
Vision-Based Reinforcement Learning for RoboCup :
Towards Real Robot Competition

Eiji Uchibe, Minoru Asada, Shoichi Noda,
Yasutake Takahashi and Koh Hosoda

Dept. of Mechanical Engineering for Computer-Controlled Machinerey
Osaka University, Suita, Osaka 565 Japan

uchibe@robotics.ccm.eng.osaka-u.ac.jp

Abstract
We have been doing a research on vision-based rein-
forcement learning and applied the method to build
real soccer playing robots towards RoboCup Initia-
tive. In the first stage [2, 4], a robot learned to shoot
a ball into a goal given the state space in terms of
the sizes and the positions of both the ball and the
goal in image. In the second stage [4], we set up an
opponent just before the goal, that is, a goal keeper,
and make the robot learn to shoot a ball into a goal
avoiding the goal keeper. The behavior of the oppo-
nent is scheduled for the learner to efficiently obtain
the desired behavior [3]. This paper describes several
research issues for RoboCup with real robots along
with our research projects.

1 Introduction
Building robots that learn to perform a task has been
acknowledged as one of the major challenges facing
AI and Robotics. Reinforcement learning has recent-
ly been receiving increased attention as a method for
robot learning with little or no a priori knowledge
and higher capability of reactive and adaptive behav-
iors [6]. In the reinforcement learning scheme, a robot
and an environment are modeled by two synchronized
finite state automatons interacting in discrete time
cyclical processes. The robot senses the current state
of the environment and selects an action. Based on the
state and the action, the environment makes a tran-
sition to a new state and generates a reward that is
passed back to the robot. Through these interaction-
s, the robot learns a purposive behavior to achieve a
given goal.

Although the role of reinforcement learning is very
important to realize autonomous systems, the promi-
nence of that role is largely dependent on the extent
to which the learning can be scaled to solve larger and
more complex robot learning tasks. Many researchers
in the field of machine learning have been concerned
with the convergence time of the learning, and have
developed methods to speed it up. They have also ex-
tended these techniques from solving single goal tasks
to multiple goal ones. However, almost all of them
have only shown computer simulations in which they
assume ideal sensors and actuators, where they can

easily construct the state and action spaces consistent
with each other. A typical example is the 2-D grid
environment in which the robot can take an action of
going forward, backward, left, or right, and its state is
encoded by the coordinate of the grid (i.e., an absolute
(global) positioning system is assumed). Although the
uncertainties of sensor and actuator outputs are con-
sidered by a stochastic transition model in the state
space, such a model cannot account for the accumula-
tion of sensor errors in estimating the robot position.
Further, from the viewpoint of real robot application-
s, we should construct the state space so that it can
reflect the outputs of the physical sensors which are
currently available and can be mounted on the robot.

Mahadevan and Connel [5] proposed a method of
rapid task learning on a real robot. They separated
a pushing task into three subtasks of “finding a box”,
“pushing a box”, and “getting unwedged”, and ap-
plied Q learning, a widely used reinforcement learning
method, to each of them. Since only proximity sen-
sors such as bumper and sonar sensors are used, the
acquired behaviors are limited to local ones and there-
fore these behaviors are not suitable for more global
and goal-directed tasks such as carrying a box to a
specified location. For such tasks, visual sensors could
be more useful because they might be able to capture
the image of the goal in a distant place. However,
there are very few examples of use of visual informa-
tion in reinforcement learning, probably because of the
cost of visual processing.

As a test bed for real robot applications of the re-
inforcement learning method, we have selected soccer
playing robots because building such a system includes
various kinds of aspects of fundamental AI problems.
One can see the details of this reason in [8]. In this pa-
per, we show our research projects along with research
issues involved in realizing RoboCup Initiative with
real robots. They are

• mechanical design and system suitable for various
kinds of plays,

• real time sensing capability mounted on each
player, and

• learning capability coping with various formation

of team playing.

