
Action-Based Sensor Space Categorization for Robot Learning

Minoru Asada, Shoichi Noda∗, and Koh Hosoda
Dept. of Mech. Eng. for Computer-Controlled Machinery

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan
asada@robotics.ccm.eng.osaka-u.ac.jp

Abstract
Robot learning such as reinforcement learning gen-

erally needs a well-defined state space in order to con-
verge. However, to build such a state space is one
of the main issues of the robot learning because of
the inter-dependence between state and action spaces,
which resembles to the well known “chicken and egg”
problem. This paper proposes a method of action-based
state space construction for vision-based mobile robots.
Basic ideas to cope with the inter-dependence are that
we define a state as a cluster of of input vectors from
which the robot can reach the goal state or the state al-
ready obtained by a sequence of one kind action prim-
itive regardless of its length, and that this sequence
is defined as one action. To realize these ideas, we
need many data (experiences) of the robot and cluster
the input vectors as hyper ellipsoids so that the whole
state space is segmented into a state transition map
in terms of action from which the optimal action se-
quence is obtained. To show the validity of the method,
we apply it to a soccer robot which tries to shoot a ball
into a goal. The simulation and real experiments are
shown.

1 Introduction
Building a robot that learns to perform a task has

been acknowledged as one of the major challenges
facing Robotics and AI [1]. Recently, reinforcemen-
t learning [2, 3] and memory-based learning [1] have
been receiving increased attention as a method for
robot learning with little or no a priori knowledge and
higher capability of reactive and adaptive behaviors.
In these robot learning methods, a robot and an en-
vironment are generally modeled by two synchronized
finite state automatons interacting in a discrete time
cyclical processes. The robot senses the current state
of the environment and selects an action. Based on the
state and the action, the environment makes a tran-
sition to a new state and generates a reward that is
passed back to the robot. Through these interaction-
s, the robot learns a purposive behavior to achieve a
given goal.

To apply robot learning methods such as reinforce-
ment learning to real robot tasks, we need a well-
defined state space by which the robot learns to se-
lect an adequate action for the current state to ac-
complish the task at hand. Traditional notions of s-

∗Currently, he is with Hitachi Co.

tate in the existing applications of the reinforcemen-
t learning schemes fit nicely into deterministic state
transition models (e.g. one action is forward, back-
ward, left, or right, and the states are encoded by the
locations of the agent). However, it seems difficult
to apply such deterministic state transition models to
real robot tasks. In real world, everything changes
asynchronously [4].

Generally, the design of the state space in which
necessary and sufficient information to accomplish a
given task is included depends on the capability of a-
gent actions. On the other hand, the design of the
action space also depends on the capability of percep-
tion. This resembles the well-known “chicken and egg
problem” that is difficult to be solved (see Figure 1).

State Space Action Space?

Figure 1: The inter-dependence between state and ac-
tion spaces

One can construct a state space fixing the action
space first. Chapman and Kaelbring [5] proposed an
input generalization method which splits an input vec-
tor consisting of a bit sequence of the states based on
the already structured actions such as “shoot a ghost”
and “avoid an obstacle.” However, the original states
have been already abstracted, and therefore it seem-
s difficult to be applied to the continuous raw sensor
space of real world.

Dubrawski and Reingnier [6], and Kröse and
Dam[7] proposed methods similar to each other which
abstracted sonar information into the form useful for
mobile robots to avoid obstacles. Ishiguro et al. [8]
dealt with a problem of state space categorization by s-
tatistically analyzing the sensor patterns, actions, and
rewards given at the end of goal achievement. Since
they deal with reflexive behaviors such as obstacle
avoidance, these methods do not suffer from the fixed
length physical actions. However, in case of a task
to achieve the goal farther from the viewpoint based

on the visual information, the same physical actions
might cause different changes in image, and therefore
it seems difficult to specify the state and action spaces
by which learning converges correctly 1.

