
Behavior Coordination for a Mobile Robot Using
Modular Reinforcement Learning

Eiji Uchibe, Minoru Asada, and Koh Hosoda

Dept. of Mech. Eng. for Computer-Controlled Machinery
Osaka University, Suita, Osaka 565, Japan

uchibe@robotics.ccm.eng.osaka-u.ac.jp

Abstract
Coordination of multiple behaviors independently ob-
tained by a reinforcement learning method is one of
the issues in order for the method to be scaled to larg-
er and more complex robot learning tasks. Direct com-
bination of all the state spaces for individual modules
(subtasks) needs enormous learning time, and it causes
hidden states. This paper presents a method of modu-
lar learning which coordinates multiple behaviors tak-
ing account of a trade-off between learning time and
performance. First, in order to reduce the learning
time the whole state space is classified into two cate-
gories based on the action values separately obtained
by Q learning: the area where one of the learned behav-
iors is directly applicable (no more learning area), and
the area where learning is necessary due to the com-
petition of multiple behaviors (re-learning area). Sec-
ond, hidden states are detected by model fitting to the
learned action values based on the information criteri-
on. Finally, the initial action values in the re-learning
area are adjusted so that they can be consistent with
the values in the no more learning area. The method
is applied to one to one soccer playing robots. Com-
puter simulation and real robot experiments are given
to show the validity of the proposed method.

1 Introduction
Realization of autonomous agents that organize their
own internal structure in order to take actions to-
wards achieving their goals is the ultimate goal of AI
and Robotics. That is, the autonomous agents have
to learn. Reinforcement learning has recently been
receiving increased attention as a method for robot
learning with little or no a priori knowledge and high-
er capability of reactive and adaptive behaviors [6].
In the reinforcement learning method, a robot and its
environment are modeled by two synchronized finite
state automatons interacting in discrete time cyclical
processes. The robot senses the current state of the
environment and selects an action. Based on the state
and the action, the environment makes a transition
to a new state and generates a reward that is passed
back to the robot. Through these interactions, the
robot learns a purposive behavior to achieve a given
goal.

Although the role of reinforcement learning is very

important to realize autonomous systems, the promi-
nence of that role is largely dependent on the extent
to which the learning can be scaled to solve larger and
more complex robot learning tasks. Simple applica-
tion of the reinforcement learning method to multiple
robot tasks seems hard because of enormous amount
of learning time. Modular learning is often used to
cope with large scaled robot tasks.

Singh [11] defined a composite task as sequentially
concatenating multiple elemental tasks, and rewards
are generated only when the system achieves a subtask
in a prescribed order. While, Whitehead et al. [14]
proposed a modular architecture to coordinate multi-
ple behaviors. Subtasks are independent of each other,
and therefore their execution order can be arbitrary.
The validity of these methods has been shown only by
computer simulations where the action and state s-
paces are too idealized and the task seems simple and
straightforward.

Connel and Mahadevan [5] proposed a rapid task
learning for real robots by decomposing the whole task
(box-pushing) into subtasks (finding, pushing a box,
and unwedging) independent of each other. Howev-
er, decomposition and switching conditions between
subtasks are designed by the programmer. Gachet et
al. [7] realized a coordinated behavior which is a linear
combination of basic modules. However, the resultant
behavior is not guaranteed as an optimal one.

Existing methods explained above assume that the
subtask state spaces do not interfere with each other or
they are completely independent of each other. This
assumption is too idealized and often does not hold in
real robot tasks.

Asada et al. [3] proposed a method for behavior
coordination in a case that the subtask state spaces
interfere with each other, and they applied it to real
soccer robots. They reused the learned action values
as initial knowledge in re-learning process to reduce
the time, but still they suffer from enormous amount of
the learning time. Since hidden states are given by the
programmer, the robot cannot cope with unexpected
hidden states. Maybe, they need some methods of
hidden state detection such as [4, 9].

