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Abstract. State space construction is one of the most fundamental issues for the reinforce-
ment learning methods to be applied to real robot tasks because they need a well-defined
state space so that they can converge correctly. Especially in multi-agent environments,
the problem becomes more difficult since visual information observed by the learning robot
seems irrelevant to its self motion due to actions by other agents of which policies are un-
known. This paper proposes a method which estimates the relationship between the learner’s
behaviors and the other agents’ ones in the environment through interactions (observation
and action) using the method of system identification to construct a state space in such an
environment. In order to determine the state vectors of each agent, Akaike’s Information
Criterion is applied to the result of the system identification. Next, reinforcement learning
based on the estimated state vectors is utilized to obtain the optimal behavior. The proposed
method is applied to soccer playing physical agents, which learn to cope with a rolling ball
and moving other agent. The computer simulations and the real experiments are shown and
a discussion is given.

1 Introduction

Building a robot that learns to perform a task
through visual information has been acknowledged
as one of the major challenges facing Vision,
Robotics and AI. Reinforcement learning has re-
cently been receiving increased attention as a
method for robot learning with little or no a pri-
ori knowledge and higher capability of reactive and
adaptive behaviors (Connel and Mahadevan, 1993).

In a multi-agent environment, the conventional
reinforcement learning algorithm does not seem
applicable because the environment including the
other learning agents seems to change randomly
from a viewpoints of the learning agent. There are
two major reasons why the learning would be diffi-
cult in a multi-agent environment.

1. The other agent may use a stochastic action

selector which could take a different action even
if the same sensation occurs to it.

2. The other agent has a perception (sensation)
different from the learning agent’s. This means
that the learning agent would not be able
to discriminate different situations which the
other agent can do, and vice versa.

Therefore, the learner cannot predict the other
agent behaviors correctly even if its policy is fixed
unless explicit communication is available. It is im-
portant for the learner to discriminate the strategies
of the other agents and to predict their movements
in advance to learn the behaviors successfully.

Littman (Littman, 1994) proposed the framework
of Markov Games in which Q-learning agents try to
learn a mixed strategy optimal against the worst
possible opponent in a zero-sum 2-player game in



a grid world. He assumed that the opponent’s
goal is given to the learner (opponent tries to min-
imize a single reward function, while it is to be
maximized by the learning agent). Sandholm and
Crites (Sandholm and Crites, 1995) studied the
ability of a variety of Q-learning agents to play iter-
ated prisoner’s dilemma game against an unknown
opponent. They showed that adequate previous
moves and sensations are needed for the success-
ful learning. Lin (Lin and Mitchell, 1992) com-
pared recurrent-Q based on a recurrent network
with window-Q based on both the current sensation
and the N most recent sensations and actions, and
he showed the former is superior to the latter be-
cause a recurrent network can cope with historical
features appropriately. However, it is still difficult
to determine the number of neurons and the struc-
tures of network in advance. Furthermore, their
methods utilize the global information. Although
the uncertainties of sensor and actuator outputs are
considered by a stochastic transition model in the
state space, such a model cannot account for the ac-
cumulation of sensor errors in estimating the robot
position. Further, from the viewpoint of real robot
applications, we should construct the state space so
that it can reflect the outputs of the physical sensors
which are currently available and can be mounted
on the robot.

Robotic soccer is a good domain for studying
multi-agent problems (Kitano et al., 1997). Stone
and Veloso proposed layered learning method which
consists of two levels of learned behaviors (Stone
and Veloso, 1996). The lower is for basic skills such
as interception of a moving ball and the higher is
one which can make decisions whether or not to
make a pass using decision tree. Uchibe et al. pro-
posed a method of modular reinforcement learn-
ing which coordinates multiple behaviors taking ac-
count of a trade-off between learning time and per-
formance (Uchibe et al., 1996). Since these methods
utilize the current sensor outputs as states, their
methods can not cope with the motions of objects.

As described above, the existing methods in multi
agent environments need state vectors in order fort
them to converge. However, it is difficult to obtain a
reasonable analytical model in advance. Therefore,
the modeling architecture is required to make the
reinforcement learning applicable.

