (i=1,2, and 3) correspond to the state
sets of “the goal is large”, “medium”, and “small”, respectively, regardless of the orientation
and the position of the goal, and the size and position of the ball. ε is determined by Eqns.
(4) and (8). In order to ensure the convergence, we fix ∆t = 3000 that is much larger than
|Sj|.

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 291

0

20

40

60

80

100

120

0 1 2 3 4 5 6

S
um

 o
f Q

 (
 S

1
+

 S
2

+
 S

3
)

Time step [k]

Sum of Q
Sum of Delta Q

without LEM

Figure 8. Change of the sum of Q-values with LEM in terms of goal size

Figure 8 shows the changes of the summations of Q-values with and without LEM, and
∆Q. The axis of time step is scaled by M (106), which corresponds to about 9 hours in the
real world since one time step is 33ms. The solid and broken lines indicate the summations
of the maximum value of Q in terms of action in states ∈ S1 + S2 + S3 with and without
LEM, respectively. The Q-learning without LEM was implemented by setting initial positions
of the robot at completely arbitrary ones. Evidently, the Q-learning with LEM is much
better than that without LEM. The broken line with empty squares indicates the change of
∆Q(S1 + S2 + S3, a). Two arrows indicate the time steps (around 1.5M and 4.7M) when a
set of the initial states changed from S1 to S2 and from S2 to S3, respectively. Just after
these steps, ∆Q drastically increased, which means the Q-values in the inexperienced states
are updated. The coarsely and finely dotted lines expanding from the time steps indicated by
the two arrows show the curves when the initial positions were not changed from S1 to S2,
nor from S2 to S3, respectively. This simulates the LEM with partial knowledge. If we know
only the easy situations (S1), and nothing more, the learning curve follows the finely dotted
line in Figure 8. The summation of Q-values is slightly less than that of the LEM with more
knowledge, but much better than that without LEM.

Similarly, we applied the LEM algorithm with other orderings in terms of ball position.
Figure 9 show a graph similar to Figure 8. Since the ball position is classified into two
categories such as “center” and “left (or right)”, the number of arrows indicating the time
step to shift from a set of easier states to a set of more difficult ones is just one. Although the
difference of LEM with partial and complete knowledge on the ordering along this sub-axis is
smaller than the case of the goal size, the usefulness of the LEM algorithm can be seen.

292 M. ASADA ET AL.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

S
um

 o
f Q

 (
 S

1
+

 S
2

)

Time step [M]

Sum of Q
Sum of Delta Q

without LEM

Figure 9. Change of the sum of Q-values with LEM in terms of ball position

6.2. Experimental results on a real robot

Figure 10 shows a configuration of the real mobile robot system. The image taken by a TV
camera mounted on the robot is transmitted to a UHF receiver and processed by Datacube
MaxVideo 200, a real-time pipeline video image processor. We constructed the radio control
system of the vehicle [12]. The image processing and the vehicle control system are operated
by VxWorks OS on MC68040 CPUs which are connected with host Sun workstations via Ether
net. We have shown a picture of the real robot in Figure 1(b).

In order to simplify and speed up the image processing time, we painted the ball in red
and the goal in blue. The input NTSC color video signal is first converted into HSV color
components in order to make the extraction of the ball and the goal easy. Then, the image size
is reduced to further speed up the image processing time, and the boundaries of the ball and
goal regions are extracted for the state discrimination. The results from the image processing
operations are sent to the host CPU which decides an optimal action for the current state.
Figure 11 shows an example of the input image captured by the robot and the result of the ball
and the goal detection for the input image, respectively. Their positions, sizes, and the goal
orientation are calculated in real time (in total, 33ms). The image processing program can
handle the occlusion by using knowledge of the object shapes such as a sphere and a rectangle.

We tested the learned policy on the real robot almost 100 times. The shooting rate in
the real robot system was about 60% which was about 20% worse than the simulation. The
main reason for this is that the ball often moves towards unpredictable directions due to the
eccentricity of its centroid. The second cause for poorer performance is noise in the image
processing results, explained in the following paragraph.

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 293

MC68040

MaxVideo 200

A/D

UHF Receiver

Parallel I/O

D/A

DigiColor

MC68040

VME BOX

Ether Net
Sun WS Sun WS

++ + ++ +

Transmitter

Receiver

Radio Controller

Figure 10. A configuration of the real system.

Figure 11. Result of image processing.