The remainder of this article is structured as fol-
lows: In the next section, we give a brief overview of
Q learning and explain about a real robot system to
test our method. Next, we show a soccer robot that
learns how to shoot a ball into a goal using the Q
learning method based on only visual information. In
the first stage [2], we prepared the state space in terms
of the sizes, positions, and the orientation of the ball
and the goal in image captured by the robot, and the
action space in which the robot can send one of mo-
tor commands (forward, stop, and backward motions)
into two independent motors. In the second stage [4],
we set up an opponent just before the goal, that is, a
goal keeper, and make the robot learn to shoot a ball
into a goal avoiding the goal keeper. The behavior of
the opponent is scheduled for the learner to efficiently
obtain the desired behavior [3]. We do not mention
recent topics [1, 9, 10] because of no space.

2 Q learning
Before getting into the details of our system, we will
briefly review the basics of Q learning. For a more
thorough treatment, see [11]. The general reinforce-
ment learning problem is typically stated as finding a
policy that maximizes discounted sum of the reward
received over time. A policy f is mapping from S to
A. This sum called the return and is defined as:

∞∑
n=0

γnrt+n, (1)

where rt is the reward received at step t given that
the agent started in state s and executed policy f . γ
is the discounting factor, it controls to what degree
rewards in the distant future affect the total value of
a policy and is just slightly less than 1.

Q learning is a form of model-free reinforcement
learning based on stochastic dynamic programming.
It provides robots with the capability of learning to
act optimally in a Markovian environment [11]. We
assume that the robot can discriminate the set S of
distinct world states, and can take the set A of ac-
tions on the world. A simple version of a Q learning
algorithm used here is shown in Fig.1.

3 Real Robot System
The environment consists of a ball, two goals, four
lines and a keeper robot, and the each mobile robot
has a single color TV camera. The robot does not
know the location and the size of the objects, the size
and the weight of the ball, keeper robot, any camera
parameters such as focal length and tilt angle, or kine-
matics/dynamics of itself. Our mobile robot moves
around using a 4-wheel steering system. The effects
of an action against the environment can be informed
to the robot only through the visual information.

Fig.2 shows a configuration of the real mobile robot
system.

We have constructed the radio control system of the
robot, following the remote-brain project by Inaba et

1. Initialize Q(s, a) to 0 for all state s and action
a.

2. Perceives current state s.

3. Choose an action a according to action value
function.

4. Carry out action a in the environment. Let the
next state be s′ and immediate reward be r.

5. Update action value function from s, a, s′, and
r,

Qt+1(s, a) = (1− αt)Qt(s, a)
+αt(r + γ max

a′∈A
Qt(s′, a′))(2)

where r is the actual reward value received for
taking action a in a situation s, αt is a learn-
ing rate parameter and γ is a fixed discounting
factor between 0 and 1.

6. Return to 2.

Fig.1 A simple version of the 1-step Q learning algo-
rithm.

MC68040
MaxVideo
DigiColor
parallel I/O

UHF
antenna

tuner

Monitor

Sun WS

PC98
R/C
transmiter

UHF
transmiterUHF

transmiter
TVCamera TVCamera

Soccer Robot Soccer Robot

VME BOX
SPARC station 2

Fig.2 A configuration of the real system

Fig.3 A picture of the radio-controlled vehicle

al. [7]. Two pictures of the real robot are shown in
Fig.3.

The image taken by a TV camera mounted on the
robot is transmitted to a UHF receiver and processed
by Datacube MaxVideo 200, a real-time pipeline video
image processor. The image processing and the vehi-
cle control system are operated by VxWorks OS on
MC68040 CPUs which are connected with host Sun
workstations via Ether net. In order to simplify and
speed up the image processing time, we painted the
ball, the goal, and the opponent in red, blue, and yel-
low, respectively. The input NTSC color video signal
is first converted into HSV color components in order
to make the extraction of the objects easy.

4 Shooting Behavior Acquisition [2]
4.1 Task, Assumptions
In this section, the task for a mobile robot is to shoot
a ball into a goal as shown in Fig.4. The problem we
address here is how to develop a method which auto-
matically acquires strategies for doing this. In shoot-
ing task, we assume that the environment consists of
a ball and a goal.

