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Abstract

In this paper, we proposed a method by which a
stereo vision-based mobile robot learns to reach a tar-
get by detecting and avoiding occlusions. We call the
internal representation that describes the learned be-
havior “stereo sketch.” First, an input scene is
segmented into homogeneous regions by the enhanced
ISODATA algorithm with MDL principle in terms of
image coordinates and disparity information obtained
from the fast stereo matcher based on the coarse-to-
fine control method. Then, in terms of the segmented
regions including the target area and their occlusion
status identified during the stereo and motion dispari-
ty estimation process, we construct a state space for a
reinforcement learning method to obtain target reach-
ing behavior. As a result, the robot can avoid obstacles
without explicitly describing them. We give the com-
puter simulation results and real robot implementation
to show the validity of our method.

1 Introduction

Realization of autonomous agents that organize
their own internal structure in order to take actions for
their goal achievement is the ultimate goal of Robotics
and AI. That is, the autonomous agents have to learn
through the interaction with the environment via their
perception and actions. There have been a variety of
approaches to analyze the relationship between per-
ception and action.

In computer vision area, so-called “purposive ac-
tive vision paradigm” [1, 2, 3] has been considered as
a representative form of this coupling since Aloimonos
[4] proposed it as a method that converts ill-posed vi-
sion problems into well-posed ones. Purposive vision
does not consider vision in isolation but as a part of
complex system that interacts with world in specific
ways [1]. However, many researchers have been using
so-called active vision systems in order to reconstruct
3-D information from a sequence of 2-D images given
the motion information of the observer or capability
of controlling the observer motion. Furthermore, very
few have tried to investigate the relationship between
motor commands and visual information. Sandini et
al. [5] built a robot which tried to balance the flow
seen from two cameras facing laterally. The robot

motion are determined by the control law designed by
the programmer. Therefore, their robot cannot im-
prove the performance of its behavior through the in-
teraction between the robot and its environment. Ku-
niyoshi et al. [6] constructed an active tracking system
with vergence controlled stereo cameras supported by
the Extended Zero Disparity Filter in order to realize
robust stereo tracking and target pursuit behaviors
of the robot. However, their robot requires another
image processing module in order to avoid obstacles.
Recently, Huber and Kortenkamp [7] used a real-time
stereo vision system [8] to pursue moving agents while
still performing obstacle avoidance. Since their stereo
matching is based on edges extracted by a Laplacian-
Gaussian filter, they have the following drawbacks:
The system likely looses the target because tracking
module is easily attracted by higher texture areas than
the current target one, and therefore they cannot cope
with any occlusions of the target area by other object-
s. Since the system try to keep the target in 3-D space
at a fixed distance, they cannot cope with changes in
scale of the target image (a group of edges) due to
motions of the target and/or the robot, nor reach the
target.

In robot learning area, many researchers have only
shown computer simulations, and only a few real robot
applications which are simple and less dynamic [9, 10]
are reported. In these works, proximity sensors such
as bumper and sonar are used. Therefore, their tasks
are limited to local, reflexive, and simple ones. The
use of vision in the reinforcement learning is very rare
due to its high costs of sensing and processing.

In this paper, we propose a stereo vision-based be-
havior learning method. As a real-time stereo match-
ing method, we use a block correlation of image in-
tensity [11], by which the capability of stereo and mo-
tion disparity estimation are much improved than only
edge-based approach. By adopting the coarse-to-fine
control of stereo [12, 13] and motion disparity estima-
tion techniques, we can cope with changes in scale due
to target and/or the robot motions. Further, we apply
a reinforcement learning method to obtain a reach-
ing behavior for the environmental adaptation using
a well-defined state space consisting of occlusion sta-
tus identified during the stereo and motion disparity
estimation process.

The remainder of this article is structured as fol-



lows: In the next section, we describe basic ideas of
stereo sketch. Then, we give explanations of visual be-
haviors, the method of learning, and state space defini-
tion. Finally, we give computer simulations, real robot
implementation results, and concluding remarks.

