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Abstract

Many conventional methods for multisensor fusion
have been based on the predefined selection such as
“which sensor is used for which situation,” and mainly
they have seemed to concentrated on the reconstruction
of a 3-D geometric model of the environment supposing
such a model would be generally useful. However, op-
timality of a priori selection by the programmer is not
guaranteed, nor is such a geometric model easy to be ap-
plied.

This paper proposes a method which enables a mobile
robot to acquire a purposive behavior for accomplishing
a given task by directly coupling multisensor information
and actions through interaction between the robot and its
environment. We use reinforcement-learning scheme to
formalize such a coupling process. First, we define states
described by combinations of various kinds of data pro-
vided by different types of sensors and motor commands
to the mobile robot. Then, we acquire pairs of robot ac-
tions and states suitable for achieving the given goal by
using Q-learning algorithm. As a result of learning, the
goal-directed behavior is obtained and information needed
for the current subtask is automatically selected among
multisensor information. The validity of the method is
demonstrated by computer simulations and real robot ex-
periments.

1 Introduction

When a mobile robot must operate in an unknown dy-
namic environment, it becomes necessary to consider to
integrate or to fuse the data from different types of sen-
sors so that useful information from the environment can
be obtained. The main advantage of using multisensor
systems is the increase in reliability and flexibility pro-
vided by the redundant and diverse sensor information
[1]. However, it is difficult to deal with multisensor inte-
gration problem because different sensors provide com-
peting and conflicting information. Therefore, the corre-
lation between the observed multisensor data needs to be
found. There have been some approaches to multisensor

integration and fusion for mobile robot research.
Moravec [2], Elfes [3], and Wallner et al. [4] developed

similar methods for fusing sensor data taken at different
times, from different positions, and by different sensor
system such as vision and sonar into so-called “certainty
grids.” Their method aims to obtain a precise map of
the environment. Thus, many researchers have tried to
construct a geometrical world model in order that infor-
mation from different sensors may be transformed to a
common, abstracted representation, although construc-
tion of such a geometrical model requires tedious camer-
a calibration, time-consuming iterative procedures, and
the results are often sensitive to noise and must be trans-
formed into the information necessary for the task ac-
complishment.

Huber and Kortenkamp [5] proposed a robot control
system that consists of a tracking system based on a
stereo vision and obstacle avoidance system that use the
VFH algorithm [6]. This means that the designers have
to program some behaviors of the robot and decide the
roles of sensors even though such a sensor selection is not
always optimal for the robot to achieve the goal.

In this paper, we propose a method for directly cou-
pling multisensor information and the robot’s actions
through the interaction between the robot and its envi-
ronment. By our method, our mobile robot can acquire
goal-directed behavior that consists of multiple subtasks.
The remainder of this article is structured as follows: In
the next section, we give a basic idea of our method.
Then, we describe our robot and the inherent charac-
teristic of sonar and visual sensor. Next, we explain the
method for behavior acquisition and for constructing the
state space required for behavior learning. Finally, we
give the results of both simulation and real robot imple-
mentation and concluding remarks.

2 Our Approach

In many conventional methods for multisensor fusion
in the navigation task, first, one investigates how each
sensor in the multisensor system can be utilized to ac-
complish the given task. Then, one can break down the



given task into the subtasks in such a way that each sub-
task can be accomplished by using the predetermined s-
ingle sensor or a combination of multiple sensors. For
example, sonar sensors are used to avoid obstacles and
a visual sensor is used to recognize what the object is.
However, from the viewpoint of the sensing cost, it is not
clear that this combination of sonar and visual sensors
is optimal for the robot to accomplish a given task.

Our approach aims to construct an autonomous agent
in which both of functions “perception for action” and
“action for perception” emerge simultaneously by means
of the integration of perception and action. Through
the learning process based on perception and action,
our robot obtains the correlation between different types
of sensors and acquires the goal-directed behavior that
seems to consist of multiple behaviors (see Fig.1). Here,
we formalize such a process by utilizing the reinforcement
learning scheme [7].
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Figure 1: Overview of our method

The task for a mobile robot is to reach a target avoind-
ing an obstacle as shown in Fig.1. To perform this task,
the robot is expected to use visual and sonar sensors ef-
fectively and coordinate two behaviors (target reaching
and obstacle avoidance behaviors) in a seamless manner.
Here, as multisensor information, we deal with the visu-
al and sonar information. First, the vector quantization
technique known as a Kohonen network [8] is applied to
reduce the dimensionality of the sonar data stored dur-
ing the exploration in the environment. Then, sonar data
can be described as some representative patterns, which
are used as states for a reinforcement-learning method to
obtain target reaching behavior. Next, the position and
size of the target specified as visual information is also
used as states for behavior learning. As a result of learn-

ing, the robot obtains the correlation between sonar and
visual information and acquires target reaching behavior
through the interaction with its environment.

