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Abstract

This paper discusses how so-called “intelligence” can be
emerged as a cognitive process, that is, how an agent can
develop its internal representation according to the com-
plexity of the interactions with its environment through
its capabilities of sensing and acting. The complexity
might be increased by the existence of other active a-
gents, and the development can be possible depending
on how the agent can find a new axis in the internal
representation in trying to accomplish a given task in
the environment including other agents. As an example
of such a development, I show a case of a vision-based
mobile robot of which task is to shoot a ball into a goal
with/without a goal keeper along with preliminary ex-
periments by real robots.

1 Introduction
The ultimate goal of my research is to design the

fundamental internal structure inside physical entities
having their bodies (robots) which can emerge complex
behaviors through the interactions with their environ-
ments. The consequences of behaviors can be regarded
as “intelligent” or “emergent” from a viewpoint of the
observer [1]. This means that to design so-called “intel-
ligence” or “ emergence” explicitly and directly is a very
hard problem. In order to emerge the intelligent behav-
iors, bodies are indispensable. I consider the followings
in mentioning “having bodies”:

1. Sensing capability to sense something from the en-
vironment where diverse natures are involved.

2. Acting capability to emerge actions able to influ-
ence the environment.

3. Sensing and acting are tightly coupled and not sep-
arable.

4. In order to achieve the goal (the final goal is to
survive?), the sensor and actuator spaces should be
abstracted under the resource bounded conditions
(memory, processing power, controller etc.).

5. The abstraction depends on both the fundamental
embodiments inside the agents and the experiences
(interactions with their environments). The con-
sequences of the abstraction are the agent-based
subjective representation of the environment, and
its evaluation can be done by the consequences of
behaviors.

Design principles are

• the design of the internal structure of the agent
which has a body able to interact with its environ-
ment, and

• the policy how to provide the agent with tasks, sit-
uations, and environments so as to develop the in-
ternal structure.

In the following, first I show a method for so-called
“segmentation” problem which is one of the most funda-
mental problems in AI and Robotics. Then, based on it
I discuss the complexity of the environments where the
robot cam emerge intelligent behaviors, especially the
relationship between the complexity and the existence
of other agents.

2 Reinforcement Learning and a Soccer

Robot
For the readers’ understanding of the fundamental

problem, “segmentation,” I show our first achievement
of “soccer robot” 1 [2]. By applying the vision-based re-

1Someone claimed that it was not the soccer robot but just
a shooting robot when I published the first paper. There were



inforcement learning method, the robot learned to shoot
a ball into a goal. The state space consists of the sizes
and the positions of both the ball and the goal, and the
orientation of the goal in the image plane (see Fig.1).
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Figure 1: State space consisting of a ball and a
goal

The action space consists of combinations of two mo-
tor commands each of which corresponds to one of for-
ward, stop, and backward motions. Totally, we have
nine kinds of actions. We assume that the robot does
not know the physical meaning of these actions. The
main problem we faced with is that the constructed s-
tates and actions do not correspond to each other. Tra-
ditional notions of state in the existing applications of
the reinforcement learning schemes fit nicely into de-
terministic state transition models (e.g. one action is
forward, backward, left, or right, and the states are en-
coded by the locations of the agent). However, it seem-
s difficult to apply such deterministic state transition
models to real robot tasks. In real world everything
changes asynchronously [3].

Figure 2 indicates this problem, the area representing
the state “the goal is far” is large, therefore the robot
frequently returns to this state if the action is forward.
This is highly undesirable because the variations in the
state transitions is very large, consequently the learning
does not converge correctly.

To avoid this problem, we reconstruct the action s-
pace as follows. Each action is regarded as an action
primitive. The robot continues to take one action prim-
itive until the current state changes. This sequence of
the action primitives is called an action.