Asada et al. [9] called this “a state-action deviation
problem” due to the difference in resolution between
the robot action in a 3-D space and the projection
of its effect onto a 2-D image. They have given one
solution for this problem by restructuring the action
space so that one action may cause one state transi-
tion. That is, first they divided the sensor space by
hand, and then constructed the action space so that
the sensor and action spaces can be consistent with
each other. However, there is no guarantee that such
a state space is always appropriate for the robot.

This paper propose a method that recursively splits
an input vector from the sensor based on a definition
of action primitive that is a resultant action caused
by a motor command executed during the fixed time
interval. The basic ideas are as follows:
We define

1. a state as a set of input vectors from which the
robot achieves the goal or already acquired state
by a variable sequence of one kind action primi-
tive, and

2. an action as a sequence of action primitive that
causes a state transition.

Recently, a study on mechanisms for emergent ma-
chine intelligence through the interaction with agents’
environment has been receiving increased attention
[10]. The proposed method in this paper can be re-
garded as one that solves the so-called “segmentation”
problem through the interactions with the agent’s en-
vironment. That is, the designer does not provide the
state and action spaces needed to accomplish a giv-
en task from his or her viewpoint. Instead, the robot
constructs the necessary state and action spaces based
on its experiences (interactions with its environmen-
t). The construction process corresponds to behavior
learning, and as a result the purposive behavior is ac-
quired.

The remainder of this article is structured as fol-
lows: In the next section, we describe our method to
automatically construct the sensor and action spaces
with a simple computer simulation. Then, we show
the results of the experiments of a vision-based mobile
robot that tries to shoot a ball into a goal. Finally, we
give our motivation to the approach described in this
paper and our future work.

2 Sensor and Action Space Construc-
tion

As we described in the above, the state space2 de-
signed by programmer is not always appropriate for

1In case of vision sensors, the same action might cause large
change in image if the object is close to the observer, and small
change if it is farther.

2Here, we suppose the state space is a space consisting of
input vector from sensors. In control theory, this is not always
true.

the robot to accomplish a given task. If multiple s-
tates to be discriminated from each other are catego-
rized into the same state, the distribution of that state
transitions widely spreads out, and therefore it seems
difficult for the robot to achieve the goal. On the other
hand, if the size of the state space is too large due to
unnecessary separations, the learning incredibly takes
long time (it is generally an exponential order in the
size of the state space [11]). Then, we attempt at
solving this problem by making the robot construct
the state space, that is, it should find a state space by
itself through interactions with the environment. The
following are the requirements for the problem:

1. The state and action spaces should reflect phys-
ical sensor(s) and actuator(s) of a robot. The
deterministic state transition models (e.g. one
action is forward, backward, left, or right, and
the states are encoded by the locations of the a-
gent) are useful only for simple toy problems in
computer simulations.

2. Since everything changes asynchronously in real
world [4], the state and action spaces directly re-
flecting the physical sensors and actuators suffer
from the state - action deviation problem. The
state and action spaces should be restructured to
cope with this problem.

3. The sensor space categorization should be robust
against the various disturbances such as sensor
noise, delay, and uncertainty of action execution.

2.1 The Method
Basic ideas of our method are that we define:

1. an action primitive ai (i = 1, 2, ..., n) as a resul-
tant action caused by a motor command executed
during the fixed time interval,

2. a state as a set of input vectors from which the
robot achieves the goal or already acquired state
by a variable sequence of one kind action primi-
tive, and

3. an action as a sequence of action primitive that
causes a state transition,

and that such states are found in the order of closeness
to the goal state.

Figure 2 shows a state space in terms of the goal
state and actions. Si

1, i = a1, a2, a3, ..., an ∈ A (a set
of action primitives) and S1 denote a state from which
the robot can achieve the goal by only one action i,
and a set of these states, respectively. Further, S2
denotes a set of states from each of which the robot can
achieve S1 only by one action. Similarly, Sj denotes
a set of states from which the robot can achieve the
goal at least j actions. Any input vector from which
the robot can achieve the goal can be included in any
state in Sk (k = 1, 2, .., j). The algorithm to obtain
such a state space is given below.