Figure 12 shows a sequence of the images (raster order from top left to bottom right) in
which the robot succeeded in shooting a ball into the goal by using our method. The images

294 M. ASADA ET AL.

Figure 12. The robot succeeded in shooting a ball into the goal(I).

are taken every five frames (166ms). Table 1 shows the image processing and state mapping
result in each time step (33ms) for the sequence of images captured by the robot, examples of
which are shown in Figure 12. Each column indicates the time step, the state transition step,
the mapped state, the action command, and the number of errors in the state discrimination
process, respectively. The mapped state consists of five sub-states: two for the ball position
(Left, Center, or Right) and size (large (Near), Middle, or small (Far)), and three for the
goal position, size, and orientation (Left-oriented, Front-oriented, or Right-orinented). “D”
means a lost state (disappear). Incorrectly mapped sub-states are marked with “*”s, and the
number of these sub-states are shown in the error box. An action command consists of a
combination of two independent motor commands (Forward, Stop, or Backward).

Amazingly, the ratio of completely correct mappings is about 60%. Most of the incorrect
mappings occur when the size of the ball is misjudged as smaller due to failures in edge

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 295

Figure 13. The robot failed to shoot a ball into the goal.

detection. As long as the ball and the goal are captured at the center of the image, this does
not cause a serious problem because the optimal action is forward in any case. However, the
robot fails to shoot a ball when the ball is captured at the right or left of the image, because
it misjudges the distance to the ball. Due to the noise of the transmitter, completely incorrect
mappings occur at the ratio of 15%. Unless this situation continues two or more time steps,
this does not cause a serious problem because the robot can take the correct action once the
proper state mapping is obtained.

Other examples are shown in Figures 13 and 14. In the former, the robot failed to shoot
a ball. The images are taken every 12 frames (about 400ms). First, the robot tried to shoot
a ball into a goal, but the ball moved in an unpredicted direction. Then, the robot moved
backward, and tried again. Still it could not shoot the ball into the goal, but it seems that
the robot had an intention to do that even though it failed. Note that, the shooting is not

296 M. ASADA ET AL.

Figure 14. The robot succeeded in shooting a ball into the goal(II).

a programmed action but just a result of learning. In Figure 14, the images are taken every
second. First, the robot lost the ball due to noise, and then it turned around to find the ball,
and finally it succeeded in shooting.

7. Discussion

We discuss several issues related to applying the reinforcement learning to real robot tasks.

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 297

Table 1. State-Action data

time state state action # of
step step ball goal L R erros

1 1 (C,F) (C,F,Fo) F F
2 2 (R*,F) (C,F,Fo) F F 1
3 3 (D*,D*) (C,F,Ro*) B B 3
4 4 (C,F) (C,F,Lo*) B S 1
5 5 (C,F) (C,F,Fo) F F
6 (C,F) (C,F,Fo) F F
7 (C,F) (C,F,Fo) F F
8 (C,F) (C,F,Fo) F F
9 6 (C,F) (C,F,Ro*) B S 1

10 7 (C,F) (C,F,Fo) F F
11 8 (C,F) (R,M,Fo) F F
12 9 (R,F) (R,M,Fo) F F
13 10 (R,M*) (R,F*,Lo*) F B 3
14 11 (L*,F) (R,M,Ro*) F S 2
15 12 (L*,F) (R,M,Fo) F S 1
16 13 (R,M) (R,M,Fo) S B

17 14 (C,M) (C,M,Fo) F F

18 15 (L,M) (L,M,Fo) S F
19 16 (L,N) (L,M,Fo) B S
20 (L,N) (L,M,Fo) B S
21 17 (L,M*) (L,M,Fo) S F 1
22 18 (L,N) (L,M,Fo) B S
23 (L,N) (L,M,Fo) B S
24 19 (C,N) (C,M,Fo) F B
25 20 (C,M) (C,M,Fo) F F
26 (C,M) (C,M,Fo) F F

27 21 (C,M) (C,N,Fo) F S

28 22 (C,M) (C,M*,Lo*) F S 2
29 23 (C,M) (C,M*,Ro*) S B 2
30 24 (C,F) (D,D,D) F S

(a) comparison with conventional approaches

In order to compare the performance of our method with conventional approaches, we first
implemented a servo mechanism with a controller for angular and forward motion velocities
(ω, v). The following equation shows the relationship between (v, ω) and two angular velocities
(ωr, ωl) to be sent to the right and left motors.