Input Image
Ball

Learner

Goal

Fig.4 The task is to shoot a ball into a goal

4.2 Construction of State and Action S-
paces

Fig.5 shows sub-states of ball and goal in which the
position and the size of the ball or goal are naturally
and coarsely classified into each state. Due to the pe-
culiarity of visual information, that is, a small change
near the observer results in a large change in the image
and a large change far from the observer may result in
a small change in the image, one action does not al-
ways correspond to one state transition. We call this
the “state-action deviation problem”: Fig.6 in-
dicates this problem, the area representing the state

lost-left lost-right

Ball

position size

 left center right small medium large

Goal

 left center right
 lost-left lost-right

small medium large

left-oriented front right-oriented

position

size

orientation

Fig.5 The ball sub-states and the goal sub-states

“the goal is far” is large, therefore the robot frequent-
ly returns to this state if the action is forward. This
is highly undesirable because the variations in the s-
tate transitions is very large, consequently the learning
does not converge correctly.

To avoid this problem, we reconstruct the action
space as follows. Each action is regarded as an ac-
tion primitive. The robot continues to take one action
primitive at a time until the current state changes.
This sequence of the action primitives is called an ac-
tion. In the above case, the robot takes a forward
motion many times until the state “the goal is far”
changes into the state “the goal is medium”.

Near

Medium

Far

Fig.6 A state-action deviation problem

4.3 Learning from Easy Missions
In order to improve the learning rate, the whole task
was separated into different subtasks in [5]. By con-
trast, we do not decompose the whole task into sub-
tasks of finding, driblling, and shooting a ball. In-
stead, we first used a monolithic approach. That is,
we place the ball and the robot at arbitrary position-
s. In almost all the cases, the robot crossed over the
field line without shooting the ball into the goal. This
means that the learning did not converge after many
trials. This is the famous delayed reinforcement prob-
lem due to no explicit teacher signal that indicates the
correct output at each time step. To avoid this diffi-
culty, we construct the learning schedule such that the
robot can learn in easy situations at the early stages
and later on learn in more difficult situations. We call
this Learning from Easy Missions (or LEM).

5 Shooting a Ball with Avoiding an
Opponent [3, 4]

In the second stage, we set up an opponent just before
the goal, that is, a goal keeper, and make the robot
learn to shoot a ball into a goal avoiding the goal keep-
er (See Fig.7). The basic idea is first to obtain the de-
sired behavior for each subtask, and then to coordinate
two learned behaviors. For the first subtask (shooting
behavior), we have already obtained the learned poli-
cy by using the state space shown in 5. For the second
subtask (avoiding behavior), we add the sub-states for
the opponent that consist of the size and position of
it in image.

Input Image Keeper
Ball

Learner

Goal

Fig.7 The task is to shoot a ball into the goal avoiding
an opponent.

We assign a reward value 1 when the ball is entered
into the goal or 0 otherwise for the shooting task, and
−0.3 when a collision with a moving obstacle occurs.
A discounting factor γg is used to control to what
degree rewards in the distant future affect the total
value of a policy. In the shooting task, we set the
value a slightly less than 1 (γg = 0.9), and for the
avoiding task γr = 0.1.
5.1 Learning a Reflexive Behavior
The Q learning method can obtain not only goal-
directed behaviors but also reflexive ones as well by
slightly changing some parameters and updating equa-
tions. Unlike the goal-directed behaviors to find the
path from the current state to the goal state, reflexive
behaviors are reactive, and therefore, the discounting

factor γr should be much smaller so that the action-
value for the distant future action cannot be affected.

A typical example of such behaviors is “collision
avoidance” which has another different property from
that of goal-directed behaviors. That is, any action
can be allowed to be taken unless it causes collisions
with other objects (agents). In order to learn such a
behavior, the negative reward should be assigned for
the state-action pair which causes a collision with a
moving obstacle. The agent tries to make collisions
with other objects during the learning process, and it
does not take such actions after the learning.
5.2 Coordination of Multiple Behaviors
We consider three kinds of coordinations in which
the previously learned behaviors are combined; simple
summation of different action value functions, switch-
ing action value functions according to situations, and
learning given the learned policies as a priori knowl-
edge. The state spaces Sc for the coordinated behav-
ior in these coordinations are a little bit different from
each other according to their methods. To simplify
the following explanations, let us consider to combine
a goal-directed behavior (Qg(sg, a)) and a reflexive be-
havior (Qr(sr, a)) into a new one.