2 Stereo Sketch

The interaction between an agent and its environ-
ment can be seen as a cyclical process in which the
environment generates an input (perception) to the
agent and the agent generates an output (action) to
the environment. If such an interaction can be for-
malized, the agent would be expected to carry out
actions that are appropriate to individual situation-
s. “Motion sketch” we have proposed in [14] is one
of such formalizations of interactions by which a one-
eyed vision-based learning agent with real-time visual
tracking routines behaves adequately against its envi-
ronment to accomplish a variety of tasks.

Here, we add one more camera on the robot and
realize a real-time stereo-vision system with the same
tracking routines.

We prepare image processing procedures for esti-
mating stereo disparity and for region segmentation
and tracking based on the estimated disparity map
as visual behaviors. The stereo and motion dispar-
ity information not only improves the tracking per-
formance but also provides useful information about
occlusion and disocclusion in terms of which we con-
struct a state space.

We prepare a set of motor commands which are
organized into a sequence of motor commands through
the learning process. We call such sequences motor
behaviors. We assume that the robot initially has no
knowledge about physical meaning of individual motor
commands.

The robot obtains the relationship between the sit-
uation identified by visual behaviors and the motor be-
haviors applying a reinforcement learning algorithm,
and acquires the target reaching behavior. As a result,
the robot realizes obstacle avoidance without explicit-
ly describing them. We call an internal representation
obtained by this behavior acquisition method stereo
sketch. Figure 1 shows the procedure of the proposed
method by which stereo sketch is obtained as the
representation of the tight coupling between visual
behaviors and motor behaviors.

3 Visual Behaviors

. As visual behaviors, we prepare the following
image processing procedures using a real-time visu-
al tracker by a simple block correlation based on SAD
(Summation of Absolute Difference) [11]:

1. Obtaining a disparity map based on a coarse-
to-fine stereo matching procedure from a pair of
stereo images.

2. Decomposing an input scene into some region
fragments by using the enhanced ISODATA al-
gorithm with MDL principle in terms of image
location and disparity.
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Figure 1: Stereo sketch

3. Tracking the area including the target (specified
by the human operator or by selecting the region
closer to the robot) and its neighbor regions be-
tween consecutive frames and identifying the oc-
clusion status of the target region based on stereo
and motion disparity information.

3.1 Stereo Matching

A coarse-to-fine stereo matching method [12, 13] is
implemented based on block correlation with SAD. In
the first stage, each of a coarse image pair is tessellated
into 8×5 grids, each grid consists of 16×16 pixels and
the search area is 64×24 pixels to cope with rough
stereo camera calibration. In the second stage, each
of a fine image pair is tessellated into 16×10 grids,
each grid consists of 16×16 pixels and the center of
the search area (32×24 pixels) for each grid is located
at the position where the stereo correspondence in the
coarse matching stage is found.

Figure 2 shows the stereo matching result where
three pairs of the left and right images are stacked in
three rows, respectively. Due to the hardware limita-
tion, we are currently using the middle (coarse image:
128×120 pixels) and large (fine image: 256×240 pix-
els) scaled image pairs. The final matching result is
shown at the right-bottom as a disparity map.

3.2 Region Segmentation and Tracking

In order to reach the target area, the robot always
needs to identify the area to be tracked which might be



Figure 2: A coarse-to-fine stereo matching

partially or completely occluded by other objects. To
cope with this problem, we prepare region segmenta-
tion and tracking routines as higher visual behaviors.

3.2.1 Region segmentation

In order to segment the input scene, we form
a three-dimensional feature space F consisting of
image location(x, y), and disparity(d). Every grid in
the input scene is grouped into homogeneous regions
using a modified ISODATA clustering algorithm. O-
riginally, ISODATA clustering is an iterative cluster-
ing algorithm based on heuristics of splitting or merg-
ing [15]. Instead of heuristic rules, we search for the
compact description grounded by the Minimum De-
scription Length (MDL) principle [16]. See [17] for
more detailed procedure of our clustering algorithm.

