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Abstract
Reinforcement learning has recently been receiving

increased attention as a method for robot learning with
little or no a priori knowledge and higher capability
of reactive and adaptive behaviors. However, there
are two major problems in applying it to real robot
tasks: how to construct the state space, and how to re-
duce the learning time. This paper presents a method
by which a robot learns purposive behavior within less
learning time by incrementally segmenting the sensor
space based on the experiences of the robot. The in-
cremental segmentation is performed by constructing
local models in the state space, which is based on the
function approximation of the sensor outputs to reduce
the learning time and on the reinforcement signal to
emerge a purposive behavior. The method is applied to
a soccer robot which tries to shoot a ball into a goal.
The experiments with computer simulations and a real
robot are shown. As a result, our real robot has learned
a shooting behavior within less than one hour training
by incrementally segmenting the state space.

1 Introduction
Reinforcement learning has recently been receiving

increased attention as a method for robot learning
with little or no a priori knowledge and higher capa-
bility of reactive and adaptive behaviors[1]. However,
there are two major problems in applying it to real
robot tasks.

1. Selection of the sensor information to describe
the state of robots and their environment. If one
uses all the sensor outputs, the amount of the
data the robot has to deal with will exceed the
capability of the robot (memory and processing
power).

2. Even though the sensor information is well se-
lected for the given task, the segmentation prob-
lem will remain. The state space designed by
the programmer is not guaranteed as an opti-
mal one for the robot to perform the task. The
coarse segmentation will cause so-called “per-
ceptual aliasing problem”[2] by which the robot
cannot discriminate the states important to ac-
complish the task at hand. On the other hand,
the fine segmentation to avoid the perceptual

aliasing problem will produce too many states
to generalize the experiences. Since the learn-
ing time increases exponentially with the num-
ber of states, the robot needs enormous amount
of learning time.

For the former, Whitehead and Ballard [2] proposed
a selection method of the sensor information in order
to avoid the perceptual aliasing. Tan [3] proposed a
method of sensor selection that reduces the sensing
cost. Chapman and Kaelbling [4] proposed an algo-
rithm based on recursive splitting of the state space
based on statistical measures of the differences in re-
inforcements received. However, they have dealt with
the discrete state space, therefore, these methods can-
not be directly applied to continuous state space.

For the latter, roughly speaking, there are two ap-
proaches for continuous state space: learning the value
function with a method of function approximation or
with segmentation of continuous state space.

Boyan et al. [5] reported on the method for the
function approximation that the combination of dy-
namic programming and function approximation had
shown poor performances even for benign cases. Then,
they proposed Grow-Support algorithm for the func-
tion approximation. However, they need the environ-
mental model and can cope with only deterministic
worlds. Sutton [6] used CMAC[7][8] as a method of the
function approximation. CMAC has its own problem
of quantization (segmentation). Also, Saito and Fuku-
da [9] used CMAC to estimate the Q values. However,
the sensor space was huge and they needed enormous
learning time, therefore they reduced the searching s-
pace by using the initial controller.

As a method for state space segmentation, Kröse
and Dam [10]，and Dubrawski and Reignier [11] used
the reinforcement signal to divide the state space, there-
fore the space far from the states given the reinforce-
ment signal have not been segmented. Asada et al.
[12] proposed a method which cuts off regions from
the state space as states recursively from the goal s-
tate. In order to construct the state space suitable
for the robot to perform the given task, they need a
sufficient of uniformly sampled data.

Further, since the reinforcement learning general-
ly begin to updates the action values from the state



given the reinforcement, the experiences before the re-
inforcement is given or far from the states where the
reinforcements are given might be vain. Connel and
Mahadevan [1] decomposed the whole task into sub-
tasks each of which can be separately learned. How-
ever, task decomposition and behavior switching are
designed by the programmer.

In this paper, we propose a method by which a
robot learns purposive behavior within less learning
time by incrementally segmenting the sensor space
based on the experiences of the robot. Here, we do
not deal with the sensor selection problem. The in-
cremental segmentation is performed by constructing
local models in the state space, which is based on the
function approximation of the sensor outputs to re-
duce the learning time and the reinforcement signal
to emerge a purposive behavior. The method is ap-
plied to a soccer robot which tries to shoot a ball into a
goal. The experiments with computer simulations and
a real robot are shown. As a result, our real robot has
learned a shooting behavior within less than one hour
training by incrementally segmenting the state space.

