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Abstract

We introduce our approach that makes a robot
learn to behave adequately to accomplish a giv-
en task at hand through the interactions with its
environment with less a priori knowledge about
the environment or the robot itself. We briefly
present three research topics of vision-based robot
learning in each of which visual perception is
tightly coupled with actuator effects so as to
learn an adequate behavior. First, a method of
vision-based reinforcement learning by which a
robot learns to shoot a ball into a goal is present-
ed. Next, “motion sketch” for a one-eyed mobile
robot to learn several behaviors such as obsta-
cle avoidance and target pursuit is introduced.
Finally, we show a method of purposive visual
control consisting of an on-line estimator and a
feedback/feedforward controller for uncalibrated
camera-manipulator systems. All topics include
the real robot experiments.

1 Introduction

Realization of autonomous agents that organize
their own internal structure in order to take ac-
tions towards achieving their goals is the ultimate
goal of AI and Robotics. That is, the autonomous
agents have to learn. Recent research in artifi-
cial intelligence has developed computational ap-
proaches of agent’s involvements in their environ-
ments [1]. Our final goal, in designing and build-
ing an autonomous agent with vision-based learn-
ing capabilities, is to have it perform a variety of
tasks adequately in a complex environment. In
order to build such an agent, we have to make
clear the interaction between the agent and its
environment.

In physiological psychology, Held and Hein [2]
have shown that self-produced movement with it-
s concurrent visual feedback is necessary for the

development of visually-guided behaviors. Their
experimental results suggest that perception and
behavior are tightly coupled in autonomous a-
gents that perform tasks. In biology, Horridge
[3] similarly has suggested that motion is essen-
tial for perception in living systems such as bees.

In computer vision area, so-called “purposive
active vision paradigm” [4, 5, 6] has been consid-
ered as a representative form of this coupling s-
ince Aloimonos et al. [7] proposed it as a method
that converts the ill-posed vision problems into
the well-posed ones. However, many researchers
have been using so-called active vision system-
s in order to reconstruct 3-D information such
as depth and shape from a sequence of 2-D im-
ages given the motion information of the observer
or capability of controlling the observer motion.
Furthermore, though purposive vision does not
consider vision in isolation but as a part of com-
plex system that interacts with world in specific
ways [4], very few have tried to investigate the
relationship between motor commands and visu-
al information [8].

In robot learning area, the researchers have
tried to make agents learn a purposive behavior to
achieve a given task through agent-environment
interactions. However, almost of them have only
shown computer simulations, and only a few real
robot applications are reported which are simple
and less dynamic [9, 10]. there are very few exam-
ples of use of visual information in robot learning,
probably because of the cost of visual processing.

In this paper, we introduce our approach that
makes a robot learn to behave adequately to ac-
complish a given task at hand through the in-
teractions with its environment with less a priori

knowledge about the environment or the robot
itself. We briefly present three research topics of
vision-based robot learning in each of which vi-
sual perception is tightly coupled with actuator
effects so as to learn an adequate behavior.



The remainder of this article is structured as
follows: First, a method of vision-based reinforce-
ment learning by which a robot learns to shoot a
ball into a goal is presented. Next, we introduce
a method to represent an interaction between the
agent and its environment which is called “motion
sketch” for a one-eyed mobile robot to learn sever-
al behaviors such as obstacle avoidance and target
pursuit. Finally, we show a method of purposive
visual control consisting of an on-line estimator
and a feedback/feedforward controller for uncal-
ibrated camera-manipulator systems. All topics
include the real robot experiments.

2 Vision Based Reinforce-
ment Learning [11]

Reinforcement learning has recently been receiv-
ing increased attention as a method for robot
learning with little or no a priori knowledge and
higher capability of reactive and adaptive behav-
iors [12]. In the reinforcement learning method,
a robot and its environment are modeled by t-
wo synchronized finite state automatons interact-
ing in discrete time cyclical processes. The robot
senses the current state of the environment and
selects an action. Based on the state and the
action, the environment makes a transition to a
new state and generates a reward that is passed
back to the robot. Through these interactions,
the robot learns a purposive behavior to achieve
a given goal.

