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Abstract

This paper proposes a method for agent behavior clas-
sification which estimates the relations between the
learner’s behaviors and the other agents in the en-
vironment through interactions using the method of
system identification. In order to identify the mod-
el of each agent, Akaike’s Information Criterion(AIC)
is applied to the result of Canonical Variate Analy-
sis(CVA). Next, reinforcement learning based on the
estimated state vectors is used in order to obtain the
optimal behavior. The proposed method is applied to
soccer playing robots. Unlike our previous work, the
method can cope with a rolling ball. Computer sim-
ulations and preliminary experiments are shown and
the discussion is given.

Introduction
Building a robot that learns to perform a task has
been acknowledged as one of the major challenges fac-
ing Robotics and AI. Reinforcement learning has re-
cently been receiving increased attention as a method
for robot learning with little or no a priori knowledge
and higher capability of reactive and adaptive behav-
iors (Connel & Mahadevan 1993). In our previous
work (Uchibe, Asada, & Hosoda 1996), we proposed a
method of modular reinforcement learning which coor-
dinates multiple behaviors taking account of a trade-off
between learning time and performance.

In a multi-agent environment, the standard rein-
forcement learning algorithm does not seem applicable
because the environment including the other learning
agents seems to change randomly from a viewpoints
of the learning agent. We suppose that there are two
major reasons why the learning would be difficult in a
multi-agent environment.
A The other agent may use a stochastic action selector

which could take a different action even if the same
sensation occurs to it.

B The other agent may have a perception (sensation)
different from the learning agent’s. This means that
the learning agent would not be able to discriminate
different situations which the other agent can do,
and vice versa.

Therefore, the learner cannot predict the other agent
behaviors correctly even if its policy is fixed unless ex-
plicit communication is available. It is important for
the learner to understand the strategies of the other
agents and to predict their movements in advance to
learn the behaviors successfully.

Littman (Littman 1994) proposed the framework of
Markov Games in which Q-learning agents try to learn
a mixed strategy optimal against the worst possible op-
ponent in a zero-sum 2-player game in a grid world. He
assumed that the opponent’s strategy is given to the
learner (the opponent tries to minimize a single reward
function, while it is to be maximized by the learning a-
gent). Sandholm and Crites (Sandholm & Crites 1995)
studied the ability of a variety of Q-learning agents to
play iterated prisoner’s dilemma game against an un-
known opponent. They showed that adequate previous
moves and sensations are needed in order to learn suc-
cessfully.

Lin (Lin & Mitchell 1992) compared window-Q
based on both the current sensation and the N most
recent sensations and actions with recurrent-Q based
on a recurrent network, and he showed the latter is su-
perior to the former because a recurrent network can
cope with historical features. However, generally s-
peaking it is still difficult to determine the number of
neurons and the structures of network in advance.

As described above, existing methods in multi agent
environments need the assumption that the policy of
other agent is fixed and known to the learner in order
for the learning to converge. Therefore, the classifica-
tion architecture is required to apply the reinforcement
learning. However, what the learning agent can do is
to collect all the observed data with motor commands
taken during the observation and to estimate the rela-
tionship between the observed agents and the learner’s
behaviors in order to take an adequate behavior al-
though it might not be guaranteed as optimal because
of partial observation due to the limitation of sensing
capability. In this paper, we propose a method which
estimates the relations between the learner’s behaviors
and the other agents through interactions using the
method of system identification. Here, we put our em-



phasis on the problem B, and we assume that the other
agent does not change the strategy. In order to identify
the model of each other agent, we apply Akaike’s In-
formation Criterion(AIC) (Akaike 1974) to the result
of Canonical Variate Analysis(CVA) (Larimore 1990),
which is widely used in the field of system identifica-
tion.

We apply the proposed method to a simple soccer-
like game including two active agents. The task of
the agent is to discriminate the strategy of the oth-
er agents. Here, the other agents consist of the sta-
tionary agent (the goal and the line), passive agen-
t (the ball) and active agent (the opponent). Af-
ter the model identification, we apply reinforcement
learning in order to acquire shooting and passing be-
haviors. In our previous work (Asada et al. 1995;
Uchibe, Asada, & Hosoda 1996), the changes in size
and position of the ball are not considered, therefore
the agent could not acquire optimal behavior when the
ball is rolling. However, the proposed method can cope
with the moving ball because state vector for learning
is selected appropriately so as to predict the successive
steps. Simulation results and preliminary real experi-
ments are shown and the discussion is given.

