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Abstract We have proposed motion sketch [Nakamura and Asada, 1995] as a representation of interaction
between a one-eyed learning agent (a mobile robot) and its environment. In this paper, we extend the basic
idea in motion sketch, tight coupling of perception and action, to stereo sketch by which a stereo-vision based
mobile robot learns to reach a target simultaneously detecting and avoiding occlusions. First, an input scene
is segmented into homogeneous regions by the enhanced ISODATA algorithm with MDL principle in terms
of image coordinates and disparity information obtained from the fast stereo matcher based on the coarse-
to-fine control method. Then, the segmented regions including the target area and their occlusion status
identified during the stereo and motion disparity estimation construct a state space for a reinforcement
learning method to obtain target reaching behavior. As a result of learning, the robot can avoid obstacles
without describing them explicitly. We give the computer simulation results and real robot implementation
to show the validity of stereo sketch.

1 Introduction
Realization of autonomous agents that organize

their own internal structure in order to take action-
s towards achieving their goals is the ultimate goal
of Robotics and AI. That is, the autonomous agents
have to learn. Recent research in artificial intelligence
has developed computational approaches of agent’s in-
volvements in their environments [Agre, 1995]. Our
final goal, in designing and building an autonomous a-
gent with vision-based learning capabilities, is to have
it perform a variety of tasks adequately in a complex
environment. In order to build such an agent, we have
to make clear the interaction between the agent and
its environment.

We have proposed motion sketch as a representa-
tion of interactions between a one-eyed learning agent
(a mobile robot) and its environment [Nakamura and
Asada, 1995]. Motion sketch has an important role
of connecting motor behaviors which consist of unin-
terpreted motor command sequences and predefined
visual behaviors. Through the learning process, mo-
tor sequences which realize desired behaviors such as
obstacle avoidance and target reaching are obtained
via motion sketch step by step. In this paper, we ex-
tend the motion sketch to stereo sketch by which a
stereo-vision based mobile robot learns to reach a tar-
get by detecting and avoiding occlusions. As a result
of learning, the robot realizes obstacle avoidance with-
out describing them explicitly. The role of the stereo

sketch is the same as the motion sketch, that is, to
connect visual behaviors and motor behaviors.

In computer vision area, integration of stereo and
motion has been done by several researchers [Waxman
and Duncan, 1986; N. M. Nasrabadi and Liu, 1989;
E. Grosso and Tistarelli, 1989]. Since their main pur-
pose is to reconstruct the precise 3-D geometry of
the objects or the environment, these approaches need
very precise stereo camera calibration processes that
are tedious and often difficult to implement. However,
in robotics the extraction of the information neces-
sary to derive desired behaviors from the sensory data
in real-time seems much more important than time-
consuming reconstruction of the precise 3-D geometry.

Recently, Huber and Kortenkamp [Huber and Ko-
rtenkamp, 1995] used a real-time stereo vision system
[Nishihara, 1984] to pursue moving agents while stil-
l performing obstacle avoidance. Since their stereo
matching is based on edges extracted by a Laplacian-
Gaussian filter, they have the following drawbacks:
The system likely looses the target because tracking
module is easily attracted by higher texture areas than
the current target one, and therefore they cannot cope
with any occlusions of the target area by other object-
s. Since the system try to keep the target in 3-D space
at a fixed distance, they cannot cope with changes in
scale of the target image (a group of edges) due to
motions of the target and/or the robot, nor reach the
target.
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In this paper, we propose a stereo vision-based be-
havior learning method. As a real-time stereo match-
ing method, we use a block correlation of image inten-
sity [Inoue et al., 1992], by which the capabilities of
stereo and motion disparity estimation are much im-
proved than only edge-based approach. By adopting
the coarse-to-fine control of stereo [Marr and Poggio,
1979; Grimson, 1982] and motion disparity estimation
techniques, we can cope with changes in scale due to
target and/or the robot motions. Further, we apply
a reinforcement learning method to obtain a reach-
ing behavior for the environmental adaptation using
a well-defined state space consisting of occlusion sta-
tus identified during the stereo and motion disparity
estimation.

