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Abstract

Robot learning such as reinforcement learning gener-
ally needs a well-defined state space in order to con-
verge. However, to build such a state space is one
of the main issues of the robot learning because of
the inter-dependence between state and action spaces,
which resembles to the well known “chicken and egg”
problem. This paper proposes two methods of action-
based state space construction for vision-based mobile
robots. Basic ideas common to the two methods to
cope with the inter-dependence are that we define a
state as a cluster of of input vectors from which the
robot can reach the goal state or the state already ob-
tained by a sequence of one kind action primitive re-
gardless of its length, and that this sequence is defined
as one action. The first method clusters the input vec-
tors as hyper ellipsoids so that the whole state space
is segmented into a state transition map in terms of
action from which the optimal action sequence is ob-
tained. In order to obtain the such a map, we need a
sufficient number of data, which means longer learn-
ing time. To cope with this, we proposed the second
method by which a robot learns purposive behavior
within less learning time by incrementally segment-
ing the sensor space based on the experiences of the
robot. The incremental segmentation is performed by
constructing local models in the state space, which
is based on the function approximation of the sensor
outputs to reduce the learning time and on the rein-
forcement signal to emerge a purposive behavior. To
show the validity of the methods, we apply them to
a soccer robot which tries to shoot a ball into a goal.
The simulation and real experiments are shown.

INTRODUCTION

Building a robot that learns to perform a task has been
acknowledged as one of the major challenges facing
Robotics and AI (Connel & Mahadevan 1993). Re-
cently, reinforcement learning (Watkins & Dayan 1992;
Sutton 1992) and memory-based learning (Connel &
Mahadevan 1993) have been receiving increased atten-
tion as a method for robot learning with little or no a
priori knowledge and higher capability of reactive and

∗Currently, he is with Hitachi Co.

adaptive behaviors. In these robot learning methods,
a robot and an environment are generally modeled by
two synchronized finite state automatons interacting in
a discrete time cyclical processes. The robot senses the
current state of the environment and selects an action.
Based on the state and the action, the environment
makes a transition to a new state and generates a re-
ward that is passed back to the robot. Through these
interactions, the robot learns a purposive behavior to
achieve a given goal.

To apply robot learning methods such as reinforce-
ment learning to real robot tasks, we need a well-
defined state space by which the robot learns to se-
lect an adequate action for the current state to accom-
plish the task at hand. Traditional notions of state in
the existing applications of the reinforcement learning
schemes fit nicely into deterministic state transition
models (e.g. one action is forward, backward, left, or
right, and the states are encoded by the locations of the
agent). However, it seems difficult to apply such deter-
ministic state transition models to real robot tasks. In
real world, everything changes asynchronously (Matar-
ic 1994).

Generally, the design of the state space in which nec-
essary and sufficient information to accomplish a giv-
en task is included depends on the capability of agent
actions. On the other hand, the design of the action s-
pace also depends on the capability of perception. This
resembles the well-known “chicken and egg problem”
that is difficult to be solved (see Figure 1).

State Space Action Space?

Figure 1: The inter-dependence between state and ac-
tion spaces

One can construct a state space fixing the action s-



pace first. Chapman and Kaelbring (Chapman & Kael-
bling 1991) proposed an input generalization method
which splits an input vector consisting of a bit sequence
of the states based on the already structured actions
such as “shoot a ghost” and “avoid an obstacle.” How-
ever, the original states have been already abstracted,
and therefore it seems difficult to be applied to the
continuous raw sensor space of real world.

Dubrawski and Reingnier (Dubrawski & Reingnier
1994), and Kröse and Dam(Kröse & Dam 1992) pro-
posed methods similar to each other which abstract-
ed sonar information into the form useful for mobile
robots to avoid obstacles. Ishiguro et al. (Ishiguro,
Sato, & Ishida96 1996) dealt with a problem of state
space categorization by statistically analyzing the sen-
sor patterns, actions, and rewards given at the end of
goal achievement. Since they deal with reflexive behav-
iors such as obstacle avoidance, these methods do not
suffer from the fixed length physical actions. However,
in case of a task to achieve the goal farther from the
viewpoint based on the visual information, the same
physical actions might cause different changes in im-
age, and therefore it seems difficult to specify the state
and action spaces by which learning converges correct-
ly 1.