3.2.2 Region tracking

Based on the motion information and the result of re-
gion segmentation, the target region is tracked. Mo-
tion vectors are estimated by multiple real-time visual
tracking at all 16 × 10 grids. Our region tracking
algorithm is as follows:

1. Let µj(ti) be a mean vector for the region j at
time ti in the feature space F . µ̂j(ti+1) indicates
a linear prediction at ti+1.

2. Using µ̂j(ti+1) as an initial cluster, we apply the
clustering algorithm described in 3.2.1 and then
obtain µj(ti+1).

• If the target area is split into two clusters
or merged with other cluster, the model of
the target area is updated to describe these
situations.

• If the target area is completely occluded, the
location is updated by the linear prediction.

On detecting motion vectors in the target region,
occlusion status can be detected simultaneously. If the
situation that the target area in part are mismatched

and its neighbor is correctly matched is observed, the
state is judged as an “occlusion state.” The judg-
ment of mismatch or match is done according to the
minimum SAD value obtained in the block matching
process.

4 Behavior Learning

4.1 Basics of Reinforcement Learning
Reinforcement learning agents improve their per-

formances on tasks using rewards and punishments
received from their environment. One step Q-learning
[18] has attracted much attention as an implementa-
tion of reinforcement learning because it is derived
from dynamic programming [19]. Here, we briefly re-
view the basics of the Q-learning [20].

We assume that the robot can discriminate the set
S of distinct world states, and can take one from the
set A of actions on the world. The world is modeled
as a Markovian process, making stochastic transitions
based on its current state and the action taken by the
robot. Let T (s, a, s′) be the probability that the world
will transit to the next state s′ from the current state-
action pair (s, a). For each state-action pair (s, a), the
reward r(s, a) is defined.

Given definitions of the transition probabilities and
the reward distribution, we can solve the optimal poli-
cy, using methods from dynamic programming [19]. A
more interesting case occurs when we wish to simulta-
neously learn the dynamics of the world and construct
the policy. Watkin’s Q-learning algorithm gives us an
elegant method for doing this. Let Q∗(s, a) be the ex-
pected return or action-value function for taking ac-
tion a in a situation s and continuing thereafter with
the optimal policy. It can be recursively defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′).

Because we do not know T and r initially, we con-
struct incremental estimates of the Q values on line.
Starting with Q(s, a) at any value (usually 0), every
time an action is taken, update the Q value as follows:

Q(s, a) ⇐ (1−α)Q(s, a)+α

[
r(s, a) + γ max

a′∈A
Q(s′, a′)

]
,

where α is a leaning rate (between 0 and 1) and γ is
the discounting factor which controls to what degree
rewards in the distant future affect the total value of
a policy (between 0 and 1).

4.2 State Space Construction

State space should include necessary and sufficient
information to achieve the given goal while it should
be compact because Q-learning time can be expected
exponential in the size of the state space [21]. Fo-
cusing on the target reaching behavior, we construct
a state space in terms of occlusion status of the tar-
get area and its neighbor obtained by visual behaviors
described in 3.

Here, we assume that all obstacles in the environ-
ment are convex and exist on the floor, therefore the
top of the target cannot be occluded (the bottom
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Figure 3: State space construction
might be occluded, but this situation can be catego-
rized into one of three occlusion status). Occlusion
status is defined as combinations of target states in
the left and right images. For each image, we define
the situation as follows: The target state is a triplet
of appearance: occlusion (the left side, the right side,
completely occluded, no occlusion, or disappearance),
position (left, center, or right), and disparity (far, mid-
dle, or near). In case of disappearance, we prepare two
situations (lost-into-the-right or lost-into-the-left) (see
Figure 3). Totally, we have 1327 states in the state s-
pace S.