Basically, a state sc ∈ Sc can be defined as a com-
bined state of Sg and Sr. We denote this combination
as Sg ×Sr or (Sg,Sr). The number of Sc is theoret-
ically a product of numbers of states of Sg and Sr.

(a) Simple summation of different action value
functions

The action value function of simple summation
Qc

ss(sc, a) for the coordinated behavior is given by;

Qc
ss(s

c, a) = max
a∈A

(Qg((sg, ∗), a) + Qr((∗, sa), a)) (3)

where Qg((sg, ∗), a) and Qa((∗, sa), a) denote the ex-
tended action value functions for the goal-directed and
reflexive behaviors in the new state space, respectively.
∗ means any states, therefore each of these functions
considers only the original states and ignores the s-
tates of other behaviors. In this scheme, the selected
action sometimes might not make any sense for both
behaviors because the simple summation cannot con-
sider combined new situations.

(b) Switching action value functions

The switching action value function Qc
sw(sc, a) for the

coordinated behavior is given by the following equa-
tion depending on a situation.

Qc
sw(sc, a) =

{
Qr(sr, a), in some situations
Qg(sg, a), otherwise (4)

It seems hard to appropriately determine the situ-
ations to switch the functions Qg(sg, a) and Qr(sr, a).
Simple situations we tried are the cases where only an
opponent can be seen or where an opponent can be
seen. In the former, the robot does not care about

collisions with the opponent when the ball or the goal
can be observed, while in the latter the robot tries to
avoid the opponent even if it is likely able to shoot
a ball into the goal. Therefore, we need a carefully
designed decision rule to switch the policies. The fol-
lowing method provides us with this rule by learning
a new policy coping with new situations.

(c) Learning a new behavior

In the above methods, the previously learned ac-
tion value functions are simply summed or switched.
Therefore these methods ignore some situations incon-
sistent with the state spaces Sg or Sr. Eventually,
an action suitable for these situations has never been
learned. To cope with these new situations, the robot
needs to learn a new behavior by using the previously
learned behaviors (see [3, 4] for more details).

A typical example is the case where a ball and the
opponent are located at the same area and the ball is
occluded by the opponent from the viewpoint of the
robot. In this case, the robot cannot observe the ball,
and therefore the corresponding state might be the
state of “ball-lost,” but it is not correct. Of course, if
both the ball and the opponent can be observed, this
situation can be considered consistent. This problem
is resolved by adding new sub-states. In the above
example, a new situation “occluded” is added, and
the corresponding new sub-states are generated. In
order to detect hidden states, we use χ2-test.
5.3 Experiments
In addition to three kinds of coordination methods,
we show the performance data by only using the pol-
icy Qg which completely ignores the existence of the
opponent. Table 1 shows the simulation result where
the success rate of shooting per trial, the mean steps
between collisions with the opponent, and the mean
steps needed to get a shoot (success). In the case of
only using Qg, the robot tries to shoot a ball ignoring
the opponent, and therefore it collides with the oppo-
nent many times and needs much more steps to get
a shoot although the rate is as good as the learning
method. The simple sum seems better in collision be-
cause avoiding behavior becomes dominant when the
opponent approaches to it. However, it sometimes set-
tles at one of the local maxima near the goal where
shooting and avoiding behaviors are balanced, and
therefore the shooting rate is the worst. The switch-
ing condition we set is to use shooting behavior unless
only the opponent can be observed very largely. The
robot got more shoots than the simple sum because
it can avoid the local maxima. However, when it uses
avoiding one, many actions not related to shooting be-
havior are chosen, and therefore it takes longest time
step to get a shoot as a result. The learning method
is the best in shooting rate, collision avoidance, and
speed of shooting per trial.

Fig.8 shows a sequence of shooting behavior by the
learning method. In these figures, the robot and the
opponent are colored in black and gray, respectively.
The lines emerged from them shows their visual an-
gles. The opponent tries to chase after the robot with

Table 1 Simulation result

coordination success mean steps mean steps
method rate(%) between collisions to success
only Qg 46.7 43.1 286.9

simple sum 33.2 77.5 231.2
switching 39.2 98.0 414.4
learning 46.7 238.1 128.3

1

2

1

2

1

2

12

1

2

1

2

Fig.8 The robot succeeded in shooting a ball into a
goal avoiding a moving keeper robot.

the probability of 50% as long as it can see the robot.
Otherwise, it randomly moves.