We assume that the environment consists of a target
and an obstacle, and that the robot does not know how
large and where the target and the obstacle are, any
camera parameters such as focal length and tilt angle, or
its own kinematics/dynamics.

Our method has the following two advantages:

• We do not need to determine strategies for select-
ing appropriate sensors to use in response to the
change of environment. Through our learning pro-
cess, the strategy for sensor selection is automati-
cally acquired.

• In order to integrate multiple sensors, we do not
need any transformation between the information
obtained from different sensors through some geo-
metric world model as a common abstracted repre-
sentation. Through the learning process, our mo-
bile robot behave as if it had been given such an
abstracted represetation.

3 Our Robot and Sensor Characteriza-
tion

Our robot has a Power Wheeled Steering (hereafter
PWS) system driven by two motors into each of which
we can send a motor command, independently. In our
experiment, we quantized each motor command ωl(r) in-
to three levels which correspond to forward, stop, and
backward, respectively. Totally, the robot has 9 actions.

The robot is equipped with a ring of 12 ultrasonic
ranging sensors (ranging from 0.0 to 250 cm) which have
high accuracy for incident angle less than 20◦ from the
surface normal. Here, the robot uses 7 sonar sensors on
the front and the side, and does not use the 5 on the back.
The robot is also equipped with a CCD camera. This
camera looks forward and down. The tilt angle is about
10◦. These sensors have their inherent characteristics as
follows:

• Sonar Sensor
Using 7 sonar sensors, our robot can sense its for-
ward surrounding environment in robot centered po-
lar coordinates as a profile of the distance Di (i =
1 ∼ 7) as shown in Fig.2(a). Each sonar sensor in
the ring has a field view of roughly 30◦. Sonar sen-
sors cannot identify what the object is (the target
or others).

• Vision
Image processing procedures provide the position
and the size of the target in the image as visual



information, even if the pattern of the target is de-
formed by occlusion (see Fig.2(b)). However, it
cannot detect obstacles, because it is not given how
an obstacle can be seen.
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Figure 2: Characteristics of each sensor

4 Behavior Acquisition by Fusing Sonar
and Vision

As a method of learning for behavior acquisition, we
use one step Q-learning [7], a most widely used rein-
forcement learning method. To apply Q-learning to our
task, we need to define a state space which consists of
descriptions of target and its surroundings obtained by
the sonar and visual sensors described above. In this
section, we explain the basics of behavior learning and
how to construct a state space for the learning.

4.1 Basics of Reinforcement Learning

Reinforcement learning agents improve their perfor-
mance on tasks using reward and punishment received
from their environment. They are distinguished from su-
pervised learning agents in that they have no “teacher”
that tells the agent the correct response to a situation
when an agent responds poorly. An agent’s only feed-
back indicating its performance on the task at hand is a
scalar reward value.

One step Q-learning [7] has attracted much attention
as an implementation of reinforcement learning because
it is derived from dynamic programming [9]. The follow-
ing is a simple version of the 1-step Q-learning algorithm

we used here. If the process is Markov and enough ex-
ploration is done, the acquired policy will converge to
the optimal one.

Initialization: Q ← a set of initial values for the
action-value function (e.g., all zeros).
Repeat forever:

1. s ∈ S ← the current state

2. Select an action a ∈ A that is usually consistent
with the policy f but occasionally an alternate.

3. Execute action a, and let s′ and r be the next state
and the reward received, respectively.

4. Update Q(s, a):

Q(s, a) ← (1− α)Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)).