In this paper, we propose a method of modular
learning which coordinates multiple behaviors taking
account of a trade-off between learning time and per-

formance. First, in order to reduce the learning time
the whole state space is classified into two categories
based on the action values separately obtained by Q
learning: the area where one of the learned behaviors
is directly applicable (no more learning area), and the
area where learning is necessary due to the compe-
tition of multiple behaviors (re-learning area). Sec-
ond, hidden states are detected by model fitting to the
learned action values based on the information criteri-
on. Finally, the initial action values in the re-learning
area are adjusted so that they can be consistent with
the values in the no more learning area. The method is
applied to one to one soccer playing robots. Comput-
er simulations and real robot experiments are given to
show the validity of the proposed method.

2 Reinforcement Learning
2.1 Q learning
Q learning is a form of model-free reinforcement learn-
ing based on stochastic dynamic programming. It pro-
vides robots with the capability of learning to act op-
timally in a Markovian environment [12]. We assume
that the robot can discriminate the set S of distinc-
t world states, and can take the set A of actions on
the world. A simple version of a Q learning algorithm
used here is shown in Fig.1.

1. Initialize Q(s, a) to 0 for all state s and action
a.

2. Perceives current state s.

3. Choose an action a according to action value
function.

4. Carry out action a in the environment. Let the
next state be s′ and immediate reward be r.

5. Update action value function from s, a, s′, and
r,

Qt+1(s, a) = (1− αt)Qt(s, a)
+αt(r + γ max

a′∈A
Qt(s′, a′))(1)

where αt is a learning rate parameter and γ is a
fixed discounting factor between 0 and 1.

6. Return to 2.

Fig.1 A simple version of the 1-step Q learning algo-
rithm.

2.2 Applying Q Learning to Multiple
Goal Tasks

The time needed to acquire an optimal policy mainly
depends on the size of state space. If we apply the
monolithic Q learning into multiple goal tasks, the ex-
pected learning time is exponential in the size of state
space [13]. Therefore, a number of methods have been

employed to speed up learning in multiple tasks. One
technique is to divide a multiple task into some sub-
tasks and coordinate behaviors which is independently
acquired. We briefly survey the method by Asada et
al. [3].

(a) Simple summation of action value functions

The action value function Qss(s, a) for the coordinated
behavior is given by

Qss(s, a) =
n∑

i=1

iQ(is, a). (2)

In this scheme, the selected action sometimes might
not make any sense because the simple sum can-
not consider the combined situations, and also easily
trapped into the local maxima.

(b) Switching action value functions

The action value function Qsw(s, a) for the coordinat-
ed behavior is given by

Qsw(s, a) = iQ(is, a) in some situations, (3)

It seems hard to appropriately determine the situa-
tions to switch the functions. Therefore, we need a
carefully designed decision rule to switch the policies.
The following method provides this rule by learning a
new policy coping with new situations.

(c) Using learning results as initial value of a
new action value function

In the above methods, the previously learned ac-
tion value functions are simply summed or switched.
Therefore, these method cannot cope with local max-
ima and/or hidden states caused by combination of s-
tate spaces. Consequently, an action suitable for these
situations has never been learned. To cope with these
new situations, the robot needs to learn a new behav-
ior by using the previously learned behaviors. The
method is as follows;

1. Construct a new state space S:

(a) construct the directly combined state space.
(b) find such states that are inconsistent.
(c) resolve the inconsistent states by adding new

sub-states ssub ∈ S.

2. Learn a new behavior in the new state space S:

(a) use the values of the action value function
Qss as the initial values of Qrl for both the
normal states s and the new sub-states ssub.
For the new sub-states, we use the origi-
nal value of Qss(s, a) before generating these
new states. That is,

Qrl(s, a) = Qss(s, a)
Qrl(ssub, a) = original value of Qss(s, a)

(4)

(b) control the strategy for the action selection
in such a way that conservative strategy is
used around the normal states s and high
random strategy around the new sub-states
ssub in order to reduce the learning time.