Asada et al. (Asada et al. 1995a) called this “a
state-action deviation problem” due to the difference in
resolution between the robot action in a 3-D space and
the projection of its effect onto a 2-D image. They have
given one solution for this problem by restructuring the
action space so that one action may cause one state
transition. That is, first they divided the sensor space
by hand, and then constructed the action space so that
the sensor and action spaces can be consistent with
each other. However, there is no guarantee that such
a state space is always appropriate for the robot.

This paper propose two methods that recursively s-
plit an input vector from the sensor based on a defini-
tion of action primitive that is a a motor command ex-
ecuted during the fixed time interval. The basic ideas
common to the both of two methods are as follows:
We define
1. a state as a set of input vectors from which the robot

achieves the goal or already acquired state by a vari-
able sequence of one kind action primitive, and

2. an action as a sequence of action primitive that caus-
es a state transition.
The first method clusters the input vectors as hyper

ellipsoids so that the whole state space is segmented in-
to a state transition map in terms of action from which
the optimal action sequence is obtained. In order to
obtain the such a map, we need a sufficient number
of data, which means longer learning time. To reduce
the learning time, we proposed the second method by

1In case of vision sensors, the same action might cause
large change in image if the object is close to the observer,
and small change if it is farther.

which a robot learns purposive behavior within less
learning time by incrementally segmenting the sensor
space based on the experiences of the robot. The in-
cremental segmentation is performed by constructing
local models in the state space, which is based on the
function approximation of the sensor outputs to reduce
the learning time and on the reinforcement signal to e-
merge a purposive behavior.

The remainder of the article is structured as follows:
In the next section, we briefly review the reinforcemen-
t learning, and the problem of the state and action
space construction, then explain the first method of s-
tate space segmentation. Next, we explain the second
method. The both methods are described along with
the experimental results by the computer simulations
and the real robot system and conclusions.

BASICS OF REINFORCEMENT
LEARNING

Before getting into the our method, we briefly review
the basics of the reinforcement learning.

We assume that the robot can discriminate the set
S of distinct world states, and can take an action from
the action set A. The world is modeled as a Markov
process, making stochastic transitions based on its cur-
rent state and the action taken by the robot. For each
state-action pair (s, a), the reward r(s, a) is defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. Watkin-
s’ Q-learning algorithm (C.J.C.H.Watkins 1989) gives
us elegant method for doing this.

In the Q-learning algorithm, the robot takes an ac-
tion a ∈ A in a state s ∈ S and transits to the next
state s′ ∈ S, then it updates the action-value function
Q(s, a) as follows.

Q(s, a) ⇐ (1−α)Q(s, a) + α(r(s, a) + γ max
a′∈A

Q(s′, a′))

(1)
where α is a learning rate and γ is a discounting factor.

After a sufficient number of trials, the action a which
maximize the Q(s, a)value is the optimal decision pol-
icy at the state s.

SENSOR AND ACTION SPACE
CONSTRUCTION

As we described in the above, the state space2 designed
by programmer is not always appropriate for the robot
to accomplish a given task. If multiple states to be
discriminated from each other are categorized into the
same state, the distribution of that state transitions
widely spreads out, and therefore it seems difficult for
the robot to achieve the goal. On the other hand, if

2Here, we suppose the state space is a space consisting
of input vector from sensors. In control theory, this is not
always true.



the size of the state space is too large due to unnec-
essary separations, the learning incredibly takes long
time (it is generally an exponential order in the size of
the state space (Whitehead 1991)). Then, we attempt
at solving this problem by making the robot construct
the state space, that is, it should find a state space by
itself through interactions with the environment. The
following are the requirements for the problem:

1. The state and action spaces should reflect physical
sensor(s) and actuator(s) of a robot. The determin-
istic state transition models (e.g. one action is for-
ward, backward, left, or right, and the states are en-
coded by the locations of the agent) are useful only
for simple toy problems in computer simulations.

2. Since everything changes asynchronously in real
world (Mataric 1994), the state and action spaces
directly reflecting the physical sensors and actua-
tors suffer from the state - action deviation problem.
The state and action spaces should be restructured
to cope with this problem.

3. The sensor space categorization should be robust a-
gainst the various disturbances such as sensor noise,
delay, and uncertainty of action execution.