Although the role of reinforcement learning is
very important to realize autonomous systems,
the prominence of that role is largely dependent
on the extent to which the learning can be scaled
to solve larger and more complex robot learning
tasks. Many researchers in the field of machine
learning have been concerned with the conver-
gence time of the learning, and have developed
methods to speed it up. However, almost all of
them have only shown computer simulations in
which they assume ideal sensors and actuators,
where they can easily construct the state and ac-
tion spaces consistent with each other.

Here, we present a method of vision-based re-
inforcement learning by which a robot learns to
shoot a ball into a goal. The robot does not need
to know any parameters of the 3-D environment
or its kinematics/dynamics. The image captured
from a single TV camera mounted on the robot is
the only source of information on the changes in
an environment. Image positions and sizes of the

ball and the goal are used as a state vector. We
discuss several issues from a viewpoint of robot
learning: a) coping with a “state-action devia-
tion” problem which occurs in constructing the
state and action spaces in accordance with out-
puts from the physical sensors and actuators, and
b) starting with easy missions (rather than task
decomposition) for rapid task learning.

2.1 Task and assumptions

The task for a mobile robot is to shoot a ball into
a goal. The problem we address here is how to
develop a method which automatically acquires
strategies for doing this. We assume that the en-
vironment consists of a ball and a goal; the mobile
robot has a single TV camera; and that the robot
does not know the location/size of the goal, the
size/weight of the ball, any camera parameter-
s such as the focal length and tilt angle, or the
kinematics/dynamics of itself.

2.2 Construction of State and Ac-

tion Spaces
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Figure 1: The ball sub-states and the goal sub-
states
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Figure 2: A state-action deviation problem

Figure 1 shows sub-states of ball and goal in
which the position and the size of the ball or goal
are naturally and coarsely classified into each s-
tate. Due to the peculiarity of visual information,



that is, a small change near the observer results in
a large change in the image and a large change far
from the observer may result in a small change in
the image, one action does not always correspond
to one state transition. We call this the “state-
action deviation problem”: Figure 2 indicates
this problem, the area representing the state “the
goal is far” is large, therefore the robot frequent-
ly returns to this state if the action is forward.
This is highly undesirable because the variations
in the state transitions is very large, consequently
the learning does not converge correctly.

To avoid this problem, we reconstruct the ac-
tion space as follows. Each action defined is re-
garded as an action primitive. The robot contin-
ues to take one action primitive at a time until the
current state changes. This sequence of the action
primitives is called an action. In the above case,
the robot takes a forward motion many times un-
til the state “the goal is far” changes into the
state “the goal is medium”.

2.3 Learning from Easy Missions

In order to improve the learning rate, the whole
task was separated into different parts in [10]. By
contrast, we do not decompose the whole task in-
to subtasks of finding, driblling, and shooting a
ball. Instead, we first used a monolithic approach.
That is, we place the ball and the robot at arbi-
trary positions. In almost all the cases, the robot
crossed over the field line without shooting the
ball into the goal. This means that the learning
did not converge after many trials. This is the
famous delayed reinforcement problem due to no
explicit teacher signal that indicates the correct
output at each time step. To avoid this difficul-
ty, we construct the learning schedule such that
the robot can learn in easy situations at the early
stages and later on learn in more difficult situa-
tions. We call this Learning from Easy Missions

(or LEM).

2.4 Experimental results

We applied the LEM algorithm to the task in
which the order of easy situations are S1 (“the
goal is large”), S2 (“the goal is medium”, and S3
(“the goal is small”). Figure 3 shows the changes
of the summations of Q-values of the action-value
function in the Q-learning method with and with-
out LEM, and its temporal derivative ∆Q. The
axis of time step is scaled by M (106), which cor-
responds to about 9 hours in the real world since
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Figure 3: Change of the sum of Q-values with
LEM in terms of goal size

one time step is 33ms. The solid and broken lines
indicate the summations of the maximum value of
Q in terms of action in all states with and without
LEM, respectively. The Q-learning without LEM
was implemented by setting initial positions of
the robot at completely arbitrary ones. Evident-
ly, the Q-learning with LEM is much better than
that without LEM. The broken line with empty
squares indicates the change of ∆Q. Two arrows
indicate the time steps (around 1.5M and 4.7M)
when a set of the initial states changed from S1
to S2 and from S2 to S3, respectively. Just af-
ter these steps, ∆Q drastically increased, which
means the Q-values in the inexperienced states
are updated. The coarsely and finely dotted lines
expanding from the time steps indicated by the
two arrows show the curves when the initial posi-
tions were not changed from S1 to S2, nor from
S2 to S3, respectively. This simulates the LEM
with partial knowledge. If we know only the easy
situations (S1), and nothing more, the learning
curve follows the finely dotted line in Figure 3.
The summation of Q-values is slightly less than
that of the LEM with more knowledge, but much
better than that without LEM.