The remainder of the article is structured as fol-
lows: In the next section, we briefly review the rein-
forcement learning, and then explain the basic idea of
the method and the algorithm. Next, we give the task
and assumptions. Finally, we show the experimental
results by the computer simulations and the real robot
system, and give conclusions.

2 Basics of Reinforcement Learning
Before getting into the our method, we briefly re-

view the basics of the reinforcement learning.
We assume that the robot can discriminate the set

S of distinct world states, and can take an action
from the action set A. The world is modeled as a
Markov process, making stochastic transitions based
on its current state and the action taken by the robot.
For each state-action pair (s, a), the reward r(s, a) is
defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. Watkin-
s’ Q-learning algorithm [13] gives us elegant method
for doing this.

In the Q-learning algorithm, the robot takes an ac-
tion a ∈ A in a state s ∈ S and transits to the next
state s′ ∈ S, then it updates the action-value function
Q(s, a) as follows.

Q(s, a) ⇐ (1−α)Q(s, a)+α(r(s, a)+γ max
a′∈A

Q(s′, a′))

(1)
where α is a learning rate and γ is a discounting factor.

After a sufficient number of trials, the action a
which maximize the Q(s, a)value is the optimal de-
cision policy at the state s.

3 Basic Idea
In this paper , we focus on the state space segmen-

tation, and reduction of learning time. As a basic idea
coping with these problems, we adopt the incremen-
tal segmentation of the state space by which the state

space is autonomously segmented, and we expect the
reduction of the learning time and the capability of
coping with dynamic change of the environment.

A key issue is to find the basic policy to segment
the state space so as to realize the desirable features
described above. The following two policies can be
considered.

A: Segment the state if the prediction of sensor out-
puts is incorrect.

B: Segment the state if the same action causes the
desirable or undesirable result (ex., transition to
the goal states or non-goal states) even though
the prediction itself is correct.

According to the first policy, the robot can discrimi-
nate the world situations with as few states as possible
based on the experiences until the current time. This
contributes to the followings:

1. as long as the prediction of sensor outputs is
correct, tedious exploration process can be elim-
inated, and therefore

2. reinforcement learning converges immediately. Fur-
ther

3. the robot can cope with dynamic change of the
environment due to its incrementality of the seg-
mentation process.

However, the policy A does not care where the goal s-
tate is. On the other hand, the policy B contributes to
the emergence of the purposive behavior. Even though
the prediction is correct, it would be nonsense if the
same action from the same state resulted in different
situations. This state should be separated so that the
same action can always cause the desirable transition.

From the above arguments, the policy A is related
to the world model construction by coarse mapping
between states and actions far from the good states.
While, the policy B is related to the the goal oriented
segmentation based on the reinforcement signals. As
a result fine mapping between states and actions near
the goal states is obtained.

4 Algorithm
Fig.1 shows the rough flow of the proposed method.

First, the robot acquires sensor outputs as data. If
the data are consistent with the current local models,
the robot updates the local models. Else, the robot
builds new local models, and initialize the action val-
ue function by reusing the knowledge obtained by the
past experiences. Then, it learns the policy using re-
inforcement learning, and returns the beginning. The
robot iterates this cycle forever.
4.1 Action Space and Data Structure

In the conventional reinforcement learning meth-
ods, an “action” is defined as an execution of motor
command per fixed sampling interval. In real situa-
tion, this definition often causes “state-action devia-
tion problem” as pointed out by Asada et al.[14]. They
defined such an action as an action primitive, and a
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Figure 1: The rough flow of the proposed method

action is defined as a sequence of action primitives
until the current state changes. Here, we follow their
definition.

We define a data set di ∈ D, (i = 1, 2, · · ·) as a
triplet of action primitive mi ∈ M , sensor output si ∈
S and its gradient ṡi ∈ Ṡ.

If the robot stores the all data of its experiences, the
amount of data will exceed the capacity of the robot.
Therefore, it is not practical to store the all data. Fur-
ther, the robot often receives incorrect data because of
sensor noise, change of the environment, and the un-
certainty of motor commands. Then, we update the
gradient of inputs vector ṡi, when the robot receives
a new data set dj .
if

|si − sj | < ε and mi = mj

then
ṡi = (1− β)ṡj + βṡi

else

register sj as a new datum.