Agent Classification
Canonical Variate Analysis(CVA)
In order to succeed in learning, it is necessary for the
learner to predict the subsequent situations as men-
tioned above. In the following, we consider to utilize a
method of system identification, regarding motor com-
mand and observation results as the input and the out-
put of the system respectively.

A number of algorithms to identify multi-
input multi-output (MIMO) combined deterministic-
stochastic systems have been proposed. In contrast
to ‘classical’ algorithms such as PEM (Prediction Er-
ror Method), the subspace system identification algo-
rithms (Van Overschee & De Moor 1995) do not suffer
from the problems caused by a priori parameteriza-
tions. Larimore’s Canonical Variate Analysis (CVA)
(Larimore 1990) is one of such algorithms, which us-
es canonical correlation analysis to construct a state
estimator.

Let u(t) ∈ <m and y(t) ∈ <q be the input and
output generated by the unknown system

x(t + 1) = Ax(t) + Bu(t) + w(t),
y(t) = Cx(t) + Du(t) + v(t), (1)

with

E

{[
w(t)
v(t)

] [
wT (τ) vT (τ)

]}
=

[
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]
δtτ ,

and A, Q ∈ <n×n, B ∈ <n×m, C ∈ <q×n, D ∈ <q×m,
S ∈ <n×q, R ∈ <q×q. E{·} denotes the expected val-
ue operator and δtτ the Kronecker delta. v(t) ∈ <q

and w(t) ∈ <n are unobserved, Gaussian-distributed,

zero-mean, white noise vector sequences. Generally s-
peaking, CVA uses a new vector µ which is a linear
combination of the previous input-output sequences s-
ince it is difficult to determine the dimension of x.
Eq.(1) is transformed as follows:

[
µ(t + 1)

y(t)

]
= Θ

[
µ(t)
u(t)

]
+

[
T−1w(t)

v(t),

]
, (2)

where

Θ̂ =
[

T−1AT T−1B
CT D

]
, (3)

and x(t) = Tµ(t). Therefore, so we can regard µ(t)
as a new state vector, we use µ as same as x here-
after. CVA can estimate parameter matrix Θ. For
more through treatment, see (Larimore 1990). We fol-
low the simple explanation of the CVA method (Lari-
more 1990).

CVA Algorithms
1. For {u(t), y(t)}, t = 1, · · ·N , construct new vectors

p(t) =




u(t− 1)
...

u(t− l)
y(t− 1)

...
y(t− l)




, f(t) =




y(t)
y(t + 1)

...
y(t + k − 1)


 ,

2. Compute estimated covariance matrices Σ̂pp, Σ̂pf

and Σ̂ff , where Σ̂pp and Σ̂ff are regular matrices.
3. Compute singular value decomposition

Σ̂
−1/2

pp Σ̂pfΣ̂
−1/2

ff = UauxSauxV T
aux, (4)

UauxUT
aux = I l(m+q), V auxV T

aux = Ikq,

and U is defined as:

U := UT
auxΣ̂

−1/2

pp .

4. The n dimensional new vector µ(t) is defined as:

µ(t) = [In 0]Up(t), (5)

5. Estimate the parameter matrix Θ applying least
square method to Eq (2).

Classify Agents in an Environment
It is important to decide the dimension n of the state
vector x and l (lag operator) when we apply CVA to
the classification of agents. Although the estimation is
improved if l is larger and larger, much more history
information is necessary. However, it is desirable that
l is as small as possible with respect to the memory
size. For n, we have to take account of the trade off
between the number of parameters and the precision
of estimation.



In order to determine n, we apply Akaike’s Informa-
tion Criterion (AIC). Let the prediction error be ε and
covariance matrix of error be

R̂ =
1

N − k − l + 1

N−k+1∑

t=l+1

ε(t)εT (t).

Therefore AIC(n) is calculated by

AIC(n) = (N − k − l + 1) log |R̂|+ 2λ(n), (6)
where

λ(n) = n(2p + m) + pm +
1
2
p(p + 1). (7)

The optimal dimension n∗ is defined as
n∗ = arg min AIC(n),

where
1 ≤ n ≤ min(l(m + q), kq).

However, the parameter l is not under the influence of
the AIC(n). Therefore, we utilize log |R̂| to determine
l.