In this paper, we propose a method which es-
timates the relationship between the learner’s be-
haviors and the other agents’ through interactions
(observation and action) using the method of sys-
tem identification. In order to construct the local
predictive model of other agents, we apply Akaike’s

Information Criterion(AIC) (Akaike, 1974) to the
result of Canonical Variate Analysis(CVA) (Lari-
more, 1990), which is widely used in the field of
system identification. The local predictive model is
constructed based on the observation and action of
the learner (observer).

We apply the proposed method to a simple
soccer-like game in a physical environment. The
task of the agent is to shoot a ball which is passed
back from the other agent. Since the environment
consists of the stationary agents (the goal and the
line), a passive agent (the ball) and an active agent
(the opponent), the learner has to construct the ad-
equate models for these agents. After constructing
the models and estimating their parameters, the re-
inforcement learning is applied in order to acquire
purposive behaviors. The proposed method can
cope with the moving ball because a state vector
for learning is selected appropriately so as to pre-
dict the successive steps. The simulation results and
the real experiments are shown and a discussion is
given.

2 Construction of the internal
state model from observa-
tion and action

2.1 Local predictive models for other
agents

In order to succeed in learning, it is necessary for
the learner to predict the successive situations as
mentioned above. However, the agent can not ob-
tain the complete information necessary to correctly
predict them because of partial observation due to
the limitation of sensing capability. Since we con-
sider that the robot should construct the state space
from its viewpoint, what the learning agent can do
is to collect all the observed data with the motor
commands taken during the observation and to es-
timate the relationship between the observed agents
and the learner’s behaviors in order to take an ade-
quate behavior although it might not be guaranteed
to be optimal. In the following, we consider to uti-
lize a method of system identification, regarding the
previous observed data and the motor commands
as the inputs, and future observation results as the
outputs of the system, respectively.

Figure 1 shows an overview of the proposed
method consisting of local predictive models and
reinforcement learning architecture. At first, the
learning agent collects the sequence of sensor out-
puts and motor commands to construct the local
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Figure 1: An overview of the proposed method

predictive models, which are described in section
2.2. By approximating the relationship between in-
puts (learner’s action) and outputs (observation),
the local predictive model gives the learning agent
not only the successive states of the agent but also
the priority of state vectors, which means that first
a few vectors might be sufficient to predict the suc-
cessive states.

The flow of the proposed method is summarized
as follows:

1. Collect the observation vectors and the motor
commands (Section 2.2).

2. Estimate the state space with the full dimen-
sion directly from the observations and motor
commands (Section 2.2).

3. Determine the dimension of the state vectors
which is the result of the trade off between the
error and the complexity of the model (Section
2.3).

4. Apply the reinforcement learning based on the
estimated state vectors (Section 3).

2.2 Canonical Variate Analysis

A number of algorithms to identify multi-input
multi-output (MIMO) combined deterministic-
stochastic systems have been proposed (Van Over-
schee and De Moor, 1995). In contrast to ‘clas-
sical’ algorithms such as PEM (Prediction Error
Method), the subspace algorithms do not suffer
from the problems caused by a priori parameter-
izations. Larimore’s Canonical Variate Analysis
(CVA) (Larimore, 1990) is one of such algorithms,

which uses canonical correlation analysis to con-
struct a state estimator. We define P and F as
follows : the past inputs and outputs

P :=
(

p(1) · · · p(N/2− 1)
)
,

the future outputs

F :=
(

f(N/2) · · · f(N)
)
,

and we denote the future input block Hankel matrix
as U . CVA algorithm is insensitive to scaling of the
inputs (motor commands) and/or the outputs (sen-
sor outputs), because the CVA algorithm considers
only the angles and the normalized directions be-
tween the past inputs and outputs orthogonalized
to the future inputs (P /U⊥) and the future outputs
orthogonalized to the future inputs (F /U⊥) (Van
Overschee and De Moor, 1995), where A⊥ denotes
the subspace perpendicular to the row space of A,
and B/A is shorthand for the projection of the row
space of B onto the row space of A (See Figure 2).
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Figure 2: the subspace

Let u(t) ∈ <m and y(t) ∈ <q be the input and
the output generated by the unknown system, re-
spectively,

x(t + 1) = Ax(t) + Bu(t) + w(t),
y(t) = Cx(t) + Du(t) + v(t), (1)

with

E

{[
w(t)
v(t)