G

S1 S2

action 1

2

action 1

2

State Space

Goal State

s1
a2

s1
a1

s2
a2

s2
a1

Figure 2: The goal-directed and action-based state
space construction

Algorithm

1. Set the goal state as a target zone ZT .

2. Take an action randomly. From the definition,
the same action primitive is iteratively executed
until the robot achieves the target zone or the
fixed time interval expires.

3. Store an input vector x ∈ Rm (m: the size of
the vector) with an index of the action a ∈ A
the robot took when it could succeed in achiev-
ing ZT from x. Do not include the vectors that
have been already categorized into the previously
divided states.

4. Fit a multi-dimensional uniform distribution
function (a concentration ellipsoid [12]) to a clus-
ter of stored vectors with the same action index
ai ∈ A obtained above, and construct a state
sai (ai ∈ A). The boundary surface of the ellip-
soid is given by:

(x− µ)T Σ−1(x− µ) = m + 2, (1)

where µ and Σ denote the mean vector and the
covariance matrix, respectively.

5. Update the target zone ZT as a union of s-
tates sai (i = 1, 2, .., n) obtained in the previous
step. If a vector is categorized into plural states
saj (j = 1, ..) (clusters are overlapped), select one
state so that the following distance normalized by
its covariance can be the minimum:

∆j = (x− µj)
T Σ−1

j (x− µj)

6. Stop if the state space is almost covered by the
divided clusters. Else, go to 2.

We call a set of states sa (a ∈ A) the i-th closest
to the goal state Si. By the above algorithm, we can
obtain not only the sensor space categorization but
also the optimal path to the goal from everywhere.

3 Experimental Results and Remarks
3.1 Simulation (I)

To show the validity of the proposed method, we
show a simple computer simulation in toy world con-
sisting of 100 × 100 grids. The task for the robot is
to enter the circle area whose radius is 5, located at
the center of the world. The action primitives are 1.0
grid motion into any of four directions (up, down, left,
and right). The input vector is an absolute coordinate
(x, y) (real number) of the robot location.

S
1

up

S
1

dn

S
1

ltS
1
rt

S2
up S2

up

S2
dn S2

dn

S2
lt

S2
lt

S2
rt

S2
rt

−50 −40 −30 −20 −10 0 10 20 30 40 50

0

 50

 40

 30

 20

 10

−10

−20

−30

−40

−50

Figure 3: Result of the variable action-based construc-
tion of 2D state space

Figure 3 shows a result where the whole state space
is separated into twelve states. The states obtained
earlier have darker colors. Each arrow indicates an
action by which the state is classified. A set of states
S1 from which the robot can achieve the goal by only
one action consists of Sup

1 ，Sdn
1 ，Slt

1，and Srt
1 corre-

sponding to upward motion and so on. A set of states
S2 from which the robot can achieve S1 by only one
action consists of four ellipsoids Sup

2 ，Sdn
2 ，Slt

2，and
Srt

2 which are projected onto eight regions in Figure
3.

This figure can be interpreted as follows: the top-
left region Sdn

2 indicates downward motion, and the
robot takes this action. Then, the robot seems to en-
ter a state Srt

2 of which action is rightward. However,
this state is classified into the same S2, therefore, the
robot continues to take the same action (downward)
until entering the state Srt

1 belonging to S1, and s-
tate transition occurs3 This means that the same input

3Even if the robot changes its actions when it crosses the
state boundary between Sdn

2 and Srt
2 , the consequent actions

are iterations of downward and leftward ones, and finally it

vector, the absolute coordinate of the robot location
here, might be different depending on its action. We
sometimes have a similar situation that we failed to
recognize the intersection which we usually cross over
from the certain direction when we cross it from the
different direction.

The top-left quarter in the figure can be originally
either downward or leftward motion, and accidentally
classified into one by selecting the shorter one of the
distances from the center of two ellipsoids.