The remainder of this article is structured as fol-
lows: In the next section, we describe basic ideas of
stereo sketch. Then, we give explanations of visual be-
haviors, the method of learning, and state space defini-
tion. Finally, we give computer simulations, real robot
implementation results, and concluding remarks.

2 Stereo Sketch
The interaction between an agent and its environ-

ment can be seen as a cyclical process in which the
environment generates an input (perception) to the
agent and the agent generates an output (action) to
the environment. If such an interaction can be formal-
ized, the agent would be expected to carry out actions
that are appropriate to individual situations. “Mo-
tion sketch” we have proposed in [Nakamura and Asa-
da, 1995] is one of such formalizations of interactions
by which a one-eyed vision-based learning agent with
real-time visual tracking routines behaves adequate-
ly against its environment to accomplish a variety of
tasks.

In the motion sketch, first the robot obtained the
sensorimotor apparatus using optical flows on the floor
caused by the robot motions. Then, it learned to de-
tect/avoid obstacles, to reach a target, and to coordi-
nate the learned behaviors step by step.

The motion sketch has the following limitations:

• Tracking performance severely depends on the
constancy of image intensity inside tracking win-
dows. Therefore, sometimes it lost the target
area.

• The flow difference between the current scene and
the template obtained by assuming no obstacles
was used to detect obstacles. Since the stationary
obstacles showed only small flow differences, they
were difficult to detect.

To cope with these limitations, we add one more
camera on the robot and realize a real-time stereo-
vision system with the same tracking routines. The

stereo disparity information not only improves the
tracking performance but also provides useful infor-
mation about occlusion and disocclusion. Motor be-
haviors are coordinated so as to reach the target area
via reinforcement learning in which the state space is
defined in terms of image locations of occluded and
disoccluded areas. Supported by these visual behav-
iors and learned motor behaviors, the robot can reach
the target area without explicitly describing obstacles.

Figure 1 shows a basic idea of stereo sketch. The
basic components of the stereo sketch are disparity
cues and the motor behaviors.

Both motion sketch and stereo sketch represent
tight couplings between an agent that can perform an
appropriate action sequence so as to accomplish the
given tasks and its environment. The stereo sketch
has a more abstract form of state space such as occlu-
sion and disocclusion supported by a variety of power-
ful visual behaviors while motion sketch represents a
more direct coupling between perception and action.
However, the basic assumptions in these sketches are
the same. They do not need a priori knowledge about
the environment or kinematics/dynamics of the robot
itself, any calibrations, nor any 3-D quantitative re-
construction so as to accomplish the given task. The
cues of stereo and motion disparities do not seem de-
pendent on scene components nor limited to the speci-
fied situations or the task. Figure 2 shows an example
task we deal with in this paper. The robot tries to
reach the target object while avoiding occlusions. The
behavior acquisition scheme consists of the following
procedures:

Occlusion

Figure 2: An example task

Visual Behaviors

1. Scene decomposition by using the enhanced ISO-
DATA algorithm with MDL principle in terms
of image location and disparity information ob-
tained by coarse-to-fine stereo matching proce-
dure.



2. Specify one target area among the segmented re-
gions. Human operator can specify or the system
can pick up, for example, the region closest to the
robot.

3. Track the target and its neighbor regions between
consecutive frames.

4. If a part of the target area is occluded (mismatch
of the target area in part and correct match of its
neighbor), note the location of the occluded area
relative to the target area.

5. If a part of the target area is disoccluded (correct
match of a new region around the target area with
the same disparity as the target area), note the
location of the disoccluded area.

Learning Phase

1. Construct a state space consisting of combina-
tions of the location and occlusion status of the
target area between the left and right images.