Here, 0 < β < 1 and ε stands for a similarity threshold.
| · | means weighted Euclidean norm.
4.2 Local Model Construction

We first explain the method of local model con-
struction by using a linear model of the the gradient
of sensor outputs, that is,

ṡ = As + b.

The algorithm for local model construction and seg-
mentation is as follows:

A
b

state state statestate i−1 i i+1 i+2

S

S
.

Figure 2: The construction of local model and the
segmentation of sensor space

1. Gather data sets which have the same action
primitive.

2. Apply the weighted linear regression method to
fit a linear model to the data sets.

3. Divide the data into two with a method of clus-
ter analysis using weighted Euclidean norm as
similarity and return 2 if the unbiased variance
of the residual exceeds a certain threshold, else
stop.

Fig.2 shows an example of the construction of local
model and the segmentation of sensor space in case of
one dimension of the sensor output.

Near the goal state, the segmented region obtained
by the above process is not always appropriate because
multiple transitions (success in the reaching the goal
state or failure), from a same pair of the sensor outputs
in the same region and the action primitive can be
often observed. Then, we use the reinforcement signals
to divide the segmented region so that the same action
primitive from the divided region can reach the unique
state (the goal state or others).

The segmented regions obtained by the above pro-
cess are regarded as “states” for the reinforcement
learning method. Each segmented region has several
data sets di, and let the si (i = 1, 2, · · ·) be the rep-
resentatives of the region. A new sensor outputs sq is
classified into one of the states by finding a represen-
tative in the corresponding state based on NN(nearest
neighbor) methods.
4.3 Action Generation

As we stated in the section 4.1, we define “action”
as “a sequence of several action primitives until the
current state changes”. The sequence of action prim-
itives with the local model is generated as follows.

One can calculate the desired gradient of sensor
outputs ṡd from the current sensor outputs sj and
desired sensor outputs sd, that is,.

ṡd = sd − sj .



Since the linear model parameters have been obtained
in each local model, we can predict a desirable action
to satisfy the above equation. The robot carries out
the action primitive md which is closest to the desired
gradient of sensor outputs.

md = arg min
mi

(ṡd − ṡmi
)2 (2)

We assumed the continuity of sensor space. How-
ever, if the robot cannot observe the objects in the
environment, the robot cannot obtain the information
about the objects from sensors. Therefore, there is a
case that equation (2) cannot be applied. In such cas-
es, however, an action for a state transition is needed,
then we adopt a sequence of the same action primitive
as one action until the current state changes.
4.4 Reuse of the Knowledge Obtained by

Experiences
Theoretically, the action value function should be

reset every time the new state space is constructed
by the incremental segmentation of the state space.
This prevents the knowledge obtained by the past ex-
periences from being used efficiently in the learning
process. Then, we consider to reuse the knowledge by
calculating the new action value function for the new
segmented state space from the old state space and its
action-value function.

Basic idea is to adopt a new action value func-
tion calculated by weighted sum of the old action val-
ue function as the initial knowledge for reinforcemen-
t learning. The weights are calculated based on the
numbers of the sensor output representatives in both
the new and old states. Concrete procedure is given
as following.

Sold and Snew denote the old and new state s-
paces, respectively. sk(k = 1, 2, · · · , n), statej

old(j =
1, 2, · · · , nold) and statei

new (i = 1, 2, · · · , nnew ) denote
the sensor output of stored data di, a state of the old
state space and a state of the new state space. We
prepare a nold × nnew matrix T (stateold , statenew ) of
which component t(stateold

i , statenew
j ) represents the

number of sensor output representatives sk that are
classified into statenew

j from stateold
i . Then, we can

calculate the action-value function of the new state
space Q(statenew

i , a) as follows.

Q(statenew
i , a) =

nold∑

j=1

ωjiQ(stateold
j , a), (3)

where

ωji =
t(stateold

j , statenew
i )

∑nold

l=0 t(stateold
l , statenew

i )
. (4)

5 Task and Assumptions
Only one assumption we need is continuity of the

sensor space. This makes local model construction ef-
ficient, and therefore contributes to eliminate unnec-
essary exploration.

Input image

Primitive action 7

(a) The task is to shoot a ball into the goal

(b) A picture of the radio-controlled vehicle with
a ball and a goal

Figure 3: A task and our real robot



We apply the method to shooting behavior acqui-
sition by a soccer robot as an example of robot tasks.
The task for a mobile robot is to shoot a ball into a
goal as shown in Fig.3(a).