BASIC IDEA

Basic ideas of our method are that we define:

1. an action primitive ai (i = 1, 2, ..., n) as a resultant
action caused by a motor command executed during
the fixed time interval,

2. a state as a set of input vectors from which the robot
achieves the goal or already acquired state by a vari-
able sequence of one kind action primitive, and

3. an action as a sequence of action primitive that caus-
es a state transition,

and that such states are found in the order of closeness
to the goal state in the first method, or such states
are constructed by function approximation of the state
changes in the second method.

THE FIRST METHOD

Figure 2 shows a state space in terms of the goal state
and actions. Si

1, i = a1, a2, a3, ..., an ∈ A (a set of
action primitives) and S1 denote a state from which
the robot can achieve the goal by only one action i, and
a set of these states, respectively. Further, S2 denotes
a set of states from each of which the robot can achieve
S1 only by one action. Similarly, Sj denotes a set of
states from which the robot can achieve the goal at
least j actions. Any input vector from which the robot
can achieve the goal can be included in any state in Sk
(k = 1, 2, .., j). The algorithm to obtain such a state
space is given below.
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Figure 2: The goal-directed and action-based state s-
pace construction

Algorithm for the first method

1. Set the goal state as a target zone ZT .

2. Take an action randomly. From the definition, the
same action primitive is iteratively executed until
the robot achieves the target zone or the fixed time
interval expires.

3. Store an input vector x ∈ Rm (m: the size of the
vector) with an index of the action a ∈ A the robot
took when it could succeed in achieving ZT from x.
Do not include the vectors that have been already
categorized into the previously divided states.

4. Fit a multi-dimensional uniform distribution func-
tion (a concentration ellipsoid (Cramër 1951)) to a
cluster of stored vectors with the same action in-
dex ai ∈ A obtained above, and construct a state
sai (ai ∈ A). The boundary surface of the ellipsoid
is given by:

(x− µ)T Σ−1(x− µ) = m + 2, (2)

where µ and Σ denote the mean vector and the co-
variance matrix, respectively.

5. Update the target zone ZT as a union of states
sai (i = 1, 2, .., n) obtained in the previous step. If a
vector is categorized into plural states saj (j = 1, ..)
(clusters are overlapped), select one state so that the
following distance normalized by its covariance can
be the minimum:

∆j = (x− µj)
T Σ−1

j (x− µj)

6. Stop if the state space is almost covered by the di-
vided clusters. Else, go to 2.

We call a set of states sa (a ∈ A) the i-th closest
to the goal state Si. By the above algorithm, we can
obtain not only the sensor space categorization but also
the optimal path to the goal from everywhere.



Experimental Results and Remarks
Simulation (I)
To show the validity of the proposed method, we show
a simple computer simulation in toy world consisting
of 100 × 100 grids. The task for the robot is to enter
the circle area whose radius is 5, located at the center
of the world. The action primitives are 1.0 grid motion
into any of four directions (up, down, left, and right).
The input vector is an absolute coordinate (x, y) (real
number) of the robot location.
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Figure 3: Result of the variable action-based construc-
tion of 2D state space

Figure 3 shows a result where the whole state space
is separated into twelve states. The states obtained
earlier have darker colors. Each arrow indicates an ac-
tion by which the state is classified. A set of states
S1 from which the robot can achieve the goal by only
one action consists of Sup

1 ，Sdn
1 ，Slt

1，and Srt
1 corre-

sponding to upward motion and so on. A set of states
S2 from which the robot can achieve S1 by only one
action consists of four ellipsoids Sup

2 ，Sdn
2 ，Slt

2，and
Srt

2 which are projected onto eight regions in Figure 3.
This figure can be interpreted as follows: the top-

left region Sdn
2 indicates downward motion, and the

robot takes this action. Then, the robot seems to en-
ter a state Srt

2 of which action is rightward. However,
this state is classified into the same S2, therefore, the
robot continues to take the same action (downward)
until entering the state Srt

1 belonging to S1, and state
transition occurs3 This means that the same input vec-
tor, the absolute coordinate of the robot location here,

3Even if the robot changes its actions when it crosses
the state boundary between Sdn

2 and Srt
2 , the consequent

actions are iterations of downward and leftward ones, and

might be different depending on its action. We some-
times have a similar situation that we failed to recog-
nize the intersection which we usually cross over from
the certain direction when we cross it from the different
direction.