2. Obtain the data with random motions and find
hidden states by the statistics of the state transi-
tions.

3. Add the hidden states as new states and apply re-
inforcement learning given the goal state (reach-
ing the target area).

3 Visual Behaviors
As visual functions, we have prepared the following

routines in the previous work [Nakamura and Asada,
1995] using a real-time visual tracker by a simple block
correlation based on SAD (Summation of Absolute D-
ifference) [Inoue et al., 1992]:

1. robust target tracking coping with partial occlu-
sion and small deformation of image pattern using
multiple searching blocks covered over the same
target,

2. multi-resolution based matching to cope with s-
cale changes due to robot and/or target motions,
and

3. global search when a local search fails.

In addition to these visual routines, we add a stereo
matching routine based on coarse-to-fine control and
a region segmentation routine by using the enhanced
ISODATA algorithm with MDL principle in terms of
image location and disparity information obtained by
coarse-to-fine stereo matching procedure. In this sec-
tion, we show only the results of visual behaviors and
we describe the details in Appendices.

Figure 3 shows the stereo matching result by the
method where three pairs of the left and right im-
ages are stacked in three rows, respectively. Due to
the hardware limitation, we are currently using the
middle (coarse image: 128×120 pixels) and large (fine
image: 256×240 pixels) scaled image pairs. The fi-
nal matching result is shown at the right-bottom as a
disparity map.

Figure 3: A coarse-to-fine stereo matching

Figure 4 shows an example of region tracking during
the target reaching without obstacles. The method
can cope with changes of target size in image, and
successfully track the target.

4 Behavior Learning
As a method of learning for behavior acquisition,

we use Q-learning [Watkins, 1989], a most widely used
reinforcement learning method. To apply Q-learning
to our task, we need to define a state space which
consists of descriptions of target and its surroundings
obtained by the visual behaviors described above. In
this section, we first give basics of reinforcement learn-
ing, and then explain how to construct a state space
for the learning.
4.1 Basics of Reinforcement Learning

Reinforcement learning agents improve their per-
formance on tasks using reward and punishment re-
ceived from their environment. They are distinguished
from supervised learning agents in that they have no
“teacher” that tells the agent the correct response to
a situation when an agent responds poorly. An a-
gent’s only feedback indicating its performance on the
task at hand is a scalar reward value. One step Q-
learning [Watkins, 1989] has attracted much attention



Figure 4: Region tracking

as an implementation of reinforcement learning be-
cause it is derived from dynamic programming [Bell-
man, 1957]. The following is a simple version of the
1-step Q-learning algorithm we used here.

Initialization: Q ← a set of initial values for the
action-value function (e.g., all zeros).
Repeat forever:

1. s ∈ S ← the current state

2. Select an action a ∈ A that is usually consistent
with the policy f but occasionally an alternate.

3. Execute action a, and let s′ and r be the next
state and the reward received, respectively.

4. Update Q(s, a):

Q(s, a) ← (1−α)Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)).

(1)
5. Update the policy f :

f(s) ← a such that Q(s, a) = max
b∈A

Q(s, b)

(2)

4.2 State Space Construction

Apperance

T
T

T

Position

T T

lost-left lost-right

T

left rightcenter
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left side
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Figure 5: State space construction

State space should include necessary and sufficient
information to achieve the given goal while it should
be compact because the unbiased (without no a pri-
ori knowledge about agent and its environment) Q-
learning can be expected to take execution time ex-
ponential in the size of the state space [Whitehead,
1991].

Focusing on target reaching behavior, we construct
a state space in terms of occlusion status of the tar-
get area and its neighbor which is obtained by visual
behaviors such as stereo and motion disparity estima-
tion, and region clustering and tracking. Occlusion
status is defined as combinations of target states in
the left and right images. The target state is a triplet
of appearance (the left side is occluded, the right side
is occluded, completely occluded, no occlusion, or dis-
appearance), location (left, center, or right), and dis-
parity (far, middle, or near). In case of disappearance,
we prepare two situations (lost-into-the-right or lost-
into-the-left) (see Figure 5).