Figure 3 shows some kinds of behaviors obtained by
our method. The difference in character of robot play-
ers due to the discounting factor γ is shown in (a) and
(b) in which the robot started from the same position.

two reasons for us to call it soccer robot. First, we were worrying
about that people might associate gun-shooting when they heard
of “shooting robot.” Second, we stressed ourselves to build up a
team of soccer playing robots by declaring “soccer robot.” How-
ever, we have published few papers entitled something “soccer
robot.”
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Figure 2: A state-action deviation problem
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Figure 3: Some kinds of behaviors obtained by
our method

In the former, the robot takes many steps in order to
ensure the success of shooting because of a small dis-
count, while in the latter the robot tries to shoot a ball
immediately because of a large discount. In (c), the
robot started at a position from where it could not view
a ball and a goal, then found the ball by turning, drib-
bled it towards the goal, and finally shot the ball into
the goal. This is just a result of learning. We did not
decompose the whole task into these three tasks.

Reinforcement learning is generally regarded as one
of the unsupervised learning methods. However, it need-
s the well defined state and action spaces so that the
learning can converge, which makes it difficult to be re-
garded as unsupervised. That is, the state space tells
the robot how to segment the world. The more essen-
tial problem than “state-action deviation” seems that
the robot should construct the state and action spaces
for itself.



3 State space segmentation
The state space construction problem is divided into

two subproblems:

1. how to find the feature vector which includes the
information necessary and sufficient for the robot
to achieve the goal, and

2. how to segment the selected feature vector into s-
tates for the learning.

In the case of soccer robot [2], the segmentation problem
might be much easier because the ball (red) and the goal
(blue) regions in the image have been already extracted.
For the first subproblem, we applied the principal com-
ponent analysis for the fundamental region features such
as area, centroid, and moments from many sequences of
image data, and as a result, the first five principal com-
ponents correspond to ball size, ball position, goal size,
goal position, and goal orientation [4].

Basic ideas to cope with the second subproblem, how
to segment the selected feature vector, are that we de-
fine a state as a cluster of of input vectors from which
the robot can reach the goal state or the state already
obtained by a sequence of one kind action primitive re-
gardless of its length, and that this sequence is defined
as one action.

The initial state space consisting of the goal state and
the other is iteratively separated into several states. Fig
4 and Table 1 show the results. In the figure, the final
state space is projected into two dimensional space in
terms of the ball size and the goal size (when their posi-
tions are frontal and the orientation of the goal is hori-
zontal) where the gird lines indicate state segmentation
designed by the programmer that are quite different in
shape and size from the obtained states. The success
rate has been improved although the number of states
is drastically decreased, and therefore the search time is
very short.

Table 1: Comparison with existing methods

Number of Search Success
States Time Rate (%)

Previous work[2] 243 500M∗ 77.4
Proposed method 33 41M 83.3

cf. Fixed action length 107 222M 71.5

* indicates Q-learning time.

This suggests the followings:

1. The state space designed by the programmer is not
always appropriate for the robot to accomplish a
given task. Robot should construct the state space

Figure 4: 2-D projection of the result of state s-
pace construction

from its experiences (interaction with its environ-
ment) for itself, and this problem can be considered
as “segmentation problem.” How to see the world
depends on the agent (capabilities of sensing and
action) and its environment.

2. Because of the inter-dependence between state and
action spaces2 which resembles to the well known
“chicken and egg” problem, the minimum con-
straint should be introduced. Here, we adopt “ac-
tion primitive” as a minimum constraint, and pa-
rameterize its length as one action until states
change. This can be regarded as a process of par-
allel construction of the state and action spaces.

The latter can be regarded as temporal abstraction of
the action space under the constraint of “action primi-
tive.” However, abstraction is mainly based on percep-
tion since the number of degrees of freedom is too few
(just two) to abstract the action space.