] [
wT (τ) vT (τ)

]}
=

[
Q S

ST R

]
δtτ ,

and A, Q ∈ <n×n, B ∈ <n×m, C ∈ <q×n,
D ∈ <q×m, S ∈ <n×q, R ∈ <q×q. E{·} denotes



the expected value operator and δtτ the Kronecker
delta. v(t) ∈ <q and w(t) ∈ <n are unobserved,
Gaussian-distributed, zero-mean, white noise vec-
tor sequences. Larimore’s Canonical Variate Anal-
ysis (CVA) (Larimore, 1990) is one of identification
algorithms, which uses canonical correlation anal-
ysis to construct a state estimator. CVA uses a
new vector µ which is a linear combination of the
previous input-output sequences since it is difficult
to determine the dimension of x. Eq.(1) is trans-
formed as follows:

[
µ(t + 1)

y(t)

]
= Θ

[
µ(t)
u(t)

]
+

[
T−1w(t)

v(t),

]
, (2)

where

Θ̂ =
[

T−1AT T−1B
CT D

]
, (3)

and x(t) = Tµ(t). We follow the simple explana-
tion of the CVA method.

1. For {u(t),y(t)}, t = 1, · · ·N , construct new
vectors

p(t) =




u(t− 1)
...

u(t− l)
y(t− 1)

...
y(t− l)




, f(t) =




y(t)
y(t + 1)

...
y(t + k − 1)


 .

2. Compute the estimated covariance matrices
Σ̂pp, Σ̂pf and Σ̂ff , where Σ̂pp and Σ̂ff are
regular matrices.

3. Apply singular value decomposition

Σ̂
−1/2

pp Σ̂pf Σ̂
−1/2

ff = UauxSauxV T
aux, (4)

UauxUT
aux = I l(m+q), V auxV T

aux = Ikq,

and U and V are calculated as:

U := UT
auxΣ̂

−1/2

pp ,

V := V T
auxΣ̂

−1/2

ff .

4. The n dimensional new vector µ(t) is defined
as:

µ(t) = [In 0]Up(t), (5)

5. Estimate the parameter matrix Θ by applying
the least square method to Eq (2).

Strictly speaking, the learning agent should con-
struct the local predictive model about the whole
system since all the agents do in fact interact. How-
ever, it is intractable to collect the adequate input-
output sequences and estimate the proper model
because the dimension of state vector drastically in-
creases. Therefore, the learning (observing) agent
obtains the local predictive models by applying the
CVA method to all the (observed) agents separately.

2.3 Determination of the dimension
of other agent

It is important to decide the dimension n of the
state vector µ and lag operator l that tells how long
the historical information is involved in determin-
ing the size of the state vector when we apply CVA
to the classification of agents. Although the estima-
tion is improved if l is larger and larger, much more
historical information is necessary. However, it is
desirable that l is as small as possible with respect
to the memory size. For n, complex behaviors of
other agents can be captured by choosing the order
n high enough, but we have to take account of the
trade off between the number of parameters and the
precision of the estimation.

In order to determine n, we apply Akaike’s Infor-
mation Criterion (AIC) which is widely used in the
field of time series analysis. AIC is a method for
balancing precision and computation (the number
of parameters). Let the prediction error be ε and
covariance matrix of error be

R̂ =
1

N − k − l + 1

N−k+1∑

t=l+1

ε(t)εT (t).

Then AIC(n) is calculated by

AIC(n) = (N − k − l + 1) log |R̂|+ 2λ(n), (6)

where

λ(n) = n(2p + m) + pm +
1
2
p(p + 1). (7)

The optimal dimension n∗ is defined as

n∗ = arg min AIC(n),

where
1 ≤ n ≤ min(l(m + q), kq).

However, the parameter l is not under the in-
fluence of the AIC(n). Because the reinforcement
learning algorithm is applied to the result of the
estimated state vector in order to cope with the



non-linearity and the error of modeling, the learn-
ing agent does not have to construct the strict local
predict model. Therefore, we utilize log |R̂| to de-
termine l.