Agent Classification Procedure
1. Memorize the q dimensional vector y(t) about the a-

gent and m dimensional vector u(t) as a motor com-
mand.

2. From l = 1 · · ·, identify the obtained data.

(a) If log |R̂| < 0, stop the procedure and determine
n based on AIC(n),

(b) else, increment l until the condition (a) is satisfied
or AIC(n) does not decrease.

3. Classify the agent using the (n/p, l) (Figure 1).

The  dimension of    /  the dimension of px

St
or

ed
  S

eq
ue

nc
e 

L
en

gt
h,

  
l

Stationary

Active

Complex
Simple

Passive

Complex
Behaviors

Figure 1: Classification space

We suppose that all the agents are classified into
several categories in the classification space (See Figure
1). If the other agent has a complex strategy, l and n/p
become large since the large amount of the information
are necessary to classify it. On the other hand, it is
simple to predict the successive situations in case of
the stationary agent such as a goal post.

Reinforcement Learning

After estimating the state space model represented by
Eq.2, the agent begins to learn behaviors using a re-
inforcement learning method. In the previous section,
appropriate dimension n of state vector x(t) is deter-
mined, and the successive state is predicted. Therefore,
we regard an environment as Markovian.

Q Learning

Q learning (Watkins 1989) is a form of model-free re-
inforcement learning based on stochastic dynamic pro-
gramming. We assume that the robot can discriminate
the set X of distinct world states, and can take the set
A of actions on the world. The world is modeled as
a Markov process, making stochastic transitions based
on its current state and the action taken by the robot.
Let T (x, a, x′) be the probability that the world will
transit to the next state x′ from the current state-
action pair (x, a). For each state-action pair (x, a),
the reward r(x, a) is defined.

The general reinforcement learning problem is typ-
ically stated as finding a policy that maximizes dis-
counted sum of the reward received over time. A pol-
icy f is mapping from X to A. This sum called the
return and is defined as:

∞∑
n=0

γnrt+n, (8)

where rt is the reward received at step t given that the
agent started in state x and executed policy f . γ is the
discounting factor, it controls to what degree rewards
in the distant future affect the total value of a policy
and is just slightly less than 1.

A simple version of a Q learning algorithm used here
is shown in Fig.2.

1. Initialize Q(x, a) to 0 for all state x and action a.
2. Perceives current state x.
3. Choose an action a according to action value func-

tion.
4. Carry out action a in the environment. Let the

next state be x′ and immediate reward be r.
5. Update action value function from x, a, x′, and r,

Qt+1(x, a) = (1− αt)Qt(x, a)
+αt(r + γ max

a′∈A
Qt(x′, a′)) (9)

where αt is a learning rate parameter.
6. Return to 2.

Figure 2: A simple version of the 1-step Q learning
algorithm.



Experimental Results
Assumptions
We apply the proposed method to a simple soccer-like
game including two agents (Figure 3). Each agent
has a single color TV camera and does not know the
location, the size and the weight of the ball, the other
agent, any camera parameters such as focal length and
tilt angle, or kinematics/dynamics of itself. They move
around using a 4-wheel steering system.

Figure 3: The environment and our mobile robot

Action and State spaces
We construct the action space in terms of two compo-
nents, where velocity is decomposed to 3 sub-actions,
forward, stop and back, and the steering wheel is also
decomposed to 3 sub-actions. The input system u to
our mobile robot is defined as the 2 dimensional vector.

uT = [v φ] , v, φ ∈ {−1, 0, 1},
where v and φ are the velocity of motor and the an-
gle of steering respectively. However, robot can not
move when uT = [0,±1] (actions that turn the steer-
ing wheel and let the velocity be 0). So we remove
them from action state space, and as a result, each
agent has 7 actions in the action space A.

The effects of an action against the environment can
be informed to the agent only through the visual infor-
mation. The output (observed) vectors are shown in
Figure 4. In case of the ball, the center position of the
ball image (xc, yc) is used, and the left and right edge
(xl, yl) and (xr, yr) are used for the field line. Howev-
er, in case of the goal, the x position of the upper-left
xul is approximately equivalent to the bottom-left xbl,
then we substitute xl = (xul + xbl)/2 for xul and xbl

(the same procedure is applied to xr). The two mark-
ers are placed on the robot and the center positions
of them are used. As a result, the dimension of the
observed vector about the ball, the goal, the line, and
the agent are 2, 4, 6, 4 respectively.