2.3 Problems of the method in [3]
In our previous work [3], the two problems are left

unsolved. One is that the robot has to learn at the all
states. Though conservative strategy is used around
the normal states, the robot sometimes executes an in-
appropriate action because of exploration. This causes
explosion of learning time. The other is that inconsis-
tent states are found by the programmer. If the pro-
grammer misses inconsistent states, the robot can not
acquire a suitable behavior.

In order to overcome these two problems, we
present a method for each. For the former, modu-
lar learning which coordinates multiple behaviors tak-
ing account of a trade-off between learning time and
performance is proposed in section 3. For the latter,
model fitting to the learned action values based on in-
formation criterion is proposed so as to detect hidden
states in section 4.

3 Modular Reinforcement Learning
In this section, we present a method of “modular rein-
forcement learning” to coordinate multiple behaviors
when action value functions of subtasks are given to
the robot.
3.1 Module Construction
Fig.2 shows an overview of module construction pro-
cedure. First, a new state space S is composed by di-
rect product of state spaces corresponding to n mod-
ules, where n is two for the sake of reader’s under-
standing. We define the kernel state of each module
in order to prepare for clustering the composite state
space.

Let us define the following:
iT : a subtask corresponding the i-th module,

(i = 1, · · · , n)
iS : state space for the i-th subtask,
isk : the k-th state of the i-th state space iS,
iQ : action value function of the i-th subtask,
S : a composite state space obtained by

direct combinations of n state spaces,
s : one sub-state in the composite state space S.

We define the maximum action value function iqk
max

in terms of action. iqk
max is computed by

iqk
max(isk) = max

b∈A
iQ(isk, b),

for a state isk ∈ iS of subtask Ti. If

si = arg max
isk∈iS

iqmax(isk), and (5)

si = arg min
jsk∈jS

jqmax(jsk) for all j 6= i, (6)

we regard the state si as the kernel state si
kernel of the

i-th module.

define the kernel state of −th module for all

1. Construct the directly combined state space and,cS

i i

State space of sub−task Ti

St
at

e
 s

pa
ce

 o
f

T
j

su
b−

ta
sk

Si

Sj

qj max
iq

min

Action value of
each subtask

i
max

q qj min

2. Classify into clusters by ISODATA S

(−th Module)

No more learning area

Cluster based on subtask Tii

(−th Module)j

S
i

S
j

Re−learning area

rlS

Cluster based on re−learning

Fig.2 An overview of module construction procedure

Then, in order to reduce the learning time, the w-
hole state space is classified into two categories based
on the maximum action values separately obtained by
Q learning: the area where one of the learned behav-
iors is directly applicable (no more learning area), and
the area where learning is necessary due to the compe-
tition of multiple behaviors (re-learning area). Then,
all states s ∈ S are classified according to the Maha-
lanobis distance between the non-kernel state s and
the kernel states skernel. We apply ISODATA clus-
tering algorithm to classify these action values. The
ISODATA is an iterative and non-hierarchical cluster-
ing method. Eventually composite state space S is
classified into the no more learning area Si, i = 1 · · ·n
and the re-learning area Srl. These area are exclusive.

3.2 Learning Schema
If both the current state s and the transited state s′
belong to the re-learning area, we can apply normal Q
learning. On the other hand both s and s′ belong to
the no more learning area, we do not need to update
action value functions any more.