The top-left quarter in the figure can be originally
either downward or leftward motion, and accidentally
classified into one by selecting the shorter one of the
distances from the center of two ellipsoids.

Let us consider to apply the existing methods such
as (Dubrawski & Reingnier 1994; Kröse & Dam 1992)
to the same problem. Since the length of one action is
fixed in these methods, the size of the obtained state
space depends on the length of one action and/or the
size of the world. However, the size of the state space
would not be so affected by these parameters in our
method since the length of one action can be variable.
This suggests that if the topology of an environment
is similar to another, the state spaces obtained by our
method are not so different regardless of the absolute
size of the environment.

Simulation (II)

Closeup

Possible Actions

Figure 4: Task

Task and environment As a more complicated
task for the robot, we consider an environment shown
in Figure 4 where the task for a mobile robot is to shoot
a ball into a goal (same as in (Asada et al. 1995a)).
The environment consists of a ball and a goal, and the
mobile robot has a single TV camera. The robot does
not know the location and the size of the goal, the size
and the weight of the ball, any camera parameters such
as focal length and tilt angle, or kinematics/dynamics
of itself.

We performed the computer simulation with the fol-
lowing specifications. The field is a square of 3.0m ×
3.0m. The goal post is located at the center of the
top line of the square (see Figure 4) and its height and

finally it achieves the goal state with physically the same
steps.



width are 0.23m and 0.9m, respectively. The robot is
0.31m wide and 0.45m long and kicks a ball of diameter
0.09m. The maximum translation velocity is 1.1m/s,
and the maximum angular velocity is 4.8 rad/s. The
camera is horizontally mounted on the robot (no tilt),
and its visual angle is 36 degrees. The velocities of
the ball before and after being kicked by the robot is
calculated by assuming that the mass of the ball is
negligible compared to that of the robot. The speed of
the ball is temporally decreased by a factor 0.8 in order
to reflect the so-called “viscous friction.” The values
of these parameters are determined so that they can
roughly simulate the real world.

The robot can select an action to be taken in the
current state of the environment. The robot moves
around using a PWS (Power Wheeled Steering) sys-
tem with two independent motors. Since we can send
the motor control command to each of the two motors
separately, we construct the action primitives in terms
of two motor commands ωl and ωr, each of which has
3 sub-actions, forward, stop, and back. All together,
we have 9 actions in the action primitive set A. Actu-
ally, a stop motion does not causes any changes in the
environment, we do not select this action primitive.

In computer simulation, we take into account two
sources of disturbances which make the method un-
stable. They are delays due to sensory information
processing and uncertainty of action execution. The
contents of the image processing are color filtering (a
ball and a goal are painted in red and blue, respective-
ly), edge enhancement, localizing and counting edge
points, and vector calculation (Asada et al. 1995a).
We have been using a pipeline image processor for the
real robot experiments and it takes about 33 ms to
perform these processes, that is, a period of one action
primitive. The latter is caused by the delay neces-
sary to stabilize motor rotation after sending motor
commands, and it is about 100 ms. Therefore, the un-
certainty of the action execution increases when motor
commands often change.
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Figure 5: Input vector consisting of five parameters
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1 = S1)

(b) the second stage (S1 + S2)

Figure 6: Construction process of the state space for
the shooting robot

Results The size of the observed image is 512 by 480
pixels, and the center of image is the origin of the image
coordinate system (see Figure 5). An input vector x
for a shooting task consists of:
• x1: the size of the ball, the diameter that ranges

from 0 to about 270 pixels,
• x2: the position of the ball ranging from -270 to

+270, considering the partial observation,
• x3: the size of the goal, the height average of the left

and right poles (or ends in image) that ranges from
0 to 480 pixels,

• x4: the position of the goal, the average of the po-
sitions of the left and right poles (or ends in image)



that ranges from -256 to +256, and
• x5: the orientation of the goal, the ratio of the height

difference between the left and right poles (or ends)
to the size of the goal x3. x5 ranges from -1.00 to
+1.00.
As a result of the state space construction, we can

obtain the state transition graph simultaneously. Ac-
tually, we have other states than obtained by the
method such as “only a ball is observed” or “only a
goal is observed.” State transitions from these states
to the obtained states is possible if they can be real-
ized by only one action. Otherwise, it seems difficult
to find a path because the robot might have many hid-
den states during the desirable state transition. For
example, the robot exists between a ball and a goal,
and the robot must take a circular motion so that it
can get a position from where the ball and the goal can
be observed simultaneously. During such a motion, the
robot might have many hidden states. We do not deal
with the “hidden states” problem here.