Let us consider to apply the existing methods such
as [6, 7] to the same problem. Since the length of one
action is fixed in these methods, the size of the ob-
tained state space depends on the length of one action
and/or the size of the world. However, the size of the
state space would not be so affected by these parame-
ters in our method since the length of one action can
be variable. This suggests that if the topology of an
environment is similar to another, the state spaces ob-
tained by our method are not so different regardless
of the absolute size of the environment.
3.2 Simulation (II)
3.2.1 Task and environment

Closeup

Possible Actions

Figure 4: Task

As a more complicated task for the robot, we con-
sider an environment shown in Figure 4 where the task
for a mobile robot is to shoot a ball into a goal (same
as in [9]). The environment consists of a ball and a
goal, and the mobile robot has a single TV camera.
The robot does not know the location and the size of
the goal, the size and the weight of the ball, any cam-
era parameters such as focal length and tilt angle, or
kinematics/dynamics of itself.

We performed the computer simulation with the
following specifications. The field is a square of 3.0m
× 3.0m. The goal post is located at the center of the
top line of the square (see Figure 4) and its height
and width are 0.23m and 0.9m, respectively. The
robot is 0.31m wide and 0.45m long and kicks a ball
of diameter 0.09m. The maximum translation veloc-
ity is 1.1m/s, and the maximum angular velocity is

achieves the goal state with physically the same steps.

4.8 rad/s. The camera is horizontally mounted on the
robot (no tilt), and its visual angle is 36 degrees. The
velocities of the ball before and after being kicked by
the robot is calculated by assuming that the mass of
the ball is negligible compared to that of the robot.
The speed of the ball is temporally decreased by a
factor 0.8 in order to reflect the so-called “viscous fric-
tion.” The values of these parameters are determined
so that they can roughly simulate the real world.

The robot can select an action to be taken in the
current state of the environment. The robot moves
around using a PWS (Power Wheeled Steering) sys-
tem with two independent motors. Since we can send
the motor control command to each of the two motors
separately, we construct the action primitives in terms
of two motor commands ωl and ωr, each of which has
3 sub-actions, forward, stop, and back. All together,
we have 9 actions in the action primitive set A. Actu-
ally, a stop motion does not causes any changes in the
environment, we do not select this action primitive.

In computer simulation, we take into account two
sources of disturbances which make the method un-
stable. They are delays due to sensory information
processing and uncertainty of action execution. The
contents of the image processing are color filtering (a
ball and a goal are painted in red and blue, respective-
ly), edge enhancement, localizing and counting edge
points, and vector calculation [9]. We have been using
a pipeline image processor for the real robot experi-
ments and it takes about 33 ms to perform these pro-
cesses, that is, a period of one action primitive. The
latter is caused by the delay necessary to stabilize mo-
tor rotation after sending motor commands, and it is
about 100 ms. Therefore, the uncertainty of the ac-
tion execution increases when motor commands often
change.

3.2.2 Results

x

512

480

x

x
1

2

4
hr hl

x =3 2

hl hr+

x = 5 x3

hl hr-

Figure 5: Input vector consisting of five parameters

The size of the observed image is 512 by 480 pix-
els, and the center of image is the origin of the image
coordinate system (see Figure 5). An input vector x
for a shooting task consists of:

• x1: the size of the ball, the diameter that ranges
from 0 to about 270 pixels,

(a) the first stage (SF
1 = S1)

(b) the second stage (S1 + S2)

Figure 6: Construction process of the state space for
the shooting robot

• x2: the position of the ball ranging from -270 to
+270, considering the partial observation,

• x3: the size of the goal, the height average of the
left and right poles (or ends in image) that ranges
from 0 to 480 pixels,

• x4: the position of the goal, the average of the
positions of the left and right poles (or ends in
image) that ranges from -256 to +256, and

• x5: the orientation of the goal, the ratio of the
height difference between the left and right poles
(or ends) to the size of the goal x3. x5 ranges
from -1.00 to +1.00.

As a result of the state space construction, we can
obtain the state transition graph simultaneously. Ac-
tually, we have other states than obtained by the
method such as “only a ball is observed” or “only a
goal is observed.” State transitions from these states
to the obtained states is possible if they can be real-
ized by only one action. Otherwise, it seems difficult
to find a path because the robot might have many hid-
den states during the desirable state transition. For
example, the robot exists between a ball and a goal,
and the robot must take a circular motion so that it
can get a position from where the ball and the goal
can be observed simultaneously. During such a mo-
tion, the robot might have many hidden states. We
do not deal with the “hidden states” problem here.