The problem is the estimation of discounted sum
of the reward to update action value function, if s
belong to the re-learning area while s′ belong to the
no more learning area. In general, action values be-
fore and after coordination might not be consistent

ObstacleNear

Far

Middle

A

B

C

m steps

n steps

state space

state space

state space

Reaching based

Avoiding based

Re−learning based

Goal

(a) Simple navigation
task

B

A
C

n m

q
Near

Middle
q ’

Far
q ’

B

A

C

n m

qNear

Farq

Middleq

Good discounted action value

Bad discounted action value

(b) Action value for the
re-learning area

Fig.3 Unbalance problem between action value func-
tion of modules

between different areas. Because, action values before
coordination are acquired independently by differen-
t subtasks, and therefore direct use of action values
simply brings to local maxima. Suppose that the sim-
ple navigation task as shown in Fig.3(a) is given to
the robot, this task is decomposed into two subtasks
(reaching and avoidance), and the optimal behaviors
for both subtasks are obtained by Q learning indepen-
dently.

Suppose that we simply applied Q learning with
inadequate discount factor γc for coordination, and let
qnear and qmiddle be action value of Near and Middle
respectively.

q(C → A) = γm
c qnear,

q(C → B) = γn
c qmiddle,

where q(C → A) and q(C → B) denote action value
from C to A and from C to B respectively. If q(C →
A) < q(C → B), the robot might move back from C
to B because of an inadequate discount factor γc(See
Fig.3(b)).

Therefore, we have to adjust the action value func-
tion. For an optimal policy of i-th subtask if∗opt, cal-
culate steps(is), the physical number of steps to goal,
given that the process begins in state is and follows op-
timal policy thereafter. Estimated action value func-
tions are appropriately discounted using steps(is) as a
discount factor. For example, γc of Fig.3 is calculated
as follows:

γc = E
{

m+n
√

qnear − qmiddle
}

. (7)

If γc >= 1, γc is adjusted to about 1.0. Eventually,
the action value function Qrl can be defined as shown
in Fig.4.

Srl : state space of the re-learning area,
Qrl : action value function of the

re-learning area,
For i = 1 · · ·n,

1. if s, s′ ∈ Srl : Apply normal update rule (eq.1).

2. if s ∈ Srl，s′ ∈ Si : Update Qrl(s, a) as follows,

Qrl(s, a) = (1−α)Qrl(s, a)+α(r+γVi(s′)), (8)

where Vi(s′) is value function of the no more
learning area of i-th module. That is,

Vi(s′) = γc max
b∈A

Qi(s′, b) s′ ∈ Si. (9)

3. if s ∈ Si : Do not update

Fig.4 Update rule of module learning

4 Hidden States Detection based on A-
IC

In the above method, hidden(inconsistent) states are
not considered when some behaviors (result of learn-
ing) are combined. The hidden states prevent the
learning robot from acquiring an optimal behavior,
therefore the robot should be able to find hidden states
autonomously. In this section, we present a statistical
method to detect hidden states recursively.

Let {qt} be a time series data of action value Q(s, a)
in state s and action a, and suppose that fitting
the transition of action value into (p, q) dimension-
al autoregressive moving average model (ARMA(p, q))
which is computed by

qt +
p∑

i=1

aiqt−i = et +
q∑

i=1

biet−i, (10)

where ai and bi are the parameters of AR and MA
respectively, and et is the noise and

E{et} = 0, E{eteτ} = σ2
eδtτ ,

where σ2
e is variance of {et}. The problem is how to

determine the dimension p and q of ARMA model.
Here, we apply AIC (Akaike’s Information Criterion),
which is widely used in the field of time series analysis
[1] to determine p and q. For some p and q, ai and bi
are calculated by prediction error method(PEM) and
then AIC is computed by

AIC = N ln σ̂2
e + 2(p + q), (11)

where N is the number of data sets, and the factors
unrelated to comparison are ignored. The estimation

of σ2
e , and σ̂2

e is calculated by

σ̂2
e =

1
N

N∑
t=1

ê2
t , (12)

where ê2
t is the estimation of prediction error. The

dimension p and q of ARMA model is determined by
minimizing AIC.