Figure 6 shows the process of state space division.
The state space in terms of ball size, ball position, and
goal size is indicated when the position and the orien-
tation of the goal (x4 and x5) are both zeros (in front
of the goal). In the first step, only one big ellipsoid
(SF

1 ) is obtained that corresponds to the forward mo-
tion (Figure 6 (a)). In the second step, two ellipsoids
(SF

2 and SB
2 ) corresponding to forward and backward

motions, respectively, are obtained and they construc-
t (S2) (Figure 6 (b)). In this figure, the state space
designed by the programmer in (Asada et al. 1995a)
corresponds to blocks parallel to the axes which are
quite different from the obtained ones.

Table 1: Comparison with existing methods
Number of Search Success

States Time Rate (%)
Previous work 243 500M∗ 77.4

Proposed method 33 41M 83.3

* indicates Q-learning time.

Table 1 compares the method with existing ones.
Success rates are obtained from 5000 trials for each,
and the number of states are counted when both the
ball and the goal are observed. The search time in the
previous work (Asada et al. 1995a) means the learning
time in terms of the period of one action primitive (33
ms). It takes about 500M (M=106) ticks because the
size of the state space is much larger. The proposed
method performs better than the previous work. The
reductions of the size of the state space and the search
time are about 1/8 and 1/12 of the previous work, re-
spectively. For the reference, we show the result by the
fixed action length of 33 ms. Compared with the pre-
vious work (Asada et al. 1995a), the size of the state
space and the search time are reduced into the half,
but the success ratio has not been improved because

the simulation has been done taking into account the
delays of image processing (33 ms) and the latency of
motor rotation (about 100 ms), and these effects occur
when state changes, the number of which is so many
due to the fixed length action. While, the size of the
state space by the proposed method is small, and the
size of each state is considerably larger, which is prefer-
able for the stability of the control because the effect of
sensor information processing delay becomes negligible
and the stability of motion execution improves due to
no changes of action commands inside one state. Only
the problem due to large volume of each state is that
the possibility of the incorrect merging of input vectors
into wrong states seems high. This might be partly a
reason why the success rate is less than 90%.

Experiments with a real robot

Figure 7: Our real robot

Figure 7 shows a picture of the real robot with a
TV camera (Sony handy-cam TR-3) used in the real
experiments. The system used in the experiments is
the same one in (Asada et al. 1995a). The experiment
consists of three stages. First, we collect the data ob-
tained by real robot motions. Next, we construct the
state and action spaces based on the sampled data. Fi-
nally, we control the robot based on the acquired the
state and action spaces and their transition graph.

The number of sampled input vectors is about 20,000
which corresponds to about 10 minutes. Figure 8 in-
dicate the projection of the constructed state space in
terms of the sizes of the ball and goal (x1 and x3)
when the ball and the goal are observed at the cen-
ter of image (x2 = x4 = x5 = 0). Labels “F” and
“B” indicate the motions of forward and backward, re-
spectively, and subscript shows the number of state
transitions towards the goal. “FL” means left forward
motion. Due to the capacity of the image processor,
the image size is reduced into 1/16 (128 × 120), and
values of each components of the input vector is also
reduced into 1/4. The whole state is separated into 10
states, which is smaller than in simulation because of
smaller number of experiences.
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Figure 8: Result of state space construction for the real
robot

Figure 9: The robot succeeded in finding and shooting
a ball into the goal

Figure 10: Images taken by the robot during the task
execution

We applied the result to a real robot. Success ratio is
worse than the simulation because of the disturbances
due to several causes such as eccentricity of the ball
centroid and slip of the tires that make the ball or
the robot move into unpredictable directions. Figure
9 shows how a real robot shoots a ball into a goal
by using the state and action map obtained by the
method. 16 images are shown in raster order from the
top left to the bottom right in every 1.5 seconds, in
which the robot tried to shoot a ball, but failed, then
moved backward so as to find a position to shoot a
ball, finally succeeded in shooting. Figure 10 shows a
sequence of images taken by the robot during the task
execution shown in Figure 9. Note that the backward
motion for retry is just the result of learning and not
hand-coded.