One feature of our state space is that it does not
include explicit description of obstacles. Instead, the
occlusion status of the target area tells indirectly the
status of obstacles.

Although the state space seems complete, it suffer-
s from “perceptual aliasing problem” [22] due to the
limit of perception. It is generally defined as “a prob-
lem caused by multiple projections of different actual
situations into one observed state.” The multiple pro-
jections make it very difficult for a robot to take an
optimal action. To find such states (called “hidden
states”), we estimate the state transition probabilities
Pij(a) by using the MLE (Maximum Likelihood Esti-
mation) that is denoted as follows:

Pij(a) =
na

ij∑
j∈S na

ij

,

where, na
ij indicates the number of observations where

the robot takes an action a at state i and as a result the
state transits to state j. After memorizing the history
of these transitions to some extent during the learning
process, we estimate the state transition probabilities
Pij(a). If the state transition probability density func-
tion has multiple peaks, the state is a candidate for a
hidden state. By allocating one memory to each can-
didate of the hidden states, the candidate state can
be discriminated as a hidden state [23]. After find-
ing hidden states and adding them to the state space,
we apply Q-learning again to determine the adequate
actions in the hidden states.

5 Experimental Results

The experiment consists of two parts: first, learning
the optimal policy f through the computer simulation,
then applying the learned policy to a real situation.

5.1 Simulations

In applying Q-learning to our task, we have to de-
fine an action space. Our robot can select an action to
be taken in the current state of the environment. The
robot moves around using a PWS (Power Wheeled S-
teering) system with two independent motors. Since
we can send the motor control command to each of
the two motors separately, we construct the action set
in terms of two motor commands ωl and ωr, each of
which has 3 sub-actions, forward, stop, and backward.
All together, we have 9 actions.

Due to the peculiarity of visual information, that
is, a small change near the observer results in a large
change in the image and a large change far from the
observer may result in a small change in the image, one
action does not always correspond to one state tran-
sition. We called this the “state-action deviation
problem” [24]. To avoid this problem, we reconstruct
the action space as follows. Each action defined above
is regarded as an action primitive. The robot con-
tinues to take one action primitive until the current
state changes. This sequence of the action primitives
is called an action.
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Figure 4: An example of hidden states

Figure 4 shows an example of hidden state and its
state transition probability density function estimated
by MLE. The top of Figure 4(a) indicates the right im-
age where the target is observed (right side is occlud-
ed) while the target is not observed in the left image
(not shown). Since the disparity information is not
available, the position of the target cannot be deter-
mined. This means that in the left image, the target
is completely occluded or disappeared. Two peaks in
Figure 4 (b) correspond to these two situations. As a
result, 12 hidden states were found.

The goal state is shown in Table 1. We give a re-
ward 1 when the robot achieves the goal state, oth-
erwise 0. When the robot makes a collision with an
obstacle, we do not give any negative rewards but reset
the robot position because the negative rewards make
many local maxima of Q-values. Although the con-
vergence time might spend a lot, reset and 0 reward
indirectly suggest the negative situations



Table 1: A goal state

image appearance position disparity
left no occlusion right near
right no occlusion left near

Figure 5 shows examples of the target reaching be-
havior. The bottom of Figures 5 (a) and (b) show
input stereo images taken at initial position, respec-
tively, where two images are overlapped into one. As
shown in Figure 5 (a), the robot acquired such a be-
havior that the robot moves backward until the robot
can see the target clearly (action for vision) then,
avoids the obstacle, and finally reaches the target (vi-
sion for/during action). It seems that the robot plans
the viewpoint from which the robot can avoid occlu-
sion and moves. Note that, it’s not a result of planning
but one of learning. The robot learned to control the
position and direction of its own visual sensor actively
and to improve the quality of information obtained by
varying the position and the orientation of viewpoint
so as to expand the observation space.