(x  ,y  )l bl

(x  ,y  )l ul

(x  ,y  )brr

urr(x  ,y  )

Goal

(x  ,y  )r r
(x  ,y  )ll

Line

(x  ,y  )r r

(x  ,y  )ll

(x,y)

Ball

AgentActive

Figure 4: Observed feature points of the ball, goal, line
and agent

In order to apply the Q learning, the state space
should be quantized. Because the covariance matrix of
vector µ is unit matrix, we segment the each element
xi of state vector x to 5 sub-states as follows:

xi < −2, −2 ≤ xi < −1 −1 ≤ xi < 1,
1 ≤ xi < 2, 2 ≤ xi.

However, one action does not always corresponds to
one state transition because we segment the state s-
pace by hand, . This problem is called state action
deviation problem (Asada et al. 1995). Because of
this problem, the robot frequently returns to the same
state. This prevents the learning from converging cor-
rectly. Therefore, the robot continues to take one ac-
tion primitive until the current state changes, like Asa-
da’s method. This sequence of the action primitive is
called action. Once the state has changed, we update
the action value function.

Strategy of the other active agent
We assume that the other active agent has some basic
behaviors designed by programmer such that 1) keep
stopping (stationary), 2) walk randomly (random), 3)
turn to the left (forward left), 4) turn to the right (for-
ward right), and that the other agent does not change
the strategy.

Simulation Results
Table1 shows the result of identification. In order to
predict the successive situations, l = 1 is sufficient for
the goal and line identification, while the ball needs
2 steps. If the friction of the ball against the field
changes, appropriate l also changes. Figures 5 show
the prediction result and prediction error of the ball in
terms of l = 1, 2, and 3.

At time steps 40 and 230, the learner kicked the ball,
therefore prediction error becomes large regardless of
the value of l. However, we can see the larger l reduces
the error slightly better than the smaller l. As long as



Table 1: The dimension of stationary agent
agent l n log |R| AIC

1 3.78 1632
line 1 2 0.12 126

3∗ −2.14 −800
4 −2.93 −1104
1 3.37 1859
2∗ −0.001 121

goal 1 3 −2.30 −1052
4 −3.79 −1802
5 −4.17 −1978
6 −4.41 −2070

Table 2: The dimension of passive agent(ball)
l n log |R| AIC l n log |R| AIC

1 1 5.82 1964 1 5.12 1709
2 1.91 675 2 0.414 174
1 5.13 1725 3 3 0.187 112

2 2 0.518 209 4 5.08× 10−3 64
3 0.342 163 5 3.98× 10−3 75
4∗ 0.232 138 6 2.00× 10−3 87
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(a) l = 1, |R̂| = 6.78
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(b) l = 2, |R̂| = 1.26
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(c) l = 3, |R̂| = 1.01
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Figure 5: Prediction errors in cases of l = 1, 2, 3

Table 3: The dimension of agent(other agent)
strategy l n

stationary 1 3
random walk 3 6
forward left 3 6

forward right 3 6

the ball is stationary, the value of l = 1 is sufficient,
but it seem difficult to model the ball when it is kicked
by the learner because of non-linearity.

Next, the results of identification of the other agent
are shown in Table 3 and Figure 6. The observing
agent can not predict the random walk agent as a mat-
ter of course. The forward left agent can be identified
by the same dimension of the random agent, but the
prediction error is much smaller than that of random
walk.
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Figure 6: Prediction errors for other agents (x position
of the marker 1)

Shooting behavior Figure 7 shows a sequence of
shooting a slowly moving ball into the goal using CVA
method. During the learning, the ball is rolled from
the goal to the learning robot slowly. Table 4 shows
a comparison about the success rate of shooting. We
assign a reward value 1 when the ball was kicked into
the goal or 0 otherwise and the environment consists of
the ball, the goal and the line. The two lines emerged
from the agent show the visual angle.



In (Asada et al. 1995; Uchibe, Asada, & Hosoda
1996), the learning agent uses the only current infor-
mation about the ball and the goal, therefore the lean-
ing agent can not acquire the optimal behavior when
the ball is rolling. In other words, the action value
function does not become stable because the state and
action spaces are not consistent with each other.