5. Update the policy f :

f(s) ← a such that Q(s, a) = max
b∈A

Q(s, b)

4.2 Construction of State Space

4.2.1 A State Space for Vision

We define a state of the target in the image in terms of its
position and size detected by the image processing. The
state of the target, S in the image is quantized into 9
sub-states, combinations of three positions (left, center,
and right) and three sizes (large (near), medium, and
small (far)). We add two lost situations (target is lost
into the left side or the right side) in the state space.
Totally, we have 11 states in the state space for vision.
(see Fig.3).

4.2.2 A State Space for Sonar

Here, we describe two-phase approach for constructing
the state space for sonar. Based on the region perceiv-
able by sonars, the state space for sonar is constructed
by segmenting the space around the robot into relevant
sensory regions (see Fig.4). Each sector indicates the s-
pace measurable by each sonar sensor. The area in front
of the robot is divided into two regions as follows:

• ∀Di > DT → Far zone

• ∃Di < DT → Near zone,

where Di denotes a reading provided by sonar sensor i.
The threshold between these zones DT is derived from
the robot’s velocity and the minimum range of sonar
sensors.
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Figure 3: States discriminated by the visual sensor

(A) Far zone

The sensory profile cosists of N(= 7) range values
each of which is a real number. Since the sensory profile
at each moment has a large amount of the information
about its surroundings, we have to compress the informa-
tion. We use the vector quantization technique known as
a Kohonen network [8], which can perform classification,
data compression and so on. The characteristic of a Ko-
honen network is that the original topological structure
of the input space is well preserved in the output space,
that is, the output vector turns out to be similar if the
input profile is similar and that the weighting vectors
representing how strongly the input and output nodes
are connected show the represetative patterns of input
space.

In our implementation, the Kohonen network has 7 n-
odes input layer and 96 nodes output layer. The address
of the winner unit in the output layer denotes the out-
put vector of the network that corresponds to the state
represented by sonar sensors, which is used for behavior
learning (see Fig.4.).

Fig.5 shows 16 examples of the represetative patterns
of the profile of distance detected by sonar sensors after
training, where a reading by each sensor is denoted by
the distance from the center of the robot (a solid square)
to the small solid circle in each sector.
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Figure 4: Sensory Region and Discrimanating method
for Sonar sensors

(B) Near zone

In the near zone, we use only two range bins (these
values range from 0 (empty) to 1 (occupied)) for each
sensor (see Fig.4). The N(= 7) sonar range bins (7 bits
of information) coming from 7 sonar sensors describe the
state for sonar in the near zone. That is, there are 27

sonar states.
To summarize, totally, we have 11×(96+128) = 2464

states in the set S generated by visual and sonar sensors.

5 Experimental Results

5.1 Simulation

We performed computer simulations with the follow-
ing specifications. The field is a 300[cm]×300[cm]square.
The target is a cylinder with a diameter of 40 [cm]. The



Figure 5: Examples of representative sonar patterns

robot is 40 [cm] wide and 40 [cm] long. The camera is
mounted on the robot and looks toward the floor (10
degree tilt). Its visual angle is 60 degrees. These and
other parameters such as friction between the floor and
the tires are chosen to simulate the real world. The tar-
get is fixed in the environment. Various kinds of the
configuration of the target and the obstacle are set in
the learning process. The threshold between zones DT

is set to be 20 [cm]. We give a reward value 1 when
the robot reached the target, or a reward value 0 other-
wise. We choose an action among the A based on the
bolztman distribution. The learning process ends if the
success rate exceeds 95%. We define the success rate
as (# of successes)/(# of trials) × 100(%). The learn-
ing has converged after about 24 hours running on Sun
SPARCstation-20.

Fig.6 shows the target reaching behavior acquired by
our method. As shown in Fig.6, the robot tried to avoid
in the early part of the trial, then it ran to the target
quickly. It seems that the robot reconstructs geometrical
sturcture of its surrounding and plans a safe path using
the reconstructed local map.