One of features of the state space is that it does not
include explicit description of obstacles. Instead, the
occlusion status of the target area tells indirectly the
status of obstacles. Table 1 shows an example state
which might tell that an obstacle is located in the right
side and closer than the target.



image appearance position disparity
left right side is occluded center any
right completely occluded center any

Table 1: An example state

Although the state space seems complete, it suffers
from “perceptual aliasing problem” [Whitehead and
Ballard, 1990] due to the limitation of the perceptual
capacity. It is generally defined as “a problem caused
by multiple projections of different actual situation-
s into one observed state.” The multiple projections
make it very difficult for a robot to take an optimal
action. To find such states (called “hidden states”),
we estimate the state transition probabilities by using
the MLE (Maximum Likelihood Estimation). If the s-
tate transition probability density function has multi-
ple peaks, we trace back the history of state transitions
until this hidden state can be discriminated [McCal-
lum, 1995]. After finding hidden states and adding
them to the state space, we apply Q-learning to our
task.

5 Experimental Results
The experiment consists of two parts: first, learning

the optimal policy f through the computer simulation,
then applying the learned policy to a real situation.

5.1 Simulations
5.1.1 Action space definition

In applying Q-learning to our task, we have to define
action space. Our robot can select an action to be
taken in the current state of the environment. The
robot moves around using a PWS (Power Wheeled
Steering) system with two independent motors. Since
we can send the motor control command to each of
the two motors separately, we construct the action set
in terms of two motor commands ωl and ωr, each of
which has 3 sub-actions, forward, stop, and back. All
together, we have 9 actions.

Due to the peculiarity of visual information, that
is, a small change near the observer results in a large
change in the image and a large change far from the
observer may result in a small change in the image,
one action does not always correspond to one state
transition. We called this the “state-action devi-
ation problem” in [Asada et al., 1995b]. To avoid
this problem, we reconstruct the action space as fol-
lows. Each action defined above is regarded as an ac-
tion primitive. The robot continues to take one action
primitive at a time until the current state changes.
This sequence of the action primitives is defined as an
action.

5.1.2 Hidden states, goal and reward

(a) A hidden s-
tate
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(b) A state transition probability

Figure 6: An example of hidden states

Figure 6 shows an example of hidden state and its
state transition probability density function estimated
by MLE. In the right image, the target is observed
(left side is occluded) while the target is not observed
in the left image. Since the disparity information is
not available, the target can be exist from near to
far. This means that in the left image, the target
is completely occluded or disappeared. Two peaks in
Figure 6 (b) correspond to these two situations. These
hidden states are found and added into the state space.

The goal state is shown in Table 2. We give a re-
ward 1 when the robot achieves the goal state, oth-
erwise 0. When the robot makes a collision with an
obstacle, we do not give any negative reward but reset
the robot position because the negative rewards make
many local maxima of Q-values. Reset and 0 reward
indirectly suggest the negative situations although the
convergence time might spend a lot.

image appearance position disparity
left no occlusion right near
right no occlusion left near

Table 2: A goal state

Figure 7 shows an example of target reaching be-
havior obtained by the learning method. In Figure 7
(b), the robot directly moved toward the target avoid-
ing an obstacle while in figure 7 (a) it moved back to
observe better, then moved toward the target. Note
that during the learning process, the robot obtained



a desirable behavior which includes not only “obser-
vation for actions” but also “actions for observation.”

(a) Example 1 (b) Example 2

Figure 7: Reaching behavior obtained by the learning
method

5.2 Real Robot Experiments
Figure 8 shows our real robot system. The stereo

cameras are set on a mobile platform (Yamabico) con-
trolled by MVME167/VxWorks OS through RS232C.
The base line is about 17cm and both lines of sight
are almost parallel. The tilt angle is about 10 degrees.
The camera height is about 60cm. These parameters
are very rough and not strictly adjusted. The visual
angles of both cameras are the same and about 60 de-
grees. The maximum vehicle speed is about 60cm/s.