We, human beings, can easily grasp an object by our
hand directly when it is very close to ourselves, by reach-
ing out our arm towards it when it is further, and by
standing up and approaching to it when it is much fur-
ther. Although the number of physical degrees of free-
dom we have is many and therefore it is actually a very
difficult problem for the robot to control all of them, we

2Generally, the design of the state space in which necessary
and sufficient information to accomplish a given task is included
depends on the capability of agent actions. On the other hand,
the design of the action space also depends on the capability of
perception.



seem to easily perform the task. When grasping, one
degree of freedom (open-close) seems sufficient regard-
less of the physical number of degrees of freedom of our
hand. How can we acquire such abstraction of the action
space? I have claimed that abstraction (segmentation)
of the sensory information such as vision depends on
the action capability of the agent. On the other hand,
abstraction (segmentation) of the action space also de-
pends on the sensing capability of the agent. It seems
important to decide what is the minimum action capa-
bility necessary to abstract the both.

The essence of “having a body” is that the agent
abstracts a variety of sensing modalities and movements
with many degrees of freedom in order to achieve the
goal (the ultimate goal seems to survive?) under the
constraint of resource bounds as a physical entity. The
consequences of behaviors after such abstraction can be
seen “intelligent.” In the following, I try to explain in
case of vision that the complexity of the environment,
especially the existence of other agent will cause to level
up the abstraction.

4 Emergence, Intelligence, and Exis-

tence of Other Agents
Since each species of animals can be regarded to have

its own intelligence, difference of intelligence seems to
depend on the agent (capabilities in sensing, acting, and
cognition) and its environment. If agents have the same
bodies, differences or levels in intelligence can occur in
the complexity of interactions with their environments.
In case of our soccer playing robot with vision, the com-
plexity of interactions may change due to other agents
in the field such as agents of common side, opponents,
judges and so on. In the following, I attempt at show-
ing my view about the levels of complexity of interac-
tions, especially from a viewpoint of the existence of
other agents. To simplify the discussion, the following
assumptions are adopted: 1) the agents has a vision sen-
sor which can observe the consequences of the agent’s
actions, 2) the agent has n-DOFs, each of which has its
own servo loop and/or the result of motor command exe-
cution can be measured, and 3) the environment almost
consists of stationary objects, and other few objects can
be in it as discussed below.

1. Self definition (boundary of the body): The area
in which an agent capable of action can directly
correlate between motor commands and visual in-
formation.

2. Static environment: By direct correlation between
motor commands the agent sent and the visual in-
formation observed during the motor command ex-

ecutions, the agent can discriminate the static en-
vironment from others.

Theoretically, discrimination between “self body”
and “static environment” is a hard problem because
the definition of “static” is relative and depends on
the selection of the base coordinate system which
also depends on the context of the given task. From
the third assumption, many visible parts in the im-
age can be regarded as parts of the static environ-
ment. The following is an example based on this
assumption.

Nakamura and Asada [5] proposed “motion sketch”
as an internal representation of vision-based mo-
bile robot in behavior learning by optical flow. In
their early stage, the action space is categorized
by the direct correlation between motor command-
s and optical flows against the static environment.
Conversely, the static environment can be discrimi-
nated as areas which can be directly correlated with
motor commands.

Without the third assumption, the discrimination
has less meaning. Suppose a space robot of which
base coordinate system can be set at arbitrary lo-
cation in the space.

Hosoda and Asada [6] proposed an adaptive visual
servoing method which performs an on-line estima-
tion of image Jacobian by tracking a visual target
and a feedforward control of the robot arm to ac-
complish a given task (trajectory tracking) with-
out any a priori knowledge about the structure of
the robot arm (kinematics) or camera parameter-
s. This means that the parts which has a direct
correlation with motor commands such as the self
body or the static environment can be found in
a sense of that the robot can estimate the image
Jacobian on it. Without the third assumption, fur-
ther discrimination seems difficult from only visual
information because any part of the body can be
a part of the static environment (suppose a space
robot, again). If the static environment has an im-
portant role for the robot to accomplish a given
task, another sensation such as acceleration would
be helpful to support the perception of the ground
plane.

3. Passive agents: as a result of actions of the self or
other agents, passive agents are moving or stop. In
Asada95b, the ball is a passive agent. In our work
of autonomous sensor space segmentation [4], the
ball and the goal (a part of the static environment)
are included, therefore the complexity of the envi-
ronment can be regarded higher than a task of goal



achieving in a static environment.