If the state s is not a hidden state and the Q
learning algorithm converges, the dimension of model
should be 0. However if s is a hidden state the dimen-
sion is not equal to 0. Hence if the dimension of AR-
MA model is more than 2, then the state s is regarded
as a hidden state. Hereafter the action value Q(s, a)
for hidden state s are deleted, tuple {sprev, aprev, s} is
added to the composite state space as one state, where
sprev and aprev denote the old state and the action
which is executed in state sprev and makes transition
to s. Then initialize action value to old Q(s, a). The
simple outline is given in Fig.5.

For the time series data of action value,

1. Fit the transition into ARMA(p, q).

2. Compute AIC.

3. Judge if the state s would be hidden states based
on AIC.

Fig.5 Detection procedure of hidden states by autore-
gressive model

5 The Task and Assumptions
5.1 The Multiple Task
The task for a mobile robot is the same as [3], which
is to shoot a ball into a goal without collisions with a
keeper robot(see Fig.6(a)). The environment consists
of a ball, two goals, four lines and a keeper robot, and
the each mobile robot has a single color TV camera.
The robot does not know the location and the size of
the objects, the size and the weight of the ball, keep-
er robot, any camera parameters such as focal length
and tilt angle, nor kinematics/dynamics of itself. Our
mobile robot moves around using a 4-wheel steering
system.

The effects of an action against the environment
can be informed to the robot only through the visual
information. Here, we consider to divide the task into
two subtasks; one is to shoot a ball into the goal which
has been learned in [2] and the other is to avoid a mov-
ing keeper robot. Then, we coordinate these learned
behaviors into one.
5.2 Construction of State and Action S-

paces
In a shooting subtask, the state space consists of ball
image, goal image and line image, while in an avoiding

Input Image Keeper
Ball

Learner

Goal

(a) A robot environment (b) Our soccer robot

Line

Robot

Ball

Goal

Shooting Task

Avoiding Task

(c) The components of state spaces

Fig.6 The task is to shoot a ball into the goal avoiding
collisions with a keeper robot.

subtask, the state space consists of only keeper robot
image (See Fig.6(c)).

As motor commands, we have 7 actions such as go
straight, turn right, turn left, stop, go backward, as
shown in Fig.6(a). In real robot tasks, one physical
action does not always cause a state transition, there-
fore the learning often does not work well. This is
called “state-action deviation” problem [2]. To avoid
this problem, we define action as a sequence of action
primitives from 7 physical actions until state transi-
tion happens.

5.3 Reward Function and Discounting
Factor

In shooting subtask, we assign a reward value 1 when
the ball was kicked into the goal or 0 otherwise. On the
other hand, a reward value −0.3 is given to the robot
when a collision between two robots is happened in
avoiding subtask. In modular learning, same reward
function is used.

Discounting factors are 0.9 and −0.1 in shooting
and avoiding subtask respectively. γ for coordination
is estimated as described in 3.2.

(a) The ball is in front of
the keeper robot

(b) The ball and keeper
robot stand in a line

(c) The ball is at the side
of keeper robot

(d) The ball is apart from
the keeper robot

Fig.7 Clustering results

6 Experiments
The experiment consists of two parts: first, learn-
ing the optimal policy through computer simulations,
then apply the learned policy to a real situation.
6.1 Computer Simulations
First, the examples of the classified states are shown
in Fig.7, where a keeper robot, a ball, two goals, and
four lines are displayed. The dark gray region corre-
sponds to the re-learning area, and the light gray one
corresponds to the no more learning area for avoid-
ing behavior. The rest is the no more learning area
for shooting behavior. For example, the re-learning
area in Fig.7(a) is larger than one in Fig.7(b) because
the ball is close to the goal keeper. Figs.7(c) and (d)
show cases when one behavior can be directly applica-
ble because of almost no interference between multiple
behaviors.