One visual tracking board has a capability of video
rate tracking of about 140 windows. We are now using
four boards, but the procedures of coarse-to-fine stereo
matching, region clustering with MDL, and tracking
seem too much for one CPU board, and now it takes
about 160ms for one cycle.

Figure 9 shows sequences of the left and right im-
ages taken by the robot during the process in which
it reaches the target, avoiding an obstacle. Table 3
shows the result of state discrimination for the scene
shown in Figure 9. In Table 3, discriminated state
steps, target states in both of the left and right im-
ages (Occlusion Status OL: left-side-part occluded,
OR: right-side-part occluded, CO: completely occlud-
ed, NO: no occlusion, Location L: left position, C:
center position, R: right position, and Disparity L:
large, M: medium, S: small), control commands to the
right and left motors (Forward (F), Stop (S), Back-
ward (B)) are shown. The marks ”*” indicate steps

(a) A robot
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Figure 8: Our robot and system

Table 3: State-Action data in a real environment

state state action
step left right L R

1*(1-11) (NO,M,C) (NO,M,C) F F
2*(12-14) (OL,M,C) (NO,M,C) S B
3(15-16) (OL,M,C) (NO,M,C) F B
4(17) (OL,M,C) (NO,M,L) F B
5*(18) (OL,M,L) (NO,M,L) F F
6*(19-21) (NO,M,L) (NO,M,L) S F
7*(22-28) (NO,M,C) (NO,M,L) F F
8(29-38) (NO,N,C) (NO,N,L) F F
9(39) (NO,N,C) (NO,N,C) S F
10*(40-44) (NO,N,C) (NO,N,L) F F

shown in Figure 9. In this table, the numbers in ()
shows the sampling steps.

At the second state step (2) in Table 3, the robot
took a backward action. This means an “action for ob-
servation” described above because a backward action
is not directly effective for the target reaching task but
useful for expanding the field of view.

6 Discussion and Future Works
The stereo sketch consists of sophisticated visu-

al behaviors and behavior learning phase. As we
have shown in the experimental results, the learning
method could obtain the desirable behaviors of tar-
get reaching and obstacle avoiding without predefin-
ing them. The conventional approach based on ge-
ometry reconstruction needs accurate calibration for
sensors and actuators and planning in order to real-
ize the same performance. While, behavior-based ap-
proach by [Huber and Kortenkamp, 1995] has carefully
designed the switching conditions between avoidance
and following behaviors, which are often difficult to be



Figure 9: Reaching behavior by the real robot

determined. Our method does not care about these is-
sues, but the following issues should be considered:

• The visual behaviors have to be obtained in ad-
vance and be expected to work without any errors
due to several causes such as video noise while
motor behaviors are obtained in the learning pro-
cess. Although it seems difficult to learn both
behaviors simultaneously, we need some methods
for visual behavior learning related to motor be-
haviors.

• State space construction is much more importan-
t issue in robot learning. The main reason why
our method works successfully is that we have
prepared the sophisticated visual behaviors and

carefully designed state space which could drasti-
cally reduce the learning time. Even though the
programmer designed it, the state space in stereo
sketch still suffers from hidden states. The state
space designed by the programmer seems optimal,
but actually not. The robot has to construct the
state space through its experiences. We have done
one work on this issue [Asada et al., 1995a] with
a different task, and are doing other applications
for state space construction.
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Appendix A: Stereo Matching
A coarse-to-fine stereo matching method [Marr and

Poggio, 1979; Grimson, 1982] is implemented based on
block correlation with SAD criterion by using the real-
time visual tracking routines between the left and right

images. In the first matching stage, each of a coarse
image pair is tessellated into 8 × 5 grids, each grid
consists of 16 × 16 pixels and the search area for each
grid is 32 × 8 pixels to cope with rough stereo camera
calibration. In the second matching stage, each of a
fine image pair is tessellated into 14 × 10 grids, each
grid consists of 16 × 16 pixels and the center of the
search area (16× 8 pixels) for each grid is located at
the position where the stereo correspondence in the
coarse matching stage is found.