Discussion
There are two kinds of trade offs:
• If the sampling data (input vectors) are biased, pa-

rameters of the ellipsoids change, which affects the
size of the state space and the search time, and as
a result a behavior also changes. In our method, we
randomly initialized robot positions so that it can
observe both ball and goal. However, there is no
guarantee of no biases. Generally, for the less biased
data, the more data and longer time are necessary.
An effective method for data sampling should be de-
veloped, but there is a trade-off between the effec-
tiveness and a priori knowledge on the environment
and the robot.

• We used a concentration ellipsoid (Cramër 1951) as a
model of cluster (state) of input vectors, inside which



a uniform distribution is assumed. However, actual
distributions are not always uniform. Ideally, situa-
tions that input vectors to be included in the model
are not included and vise versa should be avoided.
Complete modeling seems impossible because of un-
certainties in real world. A model which includes
much less error but needs complicated procedures
to obtain the model parameters and/or much mem-
ory to store and recall them is not desirable because
of realtime execution of robot actions. We should
find a model taking into account these issues.

THE SECOND METHOD

Basic Idea
In the second method, we put more emphasis on the
reduction of learning time. As a basic idea coping
with this problem, we adopt the incremental segmen-
tation of the state space by which the state space is
autonomously segmented, and as a results we expect
the reduction of the learning time and the capability
of coping with dynamic change of the environment.

A key issue is to find the basic policy to segment
the state space so as to realize the desirable features
described above. The following two policies can be
considered.

A: Segment the state if the prediction of sensor outputs
is incorrect.

B: Segment the state if the same action causes the de-
sirable or undesirable result (ex., transition to the
goal states or non-goal states) even though the pre-
diction itself is correct.

According to the first policy, the robot can discrimi-
nate the world situations with as few states as possible
based on the experiences until the current time. This
contributes to the followings:

1. as long as the prediction of sensor outputs is correct,
tedious exploration process can be eliminated, and
therefore

2. reinforcement learning converges immediately. Fur-
ther

3. the robot can cope with dynamic change of the en-
vironment due to its incremental processes of the
segmentation.

However, the policy A does not care where the goal
state is. On the other hand, the policy B contributes to
the emergence of the purposive behavior. Even though
the prediction is correct, it would be nonsense if the
same action from the same state resulted in different
situations. This state should be separated so that the
same action can always cause the desirable transition.

From the above arguments, the policy A is related
to the world model construction by coarse mapping
between states and actions far from the good states.
While, the policy B is related to the the goal oriented
segmentation based on the reinforcement signals. As

a result fine mapping between states and actions near
the goal states is obtained.

Algorithm
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Figure 11: The rough flow of the proposed method

Fig.11 shows the rough flow of the proposed method.
First, the robot acquires sensor outputs as data. If the
data are consistent with the current local models, the
robot updates the local models. Else, the robot builds
new local models, and initialize the action value func-
tion by reusing the knowledge obtained by the past
experiences. Then, it learns the policy using reinforce-
ment learning, and returns the beginning. The robot
iterates this cycle forever.

Action Space and Data Structure
In the conventional reinforcement learning methods, an
“action” is defined as an execution of motor command
per fixed sampling interval. In real situation, this def-
inition often causes “state-action deviation problem”
as pointed out by Asada et al.(Asada et al. 1995b).
They defined such an action as an action primitive,
and a action is defined as a sequence of action primi-
tives until the current state changes. Here, we follow
their definition.

We define a data set di ∈ D, (i = 1, 2, · · ·) as a
triplet of action primitive mi ∈ M , sensor output si ∈
S and its gradient ṡi ∈ Ṡ.

If the robot stores the all data of its experiences, the
amount of data will exceed the capacity of the robot.
Therefore, it is not practical to store the all data. Fur-
ther, the robot often receives incorrect data because of



sensor noise, change of the environment, and the un-
certainty of motor commands. Then, we update the
gradient of inputs vector ṡi, when the robot receives a
new data set dj .
if

|si − sj | < ε and mi = mj

then
ṡi = (1− β)ṡj + βṡi

else

register sj as a new datum.

Here, 0 < β < 1 and ε stands for a similarity threshold.
| · | means weighted Euclidean norm.