5.4 Efficient Learning by Scheduling Op-
ponent Behaviors (Another LEM)

Next, we studied how the learning agent can improve
its performance by the behavior of other agents. Intu-
itively, we can see the learning agent cannot learn at
all if the opponent has the optimal policy to block the
learner because of no success. Therefore, according to
the basic idea of Learning from Easy Missions Paradig-
m (hereafter LEM) [3], we started with a stationary
opponent (stationary obstacle), and then increase its
velocity until the maximum one of the agent. Fig.9
shows the succeeded shooting rate in terms of num-
ber of trials 1 with and without LEM. With LEM,
the agent started learning in the environment with
a stationary opponent, and then with a moving one
of half speed (from the first arrow), and finally with
one of the maximum speed (from the second arrow).
While, without LEM, the agent starts from an oppo-
nent with the maximum speed, therefore the success
ratio has not achieved the level with LEM. This figure
tells that LEM seems essential for the learning from
other competitive agents. Fig.10 shows a sequence of
images where the robot achieved the goal avoiding an
opponent that is currently static.

1one trial ends when the agent succeeds in shooting or crosses
over the field line

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000

S
uc

ce
ss

 r
at

e
of

 s
ho

ot
in

g
(%

)

Number of trials

with_LEM
without_LEM

Fig.9 Learning curves with and without LEM

6 Discussion
We review the research issues involved in RoboCup
with real robots. Realtime sensing capability is in-
dispensable for quick motions of each player. Con-
ventional methods of measurement and planning does
not seem suitable. As we have shown, learning method
seems encouraging although learning team plays such
as passing and formation has not been attacked yet.

In this paper, we have defined the state-action s-
pace before learning. But, the state space construc-
tion problem is very difficult and closely related to
“segmentation” problem, one of the most fundamen-
tal AI ones. We expect that RoboCup provides us a
good test bed for this problem.

References
[1] M. Asada, S. Noda, and K. Hosoda. Action-Based

Sensor Space Categorization for Robot Learning. In
Proc. of the 1996 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 1996.

[2] M. Asada, S. Noda, S. Tawaratsumida, and K. Hoso-
da. Vision-Based Reinforcement Learning for Purpo-
sive Behavior Acquisition. In Proc. of IEEE Inter-
national Conference on Robotics and Automation, pp.
146–153, 1995.

[3] M. Asada, E. Uchibe, and K. Hosoda. Agents That
Learn from Other Competitive Agents. In Proc. of
Machine Learning Conference Workshop on Agents
That Learn from Other Agents, 1995.

[4] M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida,
and K. Hosoda. Coordination Of Multiple Behaviors
Acquired By A Vision-Based Reinforcement Learn-
ing. In Proc. of the 1994 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vol. 2,
pp. 917–924, 1994.

[5] J. H. Connel and S. Mahadevan. Rapid Task Learning
for Real Robot. In Robot Learning [6], chapter 5, pp.
105–140.

2

3

4

5

6

1

Fig.10 The robot succeeded in shooting a ball into a
goal avoiding an opponent.

[6] J. H. Connel and S. Mahadevan. Robot Learning.
Kluwer Academic Publishers, 1993.

[7] M. Inaba. Remote-Brained Robotics : Interfacing AI
with Real World Behaviors. In Preprints of ISRR’93,
Pitsuburg, 1993.

[8] H. Kitano, M. Asada, Y. Kuniyoshi, and I. N. E. Os-
awa. Robocup : The Robot World Cup Initiative. In
Proc. of IJCAI-95 Workshop on Entertainment and
AI/A-life, 1995.

[9] Y. Takahashi, M. Asada, and K. Hosoda. Rea-
sonable Performance in Less Learning Time by
Real Robot Based on Incremental State Space
SegmentationAction-Based Sensor Space Categoriza-
tion. In Proc. of the 1996 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1996.

[10] E. Uchibe, M. Asada, and K. Hosoda. Behavior Co-
ordination for a Mobile Robot Using Modular Rein-
forcement Learning. In Proc. of the 1996 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 1996.

[11] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, University of Cambridge,
May 1989.