(

v
ω

)

=

(

Rr

2

Rl

2
Rr

T
−Rl

T

)(

ωr

ωl

)

(9)

where Rr, Rl, and T denote the radii of the right and left wheels, and the distance between
two wheels, respectively.

We first implemented the following proportional controller which tries to reduce the differ-
ences in visual angle between the lines of sight to the ball center (xb) and to the goal center
(xg), and in distance between the robot and the ball (l):

298 M. ASADA ET AL.

f

l

d img

lg

x ,(
bb

y)

imgx

gx ,(y)g

img
y

Ball

Goal

Camera

Figure 15. Relationship between camera, ball, and goal

ω = kθ(−xb + xg)/f, and v = kl(l − ld),

where f, xb, xg, l indicate the focal length of camera, the horizontal coordinate of the ball
center in the image, the horizontal coordinate of the goal center, and the distance from the
camera to the goal center, respectively, as shown in Figure 15. ld shows the desired value of
the distance between the ball and the robot, and therefore it is zero.

With only this controller, the success rate is worse than the learning method. Then, we add
the following controller when the ball is observed between two goal posts:

ω = θ̇ + kθ(θ − θd), v = l̇ + kl(l − ld), and θ = −xb/f,

where θd denotes the desired value of the line of sight viewed from the robot. Table 2 compares
the performances by the servo control (kθ = kl = 0.3) and our learning method. The success
rate by the servo mechanism with two controllers is better than that by our learning method
because the servo control mechanism assumed a priori knowledge on the external and internal
parameters of the camera and the robot such as the focal length of camera, the distance to
the ball, the distance between two wheels, and so on. However, the mean steps necessary for
getting a shoot by the two servo controls are longer than that by the learning method. Because,
the servo control tries to turn its body so that the ball and the goal can be observed in a line,

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 299

Table 2. Comaprison with servo control

Servo Control Servo Control Learning Method
with one controller with two controllers

Success Rate 72.3% 98.6% 78.5%
Mean Steps 64.3 73.2 56.6

and therefore the trajectory of the robot are oscillating a little bit. While, the trajectory by
the learning method does not show such a trajectory. It seems possible to obtain the straight
path by the servo control method by selecting appropriate gains kθ and kl. However, this
needs much more knowledge on dynamics of the robot and other parameters such the so-called
“viscous friction.”

Next, we tested Fuzzy rules which were programmed by a student who has observed the
robot behavior by computer simulation for a long time. The rules are as follows:

1. IF ball-is-observed

2. IF ball-size-is-large

3. IF goal-position-is-center

4. forward;

5. ELSE IF goal-position-is-left

6. right-backward;

7. ELSE IF goal-position-is-right

8. left-backward;

9. ELSE /*goal-is-not-observed*/

10. IF goal-is-lost-into-left

11. right-backward;

12. ELSE /*goal-is-lost-into-right*/

13. left-backward;

14. ELSE /*approach-to-ball*/

15. forward;

16. ELSE /*ball-is-not-observed*/

17. IF ball-is-lost-into-left

18. left-turn;

19. ELSE /*ball-is-lost-into-right*/

20. right-turn;

We tested the above program with various kinds of conditions in terms of the maximum
velocity of the robot and the rolling velocity of the ball (quick, normal, and slow). The success
rates by the above program and the learning method are not so different from each other.
However, the mean steps to the goal state by the above program is about 10% shorter than

300 M. ASADA ET AL.

that by the learning method. The main reason seems that in the learning method the robot
might have experienced useless trials such as kicking a ball by backward motion, which causes
inappropriate updates of Q-values in some states, and therefore the optimal path obtained
by the learning method might include detours. Note again, the above program is carefully
designed by a programmer.

Although the learning method is not superior to the servo control in success rate, or to the
Fuzzy rules in mean steps to the goal state, the performance by the learning method is encour-
aging since the difference does not seem large in spite of not requiring human intervention.

(b) state space construction

The “state-action deviation” problem can be considered as one form of the “perceptual aliasing
problem” [10]. It is generally defined as “a problem caused by multiple projections of different
actual situations into one observed state”. The multiple projections make it very difficult for
a robot to take an optimal action. There are several causes for it:

1. Sensor noise: physical sensors are not free from noise, because of which one to many and/or
many to one correspondences between actual situations and observed states occur. In our
case, the edges of the ball and/or the goal were often not detected, and phantom edges
were sometimes detected. Due to such failures, incorrect mapping from one observation to
a mismatched state occurs.