Local Model Construction

A
b

state state statestate i−1 i i+1 i+2

S

S
.

Figure 12: The construction of local model and the
segmentation of sensor space

We first explain the method of local model construc-
tion by using a linear model of the the gradient of sen-
sor outputs, that is,

ṡ = As + b.

The algorithm for local model construction and seg-
mentation is as follows:
1. Gather data sets which have the same action primi-

tive.
2. Apply the weighted linear regression method to fit a

linear model to the data sets.
3. Divide the data into two with a method of cluster

analysis using weighted Euclidean norm as similarity
and return 2 if the unbiased variance of the residual
exceeds a certain threshold, else stop.

Fig.12 shows an example of the construction of local
model and the segmentation of sensor space in case of
one dimension of the sensor output.

Near the goal state, the segmented region obtained
by the above process is not always appropriate because

multiple transitions (success in the reaching the goal
state or failure), from a same pair of the sensor outputs
in the same region and the action primitive can be
often observed. Then, we use the reinforcement signals
to divide the segmented region so that the same action
primitive from the divided region can reach the unique
state (the goal state or others).

The segmented regions obtained by the above pro-
cess are regarded as “states” for the reinforcement
learning method. Each segmented region has sever-
al data sets di, and let the si (i = 1, 2, · · ·) be the
representatives of the region. A new sensor outputs sq

is classified into one of the states by finding a represen-
tative in the corresponding state based on NN(nearest
neighbor) methods.

Action Generation
As we stated in the section , we define “action” as “a
sequence of several action primitives until the current
state changes”. The sequence of action primitives with
the local model is generated as follows.

One can calculate the desired gradient of sensor out-
puts ṡd from the current sensor outputs sj and desired
sensor outputs sd, that is,.

ṡd = sd − sj .

Since the linear model parameters have been obtained
in each local model, we can predict a desirable action
to satisfy the above equation. The robot carries out
the action primitive md which is closest to the desired
gradient of sensor outputs.

md = arg min
mi

(ṡd − ṡmi)
2 (3)

We assumed the continuity of sensor space. How-
ever, if the robot cannot observe the objects in the
environment, the robot cannot obtain the information
about the objects from sensors. Therefore, there is a
case that equation (3) cannot be applied. In such cas-
es, however, an action for a state transition is needed,
then we adopt a sequence of the same action primitive
as one action until the current state changes.

Reuse of the Knowledge Obtained by
Experiences
Theoretically, the action value function should be re-
set every time the new state space is constructed by
the incremental segmentation of the state space. This
prevents the knowledge obtained by the past experi-
ences from being used efficiently in the learning pro-
cess. Then, we consider to reuse the knowledge by
calculating the new action value function for the new
segmented state space from the old state space and its
action-value function.

Basic idea is to adopt a new action value func-
tion calculated by weighted sum of the old action val-
ue function as the initial knowledge for reinforcemen-
t learning. The weights are calculated based on the



numbers of the sensor output representatives in both
the new and old states. Concrete procedure is given as
following.

Sold and Snew denote the old and new state s-
paces, respectively. sk(k = 1, 2, · · · , n), statej

old(j =
1, 2, · · · , nold) and statei

new (i = 1, 2, · · · , nnew ) denote
the sensor output of stored data di, a state of the old
state space and a state of the new state space. We
prepare a nold × nnew matrix T (stateold , statenew ) of
which component t(stateold

i , statenew
j ) represents the

number of sensor output representatives sk that are
classified into statenew

j from stateold
i . Then, we can

calculate the action-value function of the new state s-
pace Q(statenew

i , a) as follows.

Q(statenew
i , a) =

nold∑

j=1

ωjiQ(stateold
j , a), (4)

where

ωji =
t(stateold

j , statenew
i )

∑nold

l=0 t(stateold
l , statenew

i )
. (5)

Task and Assumptions
Only one assumption we need is continuity of the sen-
sor space. This makes local model construction effi-
cient, and therefore contributes to eliminate unneces-
sary exploration.

We apply the method to shooting behavior acquisi-
tion by a soccer robot as an example of robot tasks
which is the same one as the first method dealt.