Takahashi et al. [7] proposed a method of incre-
mental (on-line) sensor space separation by which
a real robot could learn to shoot a ball into a goal in
one and half hours. In their method, a ball is mod-
eled as a static environment until the robot reach
it, then the ball is modeled as a part of self body
because its shape and size are constant. Therefore,
linear combination model can cope with it, how-
ever, the current method cannot cope with other
active agents because of nonlinearity of their ac-
tions.

4. Active (other) agents: active other agents do not
have a simple and straightforward relationship with
the self motions. In the early stage, they are treat-
ed as noise or disturbance because of not having
direct visual correlation with the self motor com-
mands. Later, they can be found as having more
complicated and higher correlation (coordination,
competition, and others). The complexity is dras-
tically increased.

As discussed above, the complexity of the interaction
with environment seems to develop the internal struc-
ture inside the robot, and as a result, robot may emerge
a variety of behaviors. Unfortunately, we have not pro-
posed an exact unified design theory to realize such an
internal structure. As one of the technical issues for the
realization, a method for understanding other agents’
behaviors is necessary in order to make clear the compli-
cated relationship between other agents’ behaviors and
self ones. We have been trying to discriminate other a-
gent’s behavior struggling with the limitation of partial
observation due to visual sensing (the visual angle of
the robot is less than 60 degs, therefore more than five
sixthes of surrounding information is lost) [8].

5 Development and Guidance
Dynamical systems approach seems very attractive

as a model of development that essentially involves dy-
namic changes [9]. The existence of strange attractors
and their changes resemble that of affordance and its
organization [10]. However, the design policy for the
generation of strange attractors and their control does
not seem evident. Therefore, the approach seems un-
satisfactory from a viewpoint of robotics research.

We have argued about the design of the internal
structure capable of development. The another issue
is something related to guidance. There are two kinds
of guidances. One is an explicit guidance, that is, teach-
ing what to do to accomplish a given task at each step,
what’s wrong, what’s correct, and so on. The other is an

implicit guidance, no direct teaching, but providing en-
vironments or situations so as to make the development
of the robot smooth and easy.

We call such a policy “Learning from Easy Missions”
(in short, LEM) to make robots learn smoothly and
efficiently. In [11], we have set up situations in the order
of easiness by assuming the continuity of the state space.
Theoretically, the learning time which is usually in the
exponential order of the size of the state space can be
reduced into the linear order.

Another example of LEM is the study on how the
learning agent can improve its performance by the be-
havior of other agents [12]. The task is to shoot a ball
into a goal avoiding a goal keeper (an opponent). In-
tuitively, we can see the learning agent cannot learn at
all if the opponent has the optimal policy to block the
learner because of no success. Therefore, we started
with a stationary opponent (stationary obstacle), and
then increase its velocity until the maximum one of the
agent. Figure 5 shows the success rates in terms of
number of trials 3 with and without LEM, where sol-
id and broken curves indicate both cases, respectively.
With LEM, the agent started learning with a station-
ary opponent, and then with one of half speed (from the
first arrow), and finally with one of the maximum speed
(from the second arrow). While, without LEM, the a-
gent starts from an opponent with the maximum speed,
therefore the success rate is low, and has not converged
to the level with LEM. This figure tells that LEM seems
essential for the learning from other competitive agents.
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Figure 5: Efficient learning by LEM

3one trial ends when the agent succeeds in shooting or crosses
over the field line



6 Concluding Remarks
Along with examples of soccer robots, I have claimed

the importance of the design of the internal structure
which reflects the complexity of the interactions with
the agent’s environment, and of the scheme of providing
the agent with tasks, situations, and environments that
encourage the agent to develop the internal structure.

Although the task and the environment seem simple
and limited, the design of the soccer robots includes a
variety of the fundamental and important issues as a
standard problem in AI and robotics [13]. I expect that
more agents in the field cause much higher interactions
among them, which emerges a variety of behaviors.

I appreciate fruitful discussions with Dr. Koh Hosoda
and other members in my laboratory.
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