2. Sensor processing delay: sensor processing needs non-negligible time to take an adequate
action for the observed state. This means that what the robot perceives (state discrimi-
nation) is what the environment was some time before. In our case, we have a delay of
at least two video frames: one is for image acquisition and another for image processing.
We compared the performance of the learned policies with and without delay assuming
that the real robot needs two video frames time (66ms). The success rates are 75% by the
policy without delay and 60% by the policy with delay. Therefore, we used the learned
policy with no delay on a real robot.

3. Difficulty in constructing the consistent staqte and action spaces: as mentioned above, the
state and action space are not discrete but continuous in the real world, therefore it is
difficult to construct state and action spaces where one action always corresponds to one
state transition. We called this the “state-action deviation problem”. In utilizing the
vision sensor(s), the state-action deviation problem occurs due to the peculiarities of visual
information. If we try to construct the state and action spaces in which one action always
corresponds to one state transition, we need a large state space that is almost continuous,
and suffer from very large variances in the state transition probabilities. Both of these are
highly undesirable for the learning method to converge to the optimal solution. We first
constructed the state and action spaces which naturally segment the observed state and
the effect of the actuator(s), respectively. These coarse segmentation of the state space
(“right” or “left” and “small” or “large”) is useful in two ways: by reducing the size of the
state space and by absorbing the image processing noise. Then, we reconstructed the action
space in such a way that one action consists of a sequence of the same action primitive

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 301

which is successively executed until the current state changes. This also contributed to
reducing the delay in sensor information processing.

4. Hidden states: if there are hidden states which cannot be physically observed by the robot
sensors, the system cannot cope with these states without any a priori knowledge on them.
In our case, the robot easily looses the ball because of its narrow visual field (only 36 degs.).
The state of “ball-lost” has a broad area in the real world, and therefore it is difficult for
the robot to take an adequate action for this state. Finally, we separated the “ball-lost”
state into two states by memorizing the previous state: “ball-lost into right” or “ball-lost
into left.” This helps the robot take an adequate action to find the ball.

(c) LEM

The LEM algorithm differs in some aspects from the existing approaches in speeding up the
search time. In the task decomposition approach [5], Q-learning is closed inside each subtask.
In LEM, however, the robot wanders around the field crossing over the states from which it
is easy to achieve the goal, even if the robot is initially placed at such states. The LEM just
identifies the positions of the easy states. In other words, we do not need to care so much about
the segmentation of the state space in order to decompose the whole task, partial knowledge
about the degree of difficulty can be used in the LEM method. However it seems difficult to
apply such knowledge in a task decomposition approach.

In the Learning with an External Critic (or LEC) [11], the robot receives an advise in each
state from the external critic. In order to let LEC work correctly, complete knowledge about
the evaluation for the action taken in any state is needed. While, only partial knowledge is used
in LEM, completeness of the knowledge does not have any effect on the correct convergence
of Q-learning. Only the search time is reduced with complete knowledge.

LEM differs from other approaches such as supervised learning (e.g., [13]) and teaching
(e.g., [14]) in that the LEM does not need any demonstrations by a teacher while the teaching
method needs at least one or more demonstrations on how instances of the target task can be
achieved from some initial states, and supervised learning needs much more demonstrations.
These demonstrations must show correct ways to the goal in order for the correct convergence
of the learning. The LEM only provides the knowledge of the order of the situations to attain
the goal. Even though this knowledge is partially incorrect, the convergence of the learning is
guaranteed in LEM, while the other two methods seriously depend on the correctness of the
knowledge (demonstrations). In other words, the LEM does not teach how to achieve the goal
but from where to start.

From the above differences, the LEM is less restrictive and therefore seems more applicable
to a wider range of tasks than supervised learning and teaching approaches.

The most serious and important problem is how to construct the state space. If the state
space is not partitioned into sub-states, the LEM cannot be applied. Ideally, the agent should
construct the state space automatically from the sensory information and experience. Although
some results are reported on this problem [15], [16], we need much more work to make clear
what kind of information is necessary to achieve the goal and how to construct (segment) the
state space from it.

302 M. ASADA ET AL.

(d) Limitations

Since the state space of our learning method consists of only the current situations, and does
not reflect the history in the past except the ball-lost states, currently the robot cannot shoot
a ball into a goal if the robot is located between the ball and the goal. Task decomposition
might be one solution for this problem, that is, find a ball, turn so that the ball and the goal
can be observed in a line, and move forward. Another one is to put other references in the
filed such as corer posts and field lines. Now, we are investigating on these approaches.