Appendix B: Region Segmentation and
Tracking

In order to reach the target area, the robot always
needs to identify the area to be tracked which might
be partially or completely occluded by other objects.
Then, we prepare region segmentation and tracking
routines as higher visual behaviors.

Region segmentation

As a region clustering algorithm, we enhance the ISO-
DATA algorithm [Ball and Hall, 1965] by applying the
Minimum Description Length (MDL) principle [Rissa-
nen, 1989] as a splitting criterion. The original ISO-
DATA algorithm has a heuristic rule for region sepa-
ration. We replace this rule with one that searches for
the minimum value of description length grounded by
information theory.

We assume that the distribution of the pixels in
each segmented region can be represented by a mix-
ture density model (a multivariate normal distribu-
tion: one kind of Gaussian Model) [Duda and Hart,
1973]. The model can be described by:

pi(x|µi,
∑

i

) =
1

(2π)d/2|∑i |1/2
×

exp
{

1
2
(x− µi)

t
∑−1

i
(x− µi)

}
,

where x, µ, and
∑

denote a column vector, the mean
vector, and the covariance matrix, respectively (i and
d indicate the cluster number and the size of the vec-
tor, respectively). omegai and

In order to segment the input scene, we form a
three-dimensional feature space where:

x = (image location(x, y), disparity(d)).

Every cell in the input scene is grouped into homoge-
neous regions using our modified ISODATA clustering
algorithm. ISODATA clustering is a iterative cluster-
ing algorithm whose heuristics were developed by Ball
and Hall[Ball and Hall, 1965].



Its basic form consists of a k−means clustering pro-
cedure embedded in a iterative loop containing heuris-
tics that determine splitting or merging clusters. As a
distance measure, we use Mahalanobis distance met-
ric.

Instead of heuristic rules for region clustering [Ball
and Hall, 1965], we use MDL principle based on infor-
mation theory. Roughly speaking, the total descrip-
tion length is a summation of the model description
and its fitting error term. The former consists of bit-
s to describe a Gaussian model itself and the mean
vectors µs, and the latter is related to the covariance
matrices

∑
s. If we have many clusters, the former is

bigger than the latter, and vice versa. The MDL prin-
ciple provides the optimal trade-off between them by
minimizing the description length from a viewpoint
of information theory. For the detailed procedures,
please see [Rissanen, 1989].

Figure 10 shows an example of region clustering
for the image shown in Figure 3 by our method. An
object centered in the image was clustered into one
region before applying MDL principle((A) 683.2 bits),
but eventually decomposed into two ((B) 451.1 bits)
because it is slanted a little bit in depth, therefore it
cannot be described with a single disparity.

Figure 10: Region segmentation

Region tracking

As a result of region segmentation at time ti, we have
non-overlapping regions each of which consists of sev-
eral blocks that are units for motion tracking routines
between ti and ti+1 by the same method of stereo
matching with a rectangle search area (16×16 pixels).
Each motion tracker decides if its matching is success
or not and tells the motion vector when the match-
ing is success. The total information of all trackers
provides new locations of each cluster and occlusion
status such as partial or complete occlusions at ti+1.
The occlusion status is used in the learning phase for
behavior acquisition.

These clusters of which locations have been predict-
ed by the tracking process are seed regions in region
clustering at ti+1. Adding the disparity information

at ti+1, re-clustering by the ISODATA algorithm with
MDL principle is performed to obtain the refined pa-
rameters of image location and disparity in each clus-
ter. If the target area is split into two clusters or
merged with other cluster, the model of the target
area is updated to describe these situations. If the
target area is completely occluded, the location is up-
dated by the linear prediction, but the image pattern
and disparity information are not updated.