5.2 Real Robot Experiment

Fig.7 shows a configuration of the real mobile robot
system. Our robot is a mobile platform (Yamabico) con-
trolled by MVME167/VxWorks OS through RS232C.
In this implementation, the vehicle speed is set to be
about 5cm/s. The image processing and the vehi-
cle control system are operated by VxWorks OS on
MVME167(MC68040 CPU) computer which are con-
nected with host Sun workstations via Ethernet. The

(a) case 1 (b) case 2

Figure 6: Target reaching behavior in computer simula-
tion

video signal from a color CCD camera mounted on the
robot is sent to Datacube DIGICOLOR and MaxVideo
200 each of which is a real-time pipelined video image
processor. In order to simplify and speed up the im-
age processing time, we painted the target in yellow. In
Fig.7, a picture of the real robot with a color CCD cam-
era and sonar sensors is shown.
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Figure 7: A configuration of the real mobile robot system

In the real robot experiment, we apply the learned pol-
icy in a computer simulation to a real situation. Fig.8
shows a sequence of the target reaching behavior of the
real robot in which the robot succeeded in reaching the
target avoiding the obstacle. Fig.9 shows 4 snapshot-
s in Fig.8, where each figure #step1 ∼ #step4 shows
a bird’s eye view of the environment, the image taken
by a camera on the robot, and the result of the target
detection at each time step (the position and size of the
target are calculated in real-time (1/30 seconds)). At the
bottom of each figure, the state that the robot discrimi-
nated by visual and sonar sensors and control commands
to left and right motors are shown. The discriminated
state consists of three substates: two for target position
(Left (Lt), Center (C), Right (R)) and size (Large (Lg),
Medium (M), Small (S)), and one for the state number
discriminated by sonar. Action commands consist of a



combination of two independent motor commands (For-
ward (Fw), Stop (St), Backward (Bw)).

These figures show the following situation: initially,
the target image (yellow box) is specified. The robot
starts to pursue the target. While the robot is pursuing
the target, the target disappears gradually due to an
obstacle. In this state, the robot avoids the obstacle.
Then, the robot runs to target quickly. Finally, the robot
succeeds in reaching the target.

Figure 8: Target reaching behavior in the real world

6 Discussion and Future Works

We have shown the validty of the proposed method for
directly integrating multisensor information and robot
actions with computer simulation results and prelimi-
nary real experiments. Since we delibrately construct
the state space for sonar, the learning phase can enjoy
the compact state space without describing all states of
sonar sensors explicitly. Optimality of the state space de-
signed by the programmer is not guaranteed to the robot.
Therefore, the method of the adaptive construction of s-
tate space for behavior learning would be necessary.

Our robot sometimes fails, because we still have a gap
between the computer simulation and the real system.
For example, in real world, if a sonar reading contain-
s a error due to specular reflection of ultrasonic wave,
our robot could not discriminate the state correctly and
would collide with the obstacle. The reason is that we
have not made the real robot learn but only execute the
optimal policy obtained by the computer simulation. To
cope with this problem, we are planning to make the
real robot begin to learn from the policy obtained by
computer simulation.

Here, although we do not deal with the environmen-
t where the target and/or the obstacle are/is moving,
we can cope with such environment by adding the state
variable by which the moving target and/or obstacle can
be described in the state space.

Figure 9: Target reaching behavior in the real world

References
[1] R. C. Luo and G. K. Kay. “Multisensor Integration and Fusion in

Intelligent Systems”. IEEE Trans. on Systems, Man and Cyber-
netics, 19(5):901–931, 1989.

[2] H. P. Moravec. “Sensor fusion in certainty grids for mobile robots”.
AI Magazine, 9(2):61–74, 1988.

[3] A. Elfes. “Using occupancy grids for mobile robot perception and
navigation”. IEEE Computer Magazine, 22(6):46–57, June 1989.

[4] F. Wallner R. Graf and R. Dillmann. “Real-time map refinement
by fusing sonar and active stereo vision”. In Proc. of 1995 IEEE
Int. Conf. on Robotics and Automation, pages 2968–2973.

[5] E. Huber and D. Kortenkamp. “Using stereo vision to pursue mov-
ing agents with a mobile robot”. In Proc. of 1995 IEEE Int. Conf.
on Robotics and Automation, pages 2340–2346.

[6] J. Borenstein and Y. Koren. “The Vector Field Histogram - Fast
Obstacle Avoidance for Mobile Robots”. IEEE Journal of Robotics
and Automation, 7(3):278–288, 1991.

[7] C. J. C. H. Watkins. Learning from delayed rewards”. PhD thesis,
King’s College, University of Cambridge, May 1989.

[8] T. Kohonen. “Self organizing formation of topologically correct
feature maps”. Biological Cybernetics, 43:59–69, 1982.

[9] R. Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, 1957.