(a) Example 1 (b) Example 2

Figure 5: Reaching behavior

5.2 Real Robot Experiments

Figure 6 shows our real robot system. The paral-
lel stereo cameras are set on a mobile platform (Yam-
abico) controlled by MVME167/VxWorks OS through
RS232C. The base line, the tilt angle, the camer-
a height and the visual angles of both cameras are
about 17cm, 10 degrees, 60cm and 60 degrees, respec-
tively. The maximum vehicle speed is about 60cm/s.
The images taken by stereo cameras mounted on the
robot are transmitted to UHF receivers and subsam-
pled by the scan-line converter (Sony Corp.). Then,
the video signal is sent to a Fujitsu tracking module.
One visual tracking board has a capability of video
rate tracking of about 140 windows. We are now using
four boards, but the procedures of coarse-to-fine stere-
o matching, region clustering with MDL, and tracking
are too much for one CPU board, and now it takes
about 160ms for one cycle (about 6Hz).
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Figure 6: Our robot and system

Figure 7 shows a sequence of stereo images taken
during the target reaching behavior in which the robot
succeeded in reaching the target avoiding the obstacle.
Along with these figures, a sequence of region tracking
images are shown where the proposed region segmen-
tation and tracking method can cope with changes of
target size in image, and successfully track the tar-
get region (the region like a mesh in the Figure 7).
A larger rectangle and a cluster of smaller ones indi-
cates the target area and occluding ones, respectively.
Table 2 shows the result of state discrimination for
the scene shown in Figure 7. In Table 2, state step
that the robot discriminated, target states in both left
and right images (Occlusion status: No Occlusion or
Left side Occlusion, Position: Left, Center, Disparity:
Near, Medium ), and control commands to right and
left motors (Forward , Stop, Backward) are shown.
The images at state steps marked ”*” are shown in
Figure 7. The numbers in () shows the sampling step-
s. Although a state discrimination at a state step may
fail, the robot succeeded in achieving the given task
because the errors do not occur continuously and the
image processing is done by utilizing the information
extracted from consecutive frames.

At state step 2, the robot takes a backward action.
This shows the “action for vision” described in section
5.1 because the backward action is useful for expand-
ing the field of view.

6 Discussion and Future Works

Our robot sometimes fails. The first problem is due
to the fluorescent lamp from the ceiling. It makes tex-
ture(shadow and brighter place) on the floor although
we assumue no textures on the floor. The robot pur-
sues or avoids it, because the robot perceives that it is
the target or the obstacle. To cope with this problem,
we plan to use other information such as color and the
image pattern of the target region.

Although it takes long time to converge, the learn-
ing method can find a sequence of feasible actions for
the robot to take. If we assign a reward function ac-
cording to the Euclidean distance to the goal to speed
up the learning, we would suffer from local maxima



Table 2: State-Action data in a real environment

state state action
step left right L R

1*(1-11) (NO,C,M) (NO,C,M) F F
2*(12-14) (LO,C,M) (NO,C,M) S B
3(15-16) (LO,C,M) (NO,C,M) F B
4(17) (LO,C,M) (NO,L,M) F B
5*(18) (LO,L,M) (NO,L,M) F F
6*(19-21) (NO,L,M) (NO,L,M) S F
7*(22-28) (NO,C,M) (NO,L,M) F F
8(29-38) (NO,C,N) (NO,L,N) F F
9(39) (NO,C,N) (NO,C,N) S F
10*(40-44) (NO,C,N) (NO,L,N) F F

of Q-values because the Euclidean distance measure
cannot always reflect the length of the action sequence
because of the non-holonomic property of the mobile
robot. The learning method does not need to care
about these issues.

Now, we are planning to extend the method to the
environment where the target and/(or) the obstacle
are/(is) moving.

References
[1] Y. Aloimonos. “Reply: What i have learned”. CVGIP: Image

Understanding, 60:1:74–85, 1994.
[2] G. Sandini and E. Grosso. “Reply: Why purposive vision”.