We used the same experimental set up as that
described in the previous section. In Figure 4
(raster order), the images are taken every second.
First, the robot lost the ball due to noise, and
then it turned around to find the ball, and finally
it succeeded in shooting.



Figure 4: The robot succeeded in shooting a ball
into the goal.

3 Motion Sketch [13]

3.1 Basic Ideas of Motion Sketch

The interaction between the agent and its en-
vironment can be seen as a cyclical process in
which the environment generates an input (per-
ception) to the agent and the agent generates an
output (action) to the environment. If such an
interaction can be formalized, the agent would
be expected to carry out actions that are appro-
priate to individual situations. “Motion sketch,”
we proposed here, is one of such formalizations
of interactions by which a vision-based learning
agent that has real-time visual tracking routines
behaves adequately against its environment to ac-
complish a variety of tasks.

Figure 5 shows a basic idea of the motion s-
ketch. The basic components of the motion s-
ketch are visual motion cues and the motor be-
haviors.

Visual motion cues are detected by several visu-
al tracking routines of which behaviors (called vi-
sual behavior) are determined by individual tasks.
The visual tracking routines are scattered over
the whole image and an optical flow due to an
instantaneous robot motion is detected. In this
case, the tracking routines are fixed to the im-
age points. The image area to be covered by
these tracking routines are specified or automati-
cally determined depending on the current tasks,
and the cooperative behaviors between tracking
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Figure 5: Motion sketch

routines are performed for the task accomplish-
ment. For the target pursuit task, the multiple
templates are initialized and every template look-
s for the target to realize stable tracking. In the
task of obstacle detection and avoidance, the can-
didates for obstacles are first detected by com-
paring the optical flow with that of non-obstacle
(ground plane) region, and then the detected re-
gion is tracked by multiple templates each of
which tracks the inside of the moving obstacle
region.

The motor behaviors are sets of motor com-
mands obtained by Q-learning [14], a most wide-
ly used reinforcement learning method, based on
the detected motion cues and given task. The
sizes and positions of the target and the detected
obstacle are used as components of a state vector
in the learning process.

Visual and motor behaviors work in parallel in
the image and compose a layered architecture.
The visual behavior for monitoring robot motion
(detecting the optical flow on the ground plane
on which the robot lies) is the lowest and might
be subsumed in part due to occlusion by other
visual and motor behaviors for obstacle detec-
tion/avoidance and target pursuits which might
occlude each other.

The motion sketch does not need any calibra-



tions nor any 3-D reconstruction so as to accom-
plish the given task. The visual motion cues for
representing the environment does not seem de-
pendent on scene components nor limited to the
specified situations and the task. Furthermore,
the interaction is quickly obtained owing to the
use of real-time visual tracking routines.

The behavior acquisition scheme consists of the
following four stages: i) Obtaining the fundamen-
tal relationship between visual and robot motions
by correlating motion commands and flow pat-
terns on the floor with very few obstacles. ii)
Learning target pursuit behavior by tracking a
target. iii) Detection of obstacles and learning an
avoidance behavior. iv) Coordination of the tar-
get pursuit and obstacle avoidance behaviors. At
each stage, we obtain the interaction between the
agent and its environment.

3.2 Obtaining sensorimotor appa-

ratus

Action 1 (qb ,  qb) Action 24 (qf ,  sf)

(a) examples of flow
patterns

(b) obtained two prin-
cipal flows

Figure 6: Acquisition of principal motion vectors

We place 49(7× 7) visual tracking routines to
detect changes in the whole image. Therefore, we
obtain an optical flow composed of 49 flow vec-
tors. In the environment without obstacles, the
robot randomly selects a possible action among
the action space, and executes it. While random-
ly wandering, the robot stores the flow patterns
pi due to its actions i. After the robot performed
all possible actions, we obtain the averaged opti-
cal flows pi removing the outliers due to noise or
small obstacles based on the LMeS method. Fig-
ure 6 (a) shows examples of flows detected during
random motions.