Passing behavior Passing a ball to the other agent
is regarded as shooting (kicking) a ball into the moving
goal. The result of the shooting behavior mentioned
above is transfered to the strategy of the other robot,
and the other robot moves based on the action value
of the shooting behavior. Therefore, the other robot
does not detect the learning robot, only the ball, goal,
and line.

We assign a reward value 1 when the ball was kicked
into the other agent, −0.8 when the learner makes a
collision with the other agent, or 0 otherwise and the
environment consists of the ball and the other agent.

Table 4: Comparison between the proposed method
and previous work (Asada et al. 1995; Uchibe, Asada,
& Hosoda 1996)

state vector success of success of
shooting (%) passing (%)

current position 10.2 9.8
using CVA 78.5 53.2

Figure 7: The robot succeeded in shooting a moving
ball into a goal

Real System
Figure 9 shows a configuration of the real mobile
robot system(Uchibe, Asada, & Hosoda 1996). The
image taken by a TV camera mounted on the robot is
transmitted to a UHF receiver and processed by Dat-
acube MaxVideo 200, a real-time pipeline video image
processor. In order to simplify and speed up the image
processing time, we painted the ball, the goal, and the

Figure 8: The robot succeeded in passing a ball to the
other agent

MC68040
MaxVideo
DigiColor
parallel I/O

UHF
antenna

tuner

Monitor

Sun WS

R/C
transmiter

UHF
transmiterUHF

transmiter
TVCamera TVCamera

Soccer Robot Soccer Robot

VME BOX
SPARC station 20

UPP

Figure 9: A configuration of the real system.



enemy in red, blue, and yellow, respectively. We have
constructed the radio control system of the robot, fol-
lowing the remote-brain project by Inaba et al. (Inaba
1993). The tilt angle is about −26 [deg] so that robot
can see the environment effectively. The horizontal and
vertical visual angles are about 67 [deg] and 60 [deg],
respectively (for more details, see (Uchibe, Asada, &
Hosoda 1996)).

Preliminary Experiments
Unfortunately, since we can not perceive the position-
s of markers equipped the robot, the experiments of
classification of the other agent has not be carried out
yet. Figure10 and 11 show that one example of the se-
quence of data. We show the preliminary experimental
results of classification in Table 5 and Figure 12.

Figure 10: one sequence of sampled data (kick the ball,
and move back)

The value of l for the ball is bigger that of computer
simulation, because the ball sometimes moves towards
unpredictable direction (complex movement) due to its
eccentricity of the centroid. In case of the goal, the
value of n is bigger than that of simulation because of
the noise of the image processing.

Discussion
In order to obtain the model of the dynamics of a cer-
tain phenomenon, the strategy of the robot needs to
be random. In other words, the inputs vector (motor
command) applied to the system (environment) should

Figure 11: one sequence of sampled data (kick the ball,
and move to the goal)

Table 5: The dimension of the ball and the goal
agent l n log |R| AIC
ball 4 4 1.88 284
goal 1 3 −1.73 −817
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real environment



be persistently exciting. However, it is almost impossi-
ble to sample the data because the time is limited and
undesired inputs causes the destruction of the robots.
Therefore, if the sampled data are biased, the matrix Θ
of the Eqn.3 changes. For example, the robot seldom
kicks the ball, the model of the ball will be regarded
as a stationary one.

Generally, for the less biased data, the more data and
longer time are necessary. An effective method for data
sampling should be developed, but there is a trade-off
between the effectiveness and a priori knowledge on
the environment and the robot.

We used the state space designed by a human pro-
grammer in order to apply the Q learning algorithm.
However, there is no guarantee that such a state space
is always appropriate for the robot. We have to develop
the method which segments the state space suitable for
method. Asada et al. proposed the method of action-
based state space construction for vision-based mobile
robots (Asada, Noda, & Hosoda 1996). Takahashi et
al. proposed the method of incrementally segmenting
the sensor space based on the experiences of the robot
(Takahashi, Asada, & Hosoda 1996). These method
might be promising.

Concluding Remarks

This paper presents a method of strategy classification
in order to apply reinforcement learning to the envi-
ronment including other agents. Our method takes
account of the trade-off among the precision of predic-
tion, the dimension of state vector, and the length of
steps to identify. A soccer robot can shoot a ball and
pass a ball even if a ball is rolling.

As future work we hope to challenge topics as fol-
lows: 1) segmentation procedure of state vector and 2)
strategy learning (when to shoot or pass).
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