1. Memorize the q dimensional vector y(t) about
the agent and m dimensional vector u(t) as a
motor command.

2. From l = 1 · · ·, identify the obtained data.

(a) If log |R̂| < 0, stop the procedure and de-
termine n based on AIC(n),

(b) else, increment l until the condition (a) is
satisfied or AIC(n) does not decrease.

3 Reinforcement Learning

After estimating the state space model represented
by Eq. 2, the agent begins to learn behaviors us-
ing a reinforcement learning method. Q learning
(Watkins and Dayan, 1992) is a form of model-free
reinforcement learning based on the stochastic dy-
namic programming. It provides robots with the
capability of learning to act optimally in a Marko-
vian environment. In the previous section, the ap-
propriate dimension n of the state vector µ(t) has
been determined, and the successive state can be
predicted. Therefore, we regard an environment as
Markovian.

In order to utilize the result of identification for
the Q learning, the state vector µ has to be quan-
tized. Because the state vector µ is calculated as

E{µµT } = In,

we segment the state space as

µi < −1, −1 ≤ µi < 1 1 ≤ µi, for all i.

Hereafter, we denote the estimated state vector µ as
x for reader’s understanding. We assume that the
robot can discriminate the set X of distinct world
states, and can take the set U of actions on the
world. A simple version of a Q learning algorithm
used here is shown as follows.

1. Initialize Q(x, u) to 0s for all combination of
X and U .

2. Perceive current state x.

3. Choose an action u according to action value
function.

4. Carry out action u in the environment. Let the
next state be x′ and immediate reward be r.

5. Update action value function from x, u, x′, and
r,

Qt+1(x, u) = (1− αt)Qt(x, u)
+ αt(r + γ max

u′∈U
Qt(x′, u′))(8)

where αt is a learning rate parameter and γ is
a fixed discounting factor between 0 and 1.

6. Return to 2.

4 Task and Assumptions

We apply the proposed method to a simple soccer-
like game including two agents (Figure 3). Each

Figure 3: The environment and our mobile robot

agent has a single color TV camera and does not
know the locations, the sizes and the weights of
the ball and the other agent, any camera param-
eters such as focal length and tilt angle, or kine-
matics/dynamics of itself. They move around using
a 4-wheel steering system. The effects of an ac-
tion against the environment can be informed to
the agent only through the visual information. As
motor commands, each agent has 7 actions such as
go straight, turn right, turn left, stop, and go back-
ward. Then, the input u is defined as the 2 dimen-
sional vector as

uT = [v φ] , v, φ ∈ {−1, 0, 1},

where v and φ are the velocity of motor and the
angle of steering respectively and both of which are
quantized.

The output (observed) vectors are shown in Fig-
ure 4. In case of the ball, the center position of
the ball image (xc, yc) is used, and the both ends
(xl, yl) and (xr, yr) are used for the field lines. In
case of the goal, the four corners of the goal im-
age (xul, yul), (xbl, ybl), (xur, yur), and (xbr, ybr) are
used. In case of other agent, the center of position,
the width and the height of the plate are used. As
a result, the dimension of the observed vector for
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the ball, the goal, the line, and the agent are 2, 4,
8, and 3 respectively.

We assume that the other active agent has some
basic behaviors designed by programmer such that
1) to move randomly, or 2) to move to the ball, and
that it does not change its behavior frequently.

5 Experimental Results

5.1 Simulation Results

Table 1 shows the result of identification. In order
to predict the successive situations l = 1 is sufficient
for the goal and line, while the ball needs 2 steps.
Figures 5 show the result (error and trajectory) of
the ball. At time steps 40 and 230, the learner
kicked the ball, therefore prediction errors become
large drastically.

Table 1: The estimated dimensions (computer sim-
ulation)

agent l n log |R| AIC
line 1 3 −2.14 −800
goal 1 2 −0.001 121
ball 2 4 0.232 138

random walk 3 6 1.22 232
move to the ball 3 6 −0.463 79

The observing agent can not predict the random
walk agent as a matter of course. The agent which
moves to the ball can be identified by the same di-
mension of the random agent, but the prediction
error is much smaller than that of the random walk.
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5.1.1 Shooting behavior

Figure 6: The robot succeeded in shooting a moving
ball into a goal

Figure 6 shows a sequence of shooting a slowly
moving ball into the goal using CVA method and
Table 2 shows a comparison about the success rate
of shooting with the model based on only the cur-
rent perception and action. We assign a reward
value 1 when the ball was kicked into the goal or 0
otherwise and the environment consists of the ball,
the goal and the line. The two lines emerged from
the agent show its visual angle.