Next, we show the average performance over 10 run-
s for many coordination method in Table 1, where
avoidance (shooting) switching has a priority over
shooting (avoidance) behaviors. As a matter of course,
re-learning method is superior to all other methods of
learning in Table 1. In particular, we focus on the
differences in performance between learning all states
described in [3] and modular reinforcement learning
in Table 2. However the learning time needed to
converge of that method is about 5.6 times as long
as the modular learning. Because the upper limit of
success rate of shooting is bound, we can not con-
clude that modular reinforcement learning is the best

Table 1 Average performance over 10 runs measured
Integration success of mean steps mean steps

method shooting(%) to collision to shooting

only
50.3 62.5 131.2

shooting

simple
36.1 172.3 231.2

summation

avoidance
39.5 6207.4 414.4

switching

shooting
49.6 95.2 273.5

switching

relearning 60.8 5048.5 128.3

modular
57.3 3624.8 138.6

learning

Table 2 Average performance over 10 runs measured
relearning vs. modular learning

performance all states module
success rate of shooting (%) 60.8 57.3

steps to collision 5048.5 3624.8
steps to shoot 128.3 138.6

convergence time 718.5 128.9
of states of learning 11132 395

method completely, but modular reinforcement learn-
ing are effective in regard to the trade-off between per-
formance and learning time.

Table 3 shows the two typical examples of statis-
tical detection of hidden states. One is the case the
ball is occuluded by the keeper robot ,which is a re-
sult of direct combination of state spaces. The other
is the case that the state space is too coarse for the
states and actions to correspond to one to one. If the
robot succeeds in kicking the ball, then the action val-
ue becomes high because it is easy to shoot the ball
into the goal. However if the robot fails to kick the
ball, the environment makes a transition to a hidden
state such as “ball is lost into left”, therefore the ac-
tion value becomes low. Consequently the variance of
action value is large. Fig.8 shows that the transition
of the state at the right side in Table 3 becomes stable
after that this state is found “hidden” and a new state
is added (an arrow indicates the time of hidden state
detection).

Fig.9 shows a sequence of shooting behavior by the
modular learning method. In these figures, the learn-
ing robot and the keeper robot are colored in black and
white, respectively. The dotted lines emerged from
them shows their visual angles. The opponent tries to
chase after the robot with the probability of 60% as
long as it can see the robot. Otherwise, it stops.

Table 3 Typical hidden states detected by AIC-based
fitting

state

dimension of 1 2ARMA model(p)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

ac
tio

n
va

lu
e

the number of update

hidden state
the robot succeeds in kicking the ball

the robot fails to kick the ball

Fig.8 Transition of action value of hidden states de-
tected by ARMA model enhanced by AIC

6.2 Real System
Fig.10 and and Fig.11 show a configuration of the
real mobile robot, and the example of input images
taken from a learning robot (left) and a goal keeper
(right). The image taken by a TV camera mounted
on the robot is transmitted to a UHF receiver and
processed by Datacube MaxVideo 200, a real-time
pipeline video image processor. In order to simplify
and speed up the image processing time, we painted
the ball, the goal, and the enemy in red, blue, and yel-
low, respectively. The input NTSC color video signal
is first converted into HSV color components in order
to make the extraction of the objects easy. We have
constructed the radio control system of the robot, fol-
lowing the remote-brain project by Inaba et al. [8].
The image processing and the vehicle control system
are operated by VxWorks OS on MC68040 CPU which
are connected with host Sun wrokstations via Ether
net. The tilt angle is about −26 [deg] so that robot
can see the environment effectively. The horizontal
and vertical visual angle are about 67 [deg] and 60
[deg], respectively. Fig.12 shows a sequence of images
where the robot achieved the goal avoiding a keeper
robot.

7 Discussion and Future Works
This paper presents a method of modular reinforce-
ment learning which coordinates multiple behaviors

Fig.9 The robot succeeded in shooting a ball into a
goal avoiding a moving keeper robot.

taking account of a trade-off between learning time
and performance and a method of autonomous detec-
tion of hidden states which fits model to the time series
action values based on the information criterion, and
demonstrates experiments on a simulated and a real
robot.