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250

G
oa

l H
ei

gh
t (

pi
xe

l)

Ball Diameter (pixel)

state boundary

F

F

B

B

1

2

2

2

Figure 7: 2-D projection of the result of state space
construction

Figure 6 shows the process of state space division.
The state space in terms of ball size, ball position, and
goal size is indicated when the position and the orien-
tation of the goal (x4 and x5) are both zeros (in front
of the goal). In the first step, only one big ellipsoid
(SF

1) is obtained that corresponds to the forward mo-
tion (Figure 6 (a)). In the second step, two ellipsoids
(SF

2 and SB
2) corresponding to forward and backward

motions, respectively, are obtained and they construct
(S2) (Figure 6 (b)).

For the sake of readers understanding, Figure 7
shows the projected map of the final result onto the
ball-size and goal-size space when other parameter-
s are all zeros. The intensity indicates the order of
the division: the darker is the earlier. Labels “F”
and “B” indicate the motions of forward and back-
ward, respectively, and subscript shows the number
of state transitions towards the goal. Grid lines in-

dicate the boundaries divided by programmer in the
previous work [9]. The remainder of the state space
in Figure 7 corresponds to infeasible situations such
as “the goal and the ball are observed at the center
of image, and the size of the goal is large, but that of
the ball is small” although we had not recognized such
a meaningless state in the previous work. As we can
see, the sensor space categorization by the proposed
method (a set of ellipsoids) is quite different from the
one designed by the programmer (rectangular grids)
in the previous work [9].

Table 1: Comparison with existing methods

Number of Search Success
States Time Rate (%)

Previous work[9] 243 500M∗ 77.4
Proposed method 33 41M 83.3

cf. Fixed action length 107 222M 71.5

* indicates Q-learning time.

Table 1 compares the method with existing ones.
Success rates are obtained from 5000 trials for each,
and the number of states are counted when both the
ball and the goal are observed. The search time in the
previous work [9] means the learning time in terms of
the period of one action primitive (33 ms). It takes
about 500M (M=106) ticks because the size of the
state space is much larger. The proposed method per-
forms better than the previous work. The reductions
of the size of the state space and the search time are
about 1/8 and 1/12 of the previous work, respective-
ly. For the reference, we show the result by the fixed
action length of 33 ms. Compared with the previous
work [9], the size of the state space and the search time
are reduced into the half, but the success ratio has not
been improved because the simulation has been done
taking into account the delays of image processing (33
ms) and the latency of motor rotation (about 100 ms),
and these effects occur when state changes, the num-
ber of which is so many due to the fixed length action.
While, the size of the state space by the proposed
method is small, and the size of each state is consider-
ably larger, which is preferable for the stability of the
control because the effect of sensor information pro-
cessing delay becomes negligible and the stability of
motion execution improves due to no changes of ac-
tion commands inside one state. Only the problem
due to large volume of each state is that the possibili-
ty of the incorrect merging of input vectors into wrong
states seems high. This might be partly a reason why
the success rate is less than 90%.

3.3 Experiments with a real robot
Figure 8 shows a picture of the real robot with a

TV camera (Sony handy-cam TR-3) used in the re-
al experiments. The system used in the experiments
is the same one in [9]. The experiment consists of
three stages. First, we collect the data obtained by
real robot motions. Next, we construct the state and
action spaces based on the sampled data. Finally, we

Figure 8: Our real robot

control the robot based on the acquired the state and
action spaces and their transition graph.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

G
oa

l H
ei

gh
t (

pi
xe

l)

Ball Diameter (pixel)

state boundary

F

F
F

F

FLF

1

2

2

2

2
3

Figure 9: Result of state space construction for the
real robot

The number of sampled input vectors is about
20,000 which corresponds to about 10 minutes. Figure
9 indicate the projection of the constructed state space
in terms of the sizes of the ball and goal (x1 and x3)
when the ball and the goal are observed at the center
of image (x2 = x4 = x5 = 0). Labels of regions are
the same as in Figure 7, and “FL” means left forward
motion. Due to the capacity of the image processor,
the image size is reduced into 1/16 (128 × 120), and
values of each components of the input vector is also
reduced into 1/4. The whole state is separated into
10 states, which is smaller than in simulation because
of smaller number of experiences.