We assume that the environment consists of a bal-
l and a goal, that the mobile robot has a single TV
camera and can get the primitive features of the ball
and the goal, and that the robot does not know the
location and the size of the goal, the size and the
weight of the ball, any camera parameters such as fo-
cal length and tilt angle, or kinematics/dynamics of
itself. Fig.3(b) shows a picture of the real robot, the
ball and the goal used in the experiments.

The sensor information the robot discriminates con-
sists of five features of the ball and the goal. The fea-
tures are the size and the position of both the ball and
the goal on the image. In addition to them, the goal
has its orientation as the fifth feature. These features
are obtained by the principal component analysis for
image data taken by the robot. The robot often los-
es the ball and/or goal because of its narrow angle
of view (65◦). In such a case, there are no feature
values of ball and/or goal. However since the robot
knows into which direction it lost the ball and/or the
goal by memorizing the previous state, large absolute
constants (opposite signs) are assigned to these lost
states. As the result, the local models for these states
are obtained with their gradients equal zeros (The left
side of Figure 2 indicates such a case).

6 Simulation
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Figure 4: The success rate and the number of states

The number of action primitives which the robot
can take is seven as shown in Fig.3(a). We assign
a reward value 1 when the ball was kicked into the
goal or −0.1 otherwise. 90% of the time the robot
selects the action specified by its optimal policy, the
remaining 10% of the time it takes a random action.

Fig.4 shows the success rate and the number of
states during the incremental state space segmenta-
tion and the processes of shooting behavior acquisi-
tion. Here, the success rate indicates the number of
successes in the last twenty trials.
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Figure 5: Result of state space construction

Fig.5 shows a projection of the state space after
1,110 trials, where the state space in term of ball size
and goal size is indicated when the position of the ball
and the goal are center of the screen and the orienta-
tion of the goal is frontal.

Fig.6 shows the success rate and the number of s-
tates in the case that the ball diameter suddenly be-
came twice at the 500th trial. It suggests the proposed
method can deal with dynamic change of the environ-
ment.

7 Experiment on the Real Robot
Fig.7 shows a configuration of the real mobile robot

system. Fig.8(a) and (b) show the images taken by a
TV camera mounted on the robot and processed by
Datacube MaxVideo 200, a real-time pipeline video
image processor. The image processing and the ve-
hicle control system are operated by VxWorks OS on
MC68040 CPU which are connected with host Sun
workstations via Ether net. The result of image pro-
cessing are sent to the host CPU to decide an optimal
action against the current state. The sampling time is
about 30ms.

Fig.9 shows the state space after 72 trials. The state
space in term of ball size and goal size is indicated
when the position of the ball and the goal are center
of the screen and the orientation of the goal is frontal.
The numbers of acquired states and data are 18 and
151, respectively.

Fig.10 shows how the robot tries to shoot a ball
into the goal. Because of the sensor noise and the
uncertainty of the motor commands, the robot often
misunderstands the states, and takes wrong actions,
therefore it fails to do the task. 1© indicates that the
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Figure 7: A configuration of the real robot

robot is going to shoot a ball into the goal and move
forward. But it fails to kick the ball at 2© because the
speed is too hight to turn. The ball is occluded by
the robot in 2©. Then, it goes left back so that it can
shoot a ball at 3©. But it fails again at 4©. Then it
goes left back again at 5©. After all, the robot does
the shooting task successfully at 6©.

8 Conclusion and Future Work
This paper presented a method of incremental seg-

mentation of sensor space based on the experiences of
the robot, by which the robot learns purposive behav-
ior within reasonable learning time.

Let us discuss to what extent the proposed method
can be scaled up. In the linear local model, we will
be able to easily cope with reaching multiple station-
ary goals or avoiding stationary obstacles, because
the gradient of the sensor outputs can be reasonably

(a) input image (b) detected image

Figure 8: Detection of the ball and the goal

explained by the linear model. However, the more
complicated task such as reaching the goal with ob-
stacle avoidance, seems difficult because the state s-
pace suitable for multiple tasks is difficult to build
by the current linear local model. Further, in case
of the environment including other agents, collabora-
tion/competition with them are the focused task to
the robot, and actions of other agents seem difficult
to be explained by the current model because they
are not simply related to the actions of the robot. Be-
haviors of collaboration/competition might have much
more complicated relationship to the robot behavior
and a method being able to cope with these high-
ly complicated relationship between the robot actions
and other agents’ behaviors should be developed.
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