CVGIP: Image Understanding, 60:1:109–112, 1994.
[3] S. Edelman. “Reply: Representatin without reconstruction”.

CVGIP: Image Understanding, 60:1:92–94, 1994.
[4] Y. Aloimonos, I. Weiss, and A. Bandyopadhyay. “Active vi-

sion”. In Proc. of first ICCV, pages 35–54, 1987.
[5] G. Sandini. “Vision during action”. In Y. Aloimonos, editor,

Active Perception, chapter 4. Lawrence Erlbaum Associates,
Publishers, 1993.

[6] Y. Kuniyoshi. “A compact mobile robot with binocular
tracking vision”. Journal of the Robotics Society of Japan,
13:3:343–346, 1995.

[7] E. Huber and D. Kortenkamp. Using stereo vision to pursue
moving agent with a mobile robot. In Proc. of IEEE Int.
Conf. on Robotics and Automation, pages 2340–2346, 1995.

[8] K. Nishihara. “Practical real-time imaging stereo matcher”.
Optical Engineering, 23-5, 1984.

[9] P. Maes and R. A. Brooks. “Learning to coordinate behaviors”.
In Proc. of AAAI-90, pages 796–802, 1990.

[10] J. H. Connel and S. Mahadevan. “Rapid task learning for real
robot”. In J. H. Connel and S. Mahadevan, editors, Robot
Learning, chapter 5. Kluwer Academic Publishers, 1993.

[11] H. Inoue, T. Tachikawa, and M. Inaba. “Robot vision system
with a correlation chip for real-time tracking, optical flow and
depth map generation”. In Proc. IEEE Int’l Conf. on Robotics
and Automation, pages 1621–1626, 1992.

[12] D. Marr and T. Poggio. “A computatinal theory of human
stereo vision”. In Proc. of Royal Soc. London B204, pages
301–338, 1979.

[13] W. E. L. Grimson. “A computatinal theory of visual surface
interpolation”. In Proc. of Royal Soc. London B298, pages
395–427, 1982.

[14] Takayuki Nakamura and Minoru Asada. “Motion sketch: Ac-
quisition of visual motion guided behaviors”. In Proceedings
of International Joint Conference on Artificial Intelligence,
pages 126–132, 1995.

[15] G. H. Ball and D. J. Hall. “ISODATA, a novel method of
data analysis and pattern classification”. Stanford Research
Institute, AD-699616, 1965.

[16] J. Rissanen. Stochastic Complexity in Statistical Inquiry.
World Scientific, 1989.

[17] T. Nakamura. Behavior Acquisition for Vision-Based Mo-
bile Robots”. PhD thesis, Dept. of Mech. Eng. for Computer-
Controlled Machinery Osaka University, January 1996.

[18] C. J. C. H. Watkins. Learning from delayed rewards”. PhD
thesis, King’s College, University of Cambridge, May 1989.

[19] R. Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, 1957.

[20] L. P. Kaelbling. “Learning to achieve goals”. In Proc. of
IJCAI-93, pages 1094–1098, 1993.

[21] S. D. Whitehead. “A complexity analysis of cooperative mech-
anisms in reinforcement learning”. In Proc. AAAI-91, pages
607–613, 1991.

[22] S. D. Whitehead and D. H. Ballar. “Active perception and
reinforcement learning”. In Proc. of Workshop on Machine
Learning-1990, pages 179–188, 1990.

[23] R.A. McCallum. “Instance-based utile distinctions for rein-
forcement learning with hidden state”. In Proc. of the 12th
Int. Conf. on Machine Learning, pages 387–395, 1995.

[24] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Vision-
based reinforcement learning for purposive behavior acquisi-
tion. In Proc. of IEEE Int. Conf. on Robotics and Automa-
tion, pages 146–153, 1995.

Figure 7: Reaching behavior by the real robot
in the environment with the obstacle