We applied the result to a real robot. Success ratio

Figure 10: The robot succeeded in finding and shoot-
ing a ball into the goal

Figure 11: Images taken by the robot during the task
execution

is worse than the simulation because of the distur-
bances due to several causes such as eccentricity of
the ball centroid and slip of the tires that make the
ball or the robot move into unpredictable directions.
Figure 10 shows how a real robot shoots a ball into a
goal by using the state and action map obtained by
the method. 16 images are shown in raster order from
the top left to the bottom right in every 1.5 seconds, in
which the robot tried to shoot a ball, but failed, then
moved backward so as to find a position to shoot a
ball, finally succeeded in shooting. Figure 11 shows a
sequence of images taken by the robot during the task
execution shown in Figure 10. Note that the backward
motion for retry is just the result of learning and not
hand-coded.
3.4 Discussion

There are two kinds of trade offs:

• If the sampling data (input vectors) are biased,
parameters of the ellipsoids change, which affects
the size of the state space and the search time,
and as a result a behavior also changes. In our
method, we randomly initialized robot positions
so that it can observe both ball and goal. Howev-
er, there is no guarantee of no biases. Generally,
for the less biased data, the more data and longer
time are necessary. An effective method for da-
ta sampling should be developed, but there is a
trade-off between the effectiveness and a priori
knowledge on the environment and the robot.

• We used a concentration ellipsoid [12] as a model
of cluster (state) of input vectors, inside which a
uniform distribution is assumed. However, actu-
al distributions are not always uniform. Ideally,
situations that input vectors to be included in
the model are not included and vise versa should
be avoided. Complete modeling seems impossible
because of uncertainties in real world. A model
which includes much less error but needs compli-
cated procedures to obtain the model parameters
and/or much memory to store and recall them
is not desirable because of realtime execution of
robot actions. We should find a model taking into
account these issues.

4 Concluding Remarks
We have proposed a method for constructing the

state and action spaces based on experiences, and
shown the validity of the method with computer sim-
ulations and real robot experiments. As described in
Introduction, we regard the problem of state and ac-
tion space construction as “segmentation” problem.
We suppose that a physical body which can perceive
and take actions in the environment is a necessary con-
dition in order for the robot to solve this problem4.

4In computer vision, “segmentation problem” has been at-
tacked since the early stage as “image segmentation problem.”
Since the evaluation of the results are subject to programmers,
the validity and limitation of the method seem to have been left
ambiguous. From a viewpoint of robotics, segmentation of sen-
sory data from the environment depends on the purpose (task),

The state and action spaces obtained by our method
(Figure 9 indicates a projection of such a space) cor-
respond to the subjective representation of the world
for the robot to accomplish a given task. Although
it seems very limited, such a representation, an inside
view of the world for the robot, shows how the robot
segments the world. This view is intrinsic to the robot,
and based on it the robot might make a subjective de-
cisions when facing with different environments, and
further the robot might develop its view through its
experiences (interactions with its environment). That
is, there might be a possibility that the robot acquires
the subjective criterion, and as a result, an emerged
behavior can be observed as “autonomous” and/or
“intelligent.” To change the possibility into the real,
we have to attack the following issues:

• The sensory information in our task is an image
of a red ball and a blue goal filtered by color im-
age segmentation, and their image features such
as positions, areas, and orientation are used as
axes of the state space. Generally, selection of
features from a ordinary images is considerably a
hard problem. A problem which feature is nec-
essary to accomplish a give task might be much
harder when such a feature changes depending
on situations. Since use of all possible sensory in-
formation seems impossible, selection of features
obtained by the given capability for feature de-
tection is more important. For example, behavior
acquisition based on the visual motion cues [13]
and based on stereo disparity and motion cues
[14] have been proposed. A learning mechanism
for selecting features from the sensory data pro-
cessing available should be developed.