Using the averaged optical flows obtained
above, we acquire principal motion patterns
which characterize the space of actions. This is
done by analyzing the space of averaged optical
flow that robot is capable of producing. We want
to find a basis for this space, i.e., a set of represen-
tative motion patterns from which all the motion
patterns may be produced by their linear com-

binations. We can obtain representative motion
patterns by using Principal Component Analysis
that may be performed using a technique called
Singular Value Decomposition(hereafter SVD).
The first two principal components obtained in
the real experiment are shown in Figure6 (b). Ob-
viously, the left corresponds to a pure rotation
and the right to a pure backward motion.

3.3 Behavior acquisition based on

visual motion cues

Target tracking behavior acquisition
We use the visual tracking routines in order to
pursue a target specified by a human operator and
obtain the information about the target in the
image such as its position and size which are used
in the Q-learning algorithm [14] for acquisition of
target pursuit behavior.
Obstacle avoidance behavior acquisition
We know the flow pattern pi corresponding to the
action i in the environment without any obstacles.
The noise included in pi is not so much, because
this flow pattern is described as a linear combina-
tion of the two principal motion vectors. There-
fore, it makes motion segmentation easy. Motion
segmentation is done by comparing the flow pat-
tern pi with the flow pattern p

obs

i
which is ob-

tained in the environment with obstacles. The
area in the p

obs

i
is detected as the area for ob-

stacle candidates if its components are different
from that of p

i
. This information (position and

size in the image) is used to obtain the obstacle
tracking behavior. After obstacle detection, the
visual tracking routines are set up at the position-
s where the obstacle candidates are detected and
the regions are tracked until the region disappears
from the image.

Learning to avoid obstacles consists of two
stages. First, the obstacle tracking behavior is
learned by the same manner as in learning the
target pursuit behavior. Next, the obstacle avoid-
ance behavior is generated by using the relation
between the possible actions and the obstacle
tracking behavior.

3.4 Experimental results

Figure 7 shows a configuration of the real mo-
bile robot system. We have constructed the ra-
dio control system of the robot [11]. The image
processing and the vehicle control system are op-
erated by VxWorks OS on MVME167(MC68040
CPU) computer which are connected with host
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Figure 7: Configuration of the experimental sys-
tem

Sun workstations via Ether net. The image taken
by a TV camera mounted on the robot is trans-
mitted to a UHF receiver and subsampled by the
scan-line converter (Sony Corp.). Then, the video
signal is sent to a Fujitsu tracking module. The
tracking module has a function of block correla-
tion to track some pre-memorized patterns and
can detect motion vectors in real time.

Figure 8: The robot succeeded in pursuing a tar-
get.

Figures 8 and 9 show sequences of images where
the robot succeeded in target pursuit and avoid-
ing a moving obstacle, respectively. The top
shows the images taken and processed by the
robot and the bottom images show how the robot
behaves. In Figure 9, the rectangles indicate the
obstacle candidate regions.

Figure 10 shows a sequence of images where the
robot succeeded in coordinating target pursuit
and obstacle avoiding behaviors. The top shows
the images taken and processed by the robot and
the bottom images show how the robot behaves.
The rectangles indicate the obstacle candidate re-

Figure 9: The robot succeeded in avoiding a mov-
ing obstacle.

gions. In pursuing a target (flower pot), the robot
was blocked by the foot of a student, therefore it
moved backward. Then, it tracked the target a-
gain since the obstacle disappeared.

Figure 10: The robot succeeded in coordinating
two behaviors.

4 Purposive Visual Control

for uncalibrated camera-

manipulator systems [15]

Recently, there have been several studies on vi-
sual servoing, using visual information in the dy-
namic feedback loop to increase robustness of the
closed loop system (we can find a summary in
[16]). In most of the previous works on visual
servoing, they assumed that the system structure
and parameters are known, or that the param-
eters can be identified in an off-line process or
on-line parameter identification with restrictions



and assumptions on the system.

On the other hand, the previous works payed
attention only to feedback servoing. They sensed
positions of targets and made feedback inputs
subtracting the sensed positions from the desired
ones. Using these controllers, the manipulator
does not work until error is observed, which can
be considered as reactive movement. For intelli-
gent control of camera-manipulator systems, not
only the reactive but also purposive visual move-
ment must be realized. At the level of control,
we believe that feedforward terms should play a
great part in realizing the purposive movement,
but no one has mentioned to the effectiveness of
feedforward terms to the best of our knowledge.