In our method, we need an estimation procedure
of average steps to the goal state in order to adjust
action value functions. It does require that average
steps to goal be computed after convergence because of
“state-action deviation” problem. Instead, R learning
[10] which maximize average reward but discounted
cumulative reward might be promising.

As future work we hope to challenge topics as fol-
lows: 1. autonomous decomposition of multiple tasks,
2. simultaneous learning of multiple robots. Our final
goal is to build up a team of soccer playing robots in
which not only the learning from competitive agents
but from cooperative agents as well should be studied
to realize team plays such as centering, passing, and
so on.

Acknowledgment
The authors thank Mr. Masateru Nakamura for their ef-
forts in implementing a real robot system.

References
[1] H. Akaike. A New Look on the Statistical Model I-

dentification. IEEE Trans. AC-19, pp. 716–723, 1974.

[2] M. Asada, S. Noda, S. Tawaratsumida, and K. Hoso-
da. Vision-Based Reinforcement Learning for Purpo-
sive Behavior Acquisition. In Proc. of IEEE Inter-

MC68040
MaxVideo
DigiColor
parallel I/O

UHF
antenna

tuner

Monitor

Sun WS

PC98
R/C
transmiter

UHF
transmiterUHF

transmiter
TVCamera TVCamera

Soccer Robot Soccer Robot

VME BOX
SPARC station 2

Fig.10 A configuration of the real system.

national Conference on Robotics and Automation, pp.
146–153, 1995.

[3] M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida,
and K. Hosoda. Coordination Of Multiple Behaviors
Acquired By A Vision-Based Reinforcement Learn-
ing. In Proc. of the 1994 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vol. 2,
pp. 917–924, 1994.

[4] L. Chrisman. Planning for Closed-Loop Execution
Using Partially Observable Markovian Decision Pro-
cesses. In AAAI Spring Symposium Series:Control of
Selective Perception, 1992.

[5] J. H. Connel and S. Mahadevan. Rapid Task Learning
for Real Robot. In Robot Learning [6], chapter 5, pp.
105–140.

[6] J. H. Connel and S. Mahadevan. Robot Learning.
Kluwer Academic Publishers, 1993.

[7] D. Gachet, M. A. Salichs, L. Moreno, and J. R. Pi-
mentel. Learning Emergent Tasks for an Autonomous
Mobile Robot. In Proc. of the 1994 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pp. 290–297, 1994.

[8] M. Inaba. Remote-Brained Robotics : Interfacing AI
with Real World Behaviors. In Preprints of ISRR’93,
Pitsuburg, 1993.

[9] R. A. McCallum. Instance-Based Utile Distinction-
s for Reinforcement Learning with Hidden State. In
Proc. of the 12th International Conference on Ma-
chine Learning, pp. 387–395, 1995.

Fig.11 Real input images

2

3

4

5

6

1

Fig.12 The robot succeeded in shooting a ball into a
goal avoiding a stationary keeper robot.

[10] A. Schwartz. A reinforcement learning method for
maximizing undiscounted rewards. In Proc. of the
10th International Conference on Machine Learning,
pp. 298–305, 1993.

[11] S. P. Singh. Transfer of Learning by Composing So-
lution of Elemental Sequential Tasks. In Machine
Learning, Vol. 8, pp. 99–115, 1992.

[12] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, University of Cambridge,
May 1989.

[13] S. D. Whitehead. Complexity and Coordination in
Q-Learning. In Proc. of the 8th International Work-
shop on Machine Learning, pp. 363–367, Evanston,
IL, 1991. Morgan Kaufmann.

[14] S. D. Whitehead, J. Karlsson, and J. Tenenberg.
Learning Multiple Goal Behavior Via Task Decompo-
sition And Dynamic Policy Merging. In Connel and
Mahadevan [6], chapter 3.