• Coping with “hidden” states is another essen-
tial problem although we have not dealt with it
here. This corresponds to coping with the tempo-
ral complexity of the state space structure while
the above with the spatial complexity of it. How
many differential operations of feature vectors are
necessary and sufficient for the given task? An
essential problem is selection of input vectors in-
cluding the temporal axis.

• We can regard that as a result of state space con-
struction, the action space also is temporally ab-
stracted by defining an action as a sequence of
action primitives and parameterizing its length.
Since our robot has only two DOFs (degrees of
freedom) spatial abstraction of action space is not
necessary. However, spatial abstraction of action
space is generally needed if the robot has many D-
OFs. For example, we human beings easily grasp
something by controlling a very simple parameter
(close or open your hand) although it has many
DOFs physically. Both spatial and temporal ab-
straction of action space is necessary with state
space construction.

capabilities (sensing, acting, and processing) of the robot, and
its environment, and its evaluation should be done based on the
robot performance.

References
[1] J. H. Connel and S. Mahadevan, editors. Robot Learn-

ing. Kluwer Academic Publishers, 1993.

[2] C. J. C. H. Watkins and P. Dayan. “Technical note:
Q-learning”. Machine Learning, 8:279–292, 1992.

[3] R. S. Sutton. “Special issue on reinforcement learn-
ing”. In R. S. Sutton(Guest), editor, Machine Learn-
ing, volume 8, pages –. Kluwer Academic Publishers,
1992.

[4] M. Mataric. “Reward functions for accelerated learn-
ing”. In Proc. of Conf. on Machine Learning-1994,
pages 181–189, 1994.

[5] D. Chapman and L. P. Kaelbling. “Input generaliza-
tion in delayed reinforcement learning: An alogorithm
and performance comparisons”. In Proc. of IJCAI-91,
pages 726–731, 1991.

[6] A. Dubrawski and P. Reingnier. Learning to catego-
rize perceptual space of a mobile robot using fuzzy-art
neural network. In Proc. of IEEE/RSJ/GI Interna-
tional Conference on Intelligent Robots and Systems
1994 (IROS ’94), pages 1272–1277, 1994.

[7] B.J.A. Kröse and J.W.M. Dam. Adaptive state space
quantisation for reinforcement learning of collision-
free navigation. In Proc. of IEEE/RSJInternational
Conference on Intelligent Robots and Systems 1992
(IROS ’92), pages 1327–1332, 1992.

[8] H. Ishiguro, R. Sato, and T. Ishida96. Robot oriented
state space construction. In Proc. of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems 1996 (IROS96), pages ???–???, 1996.

[9] M. Asada, S. Noda, S. Tawaratsumida, and K. Hoso-
da. Vision-based reinforcement learning for purposive
behavior acquisition. In Proc. of IEEE Int. Conf. on
Robotics and Automation, pages 146–153, 1995.

[10] H. Inoue. Research program on mechanisms for
emergent machine intelligence. In G. Giralt and
G. Hirzinger, editors, Robotics Research, The Seventh
International Symosium, pages 162–170. Springer,
1996.

[11] S. D. Whitehead. “A complexity analysis of coopera-
tive mechanisms in reinforcement learning”. In Proc.
AAAI-91, pages 607–613, 1991.

[12] H. Cramër. Mathematical Methods of Statistics.
Princeton University Press, Princeton, NJ, 1951.

[13] T. Nakamura and M. Asada. Motion sketch: Acqui-
sition of visual motion guided behaviors. In Proc. of
IJCAI-95, pages 126–132, 1995.

[14] T. Nakamura and M. Asada. Stereo sketch: Stereo
vision-based target reaching behavior acquisition with
occlusion detection and avoidance. In Proc. of IEEE
Int. Conf. on Robotics and Automation, pages 1314–
1319, 1996.