Here, we propose purposive visual con-
trol consisting of an on-line estimator and a
feedback/feedforward controller for uncalibrated
camera-manipulator systems. It has the following
features:

1. The estimator does not need any a prior-
i knowledge on the kinematic structure nor
the system parameters. We can eliminate the
tedious calibration process owing to this fea-
ture.

2. There are no restrictions on the camera-
manipulator system: the number of cameras,
kinds of images features, structure of the
system (camera-in-manipulator or camera-
and-manipulator) ,the number of inputs and
outputs (SISO or MIMO). The proposed
method is applicable to all cases. It is strong-
ly related with the fact that the estimator
does not need any a priori knowledge on the
system.

3. The aim of the estimator is not to estimate
the true parameters, but to ensure asymp-
totical convergence of the image features to
the desired values under the proposed con-
troller. Therefore, the estimated parameters
do not necessarily converge to the true val-
ues. The existing methods such as [17, 18]
tried to estimate the true parameters, and
therefore they need restrictions and assump-
tions.

4. The proposed controller can realize purposive

movement of the system utilizing its feedfor-
ward terms. The feedforward terms of the
proposed scheme are based on estimated pa-
rameters intending to realize visual tasks on
the image planes (mentioned in 3). In this

sense, this feedforward terms help realizing
purposive movement at the control level.

robot controller

Kawasaki Js−5

image processor
MV200

Fujitsu
tracking module

MVME167
(68040,33MHz)

host computer
Sun Sparc 2

VME−VME
bus adapter

cameras

Figure 11: Experimental system

Figure 11 shows the experimental system we
used. Figure 12 (a) shows an experimental set
up with two cameras fixed, and (b) indicates the
result of step response with and without on-line
estimator, where vertical and horizontal axes in-
dicate the error in pixels and time steps (second),
respectively. Evidently, the performance without
the estimator was much worse that with the esti-
mator.

(a) experiment with
cameras fixed
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Figure 12: Visual servoing with tracking vision

5 Discussion

We have shown three topics of vision based robot
behavior learning. All of them do not need
the knowledge about the environment or kine-
matics/dynamics of the robot itself because such
knowledge is implicitly obtained and embodied in
the internal structure that the system organizes
through the learning process. As a result, the



structure represents the connection between the
visual behaviors and motor ones to accomplish a
given task.

In the first topic, the action value function,
Q(s,a) can be regarded as an internal structure
the robot organizes. The task is specified as a
goal state and the function reflects the relation-
ship between the robot capability (sensing and
mobility), the environment, and the task, and re-
duces it as a simple action value at every state.
The visual behaviors of finding a ball and a goal
are task specific and motor behaviors (two inde-
pendent motor commands) are organized as a se-
quence of pairs of two motor commands to achieve
the goal state.

The motion sketch can be seen as an internal
structure the robot obtained during the learn-
ing processes. The basic visual behavior is visual
tracking to detect an optical flow or to track ob-
stacles and/or a target. In the first stage, the sen-
sorimotor apparatus is obtained as a relationship
between perception, action, and the environment.
In the second stage, a group of tracking routines
is organized so as to form an object tracking, and
then obstacle avoidance and target tracking be-
haviors are obtained in a framework of the rein-
forcement learning using the motion sketch. In
the third stage, coordination of the learned be-
haviors is managed in the motion sketch.

The image Jacobian-matrix generally repre-
sents the sensorimotor apparatus, and in the third
topic, it can be regarded as an internal structure
of the robot because it is estimated by the interac-
tions with the environment in a sense of LSE (the
Least Squares Estimation). The visual behavior
is a simple tracking of the target, and the mo-
tor behavior, a set of torque commands to joints
of the robot arm, is obtained from the control
scheme consisting of both feedback and feedfor-
ward terms. The task is specified in the sensor
space as image features.

To apply our approach to other kinds of tasks,
we have to solve two important and difficult prob-
lems. One is how to construct the state space,
in other words, how to find what is important
to accomplish given tasks from sensory informa-
tion through the experiences. The other is how
to generalize or to abstract the learned policies
to cope with a variety of similar tasks in similar
environments. These are fundamental and open
problems in Robotics and AI.
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