The robot often loses the ball and/or goal because
of its narrow angle of view (65◦). In such a case, there
are no feature values of ball and/or goal. However
since the robot knows into which direction it lost the
ball and/or the goal by memorizing the previous state,
large absolute constants (opposite signs) are assigned
to these lost states. As the result, the local models
for these states are obtained with their gradients equal
zeros (The left side of Figure 12 indicates such a case).

Simulation
We assign a reward value 1 when the ball was kicked

into the goal or −0.1 otherwise. 90% of the time the
robot selects the action specified by its optimal policy,
the remaining 10% of the time it takes a random action.

Fig.13 shows the success rate and the number of
states during the incremental state space segmenta-
tion and the processes of shooting behavior acquisi-
tion. Here, the success rate indicates the number of
successes in the last twenty trials.

Fig.14 shows a projection of the state space after
1,110 trials, where the state space in term of ball size
and goal size is indicated when the position of the ball
and the goal are center of the screen and the orientation
of the goal is frontal.

Fig.15 shows the success rate and the number of s-
tates in the case that the ball diameter suddenly be-
came twice at the 500th trial. It suggests the proposed
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Figure 13: The success rate and the number of states

method can deal with dynamic change of the environ-
ment.

Experiment on the Real Robot
Fig.16 shows a configuration of the real mobile robot

system. Fig.17(a) and (b) show the images taken by
a TV camera mounted on the robot and processed by
Datacube MaxVideo 200, a real-time pipeline video im-
age processor. The image processing and the vehicle
control system are operated by VxWorks OS on M-
C68040 CPU which are connected with host Sun work-
stations via Ether net. The result of image processing
are sent to the host CPU to decide an optimal action
against the current state. The sampling time is about
30ms.

Fig.18 shows the state space after 72 trials. The
state space in term of ball size and goal size is indicated
when the position of the ball and the goal are center
of the screen and the orientation of the goal is frontal.
The numbers of acquired states and data are 18 and
151, respectively.

Fig.19 shows how the robot tries to shoot a ball into
the goal. Because of the sensor noise and the uncer-
tainty of the motor commands, the robot often misun-
derstands the states, and takes wrong actions, there-
fore it fails to do the task. 1© indicates that the robot
is going to shoot a ball into the goal and move forward.
But it fails to kick the ball at 2© because the speed is
too hight to turn. The ball is occluded by the robot in
2©. Then, it goes left back so that it can shoot a ball
at 3©. But it fails again at 4©. Then it goes left back
again at 5©. After all, the robot does the shooting task
successfully at 6©.

CONCLUDING REMARKS
We have proposed a method for constructing the state
and action spaces based on experiences, and shown the
validity of the method with computer simulations and
real robot experiments.
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Figure 14: Result of state space construction

• The sensory information in our task is an image of
a red ball and a blue goal filtered by color image
segmentation, and their image features such as posi-
tions, areas, and orientation are used as axes of the
state space. Generally, selection of features from a
ordinary images is considerably a hard problem. A
problem which feature is necessary to accomplish a
give task might be much harder when such a fea-
ture changes depending on situations. Since use of
all possible sensory information seems impossible, s-
election of features obtained by the given capability
for feature detection is more important. For exam-
ple, behavior acquisition based on the visual motion
cues (Nakamura & Asada 1995) and based on stere-
o disparity and motion cues (Nakamura & Asada
1996) have been proposed. A learning mechanism
for selecting features from the sensory data process-
ing available should be developed.

• Coping with “hidden” states is another essential
problem although we have not dealt with it here.
This corresponds to coping with the temporal com-
plexity of the state space structure while the above
with the spatial complexity of it. How many differ-
ential operations of feature vectors are necessary and
sufficient for the given task? An essential problem
is selection of input vectors including the temporal
axis.

• We can regard that as a result of state space con-
struction, the action space also is temporally ab-
stracted by defining an action as a sequence of action
primitives and parameterizing its length. Since our
robot has only two DOFs (degrees of freedom) s-
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Figure 15: The success rate and the number of states
in the case that environment change one the way
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Figure 16: A configuration of the real robot

patial abstraction of action space is not necessary.
However, spatial abstraction of action space is gen-
erally needed if the robot has many DOFs. For ex-
ample, we human beings easily grasp something by
controlling a very simple parameter (close or open
your hand) although it has many DOFs physical-
ly. Both spatial and temporal abstraction of action
space is necessary with state space construction.
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Figure 19: The robot succeeded in shooting a ball into
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