8. Concluding Remarks

We presented a vision-based reinforcement learning method which is, to the best of our knowl-
edge, the first attempt at applying reinforcement learning (Q-learning) to a real robot task
with a real-time vision system. We adopted the Learning from Easy Missions algorithm in-
stead of task decomposition in order to speed up the learning time. The state-action deviation
problem due to the peculiarity of visual information is pointed out as one form of the per-
ceptual aliasing problem in applying Q-learning to real robot tasks. Thus, we constructed an
action space to cope with this problem.

Although the real experiments are encouraging, still there is a gap between the computer
simulation and the real system. We have not made the real robot learn but have only executed
the optimal policy obtained by the computer simulation. We are planning to make the real
robot learn, starting with the policy obtained by computer simulation as the initial value of
the action-value function which is to be determined.

Acknowledgments

This research was supported by the Japanese Sience Research Program under the Project
Number 06650301 of the Grand-in-Aid for sientific research from the Ministry of Education,
Sience, and Culture.

The authors thank three reviewers for their constructive and valuable comments. They also
thank Mr. Eiji Uchibe and Mr. Yasutake Takahashi for their efforts in preparing the revised
version of the paper.

Notes

1. To the best of our knowledge, only Whitehead and Ballard [10] used the active vision system
and argued the importance of the so-called “perceptual aliasing” problem. However, they have
not shown real experiments.

2. A policy f is a mapping from S to A.

3. Here, we define one trial as one step state transition by one action.

4. An attempt ends when an agent achieves a goal or fails (crosses over the field boundary).

PURPOSIVE BEHAVIOR ACQUISITION FOR A REAL ROBOT 303

References

1. Connel, J. H. and Mahadevan, S. editors, Robot Learning. Kluwer Academic Publishers, 1993.

2. Sutton, R. S., “Special issue on reinforcement learning”. In R. S. Sutton(Guest), editor, Machine Learning,
volume 8, pages –. Kluwer Academic Publishers, 1992.

3. Saito, F. and Fukuda, T., “Learning architecture for real robot systems – extension of connectionist
q-learning for continuous robot control domain”. In Proc. of 1994 IEEE Int. Conf. on Robotics and

Automation, pages 27–32, 1994.
4. Fagg, A. H., Lotspeich, D., and Bekey, G. A., “A reinforcement learning approach to reactive control

policy design for autonomous robots”. In Proc. of 1994 IEEE Int. Conf. on Robotics and Automation,
pages 39–44, 1994.

5. Connel, J. H. and Mahadevan, S., “Rapid task learning for real robot”. In J. H. Connel and S. Mahadevan,
editors, Robot Learning, chapter 5. Kluwer Academic Publishers, 1993.

6. Watkins, C. J. C. H., Learning from delayed rewards”. PhD thesis, King’s College, University of Cam-
bridge, May 1989.

7. Kaelbling, L. P., “Learning to achieve goals”. In Proc. of IJCAI-93, pages 1094–1098, 1993.

8. Bellman, R., Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.
9. Mataric, M., “Reward functions for accelerated learning”. In Proc. of Conf. on Machine Learning-1994,

pages 181–189, 1994.
10. Whitehead, S. D. and Ballard, D. H., “Active perception and reinforcement learning”. In Proc. of

Workshop on Machine Learning-1990, pages 179–188, 1990.
11. Whitehead, S. D., “A complexity analysis of cooperative mechanisms in reinforcement learning”. In Proc.

AAAI-91, pages 607–613, 1991.
12. Inaba, M., “Remote-brained robotics: Interfacing ai with real world behaviors”. In Preprints of ISRR’93,

Pitsuburg, 1993.
13. Pomerleau, Dean A., Knowledge-based training of aritificial neural networks for autonomous robot driving.

In J. H. Connel and S. Mahadevan, editors, Robot Learning, chapter 2. Kluwer Academic Publishers, 1993.
14. Lin, Long-Ji, Self-improving reactive agents based on reinforcement learning, planning and teaching.

Machine Learning, 8:293–321, 1992.
15. Chapman, D. and Kaelbling, L. P., “Input generalization in delayed reinforcement learning: An alogorithm

and performance comparisons”. In Proc. of IJCAI-91, pages 726–731, 1991.

16. Mahadevan, S. and Connell, J., “Automatic programming of behavior-based robots using reinforcement
learning”. In AAAI-’91, pages 768–773, 1991.