If the learning agent uses the only current obser-
vation as the state vectors about the ball and the
goal, the leaning agent can not acquire the optimal
behavior when the ball is rolling. In other words,
the action value function does not become to be
stable because the state and action spaces are not
consistent with each other.



Figure 7: The robot succeeded in passing a ball to
the other agent

5.1.2 Passing behavior

Passing a ball to the other agent is regarded as
shooting (kicking) a ball toward the moving goal.
We assign a reward value 1 when the ball was kicked
into the other agent, −0.8 when the learner makes
a collision with the other agent or 0 otherwise and
the environment consists of the ball and the other
agent.

Table 2: Comparison between the proposed method
and the other one using only the current observation

state vector success of success of
shooting (%) passing (%)

current position 10.2 9.8
using CVA 78.5 53.2

5.2 Real Experiments

We have constructed the radio control system of the
robot, following the remote-brain project by Inaba
et al. (Inaba, 1993). Figure 8 shows a configura-
tion of the real mobile robot system. The image
taken by a TV camera mounted on each robot is
transmitted to a UHF receiver and processed by
Datacube MaxVideo 200, a real-time pipeline video
image processor. In order to simplify and speed up
the image processing time, we painted the ball, the
goal, and the opponent in red, blue, and yellow, re-
spectively. The input NTSC color video signal is
first converted into HSV color components in order
to easily extract the objects. Figure 9(a) and (b)
show the images taken by a TV camera mounted on

MC68040
MaxVideo
DigiColor
parallel I/O

UHF
antenna

tuner

Monitor

Sun WS

R/C
transmiter

UHF
transmiter

TVCamera

Soccer Robot

VME BOX
SPARC station 20

UPP

Figure 8: A configuration of the real system.

(a) input image (left
: shooter, and right :
passer)

(b) feature extraction

Figure 9: Detection of the agents

each robot (left : shooter, and right : passer). The
image processing and the vehicle control system are
operated by VxWorks OS on MC68040 CPU which
are connected with host Sun workstations via Ether
net. The tilt angle is about −26 [deg] so that robot
can see the environment effectively. The horizontal
and vertical visual angles are about 67 [deg] and 60
[deg], respectively.

The task of the passer is to pass a ball to the
shooter while the task of the shooter is to shoot a
ball into the goal. Table 3 and Figure 10 show the
experimental results. The value of l for the ball and
the agent are bigger than that of computer simula-
tion because of the noise of the image processing
and the dynamics of the environment such as the
eccentricity of the centroid of the ball. Even though
the local predictive model of the same ball for each
agent is similar (n = 4, and slight difference in
log |R| and AIC) (See Table3), the estimated state



Table 3: The estimated dimension (real environ-
ment)

from the shooter
l n log |R| AIC

ball 4 4 1.88 284
goal 1 3 −1.73 −817

passer 5 4 3.43 329

from the passer
l n log |R| AIC

ball 4 4 1.36 173
shooter 5 4 2.17 284

vectors are different from each other because there
are differences in several factors such as tilt angle,
the velocity of the motor and the angle of steer-
ing. We checked what happened if we replace the
local predictive models between the passer and the
shooter. Eventually, the large prediction errors of
both side were observed. Therefore the local pre-
dictive models can not be replaced between physi-
cal agents. Finally, Figure 11 shows a sequence of
images where the passer kicked a ball towards the
shooter, which shot it into the goal.
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Figure 10: Prediction error in real environment

6 Conclusion

This paper presents a method of behavior acquisi-
tion in order to apply reinforcement learning to the
environment including other agents. Our method
takes account of the trade-off among the precision
of prediction, the dimension of state vector, and the
length of steps to identify the model. Our robots
can shoot and pass a ball even if a ball is rolling
well.

As future work we plan to challenge the following

Figure 11: Acquired behavior



issues:

• The local predictive model provided the state
vectors by which prediction can be effectively
done because they have strongly correlation be-
tween the past inputs/outputs and the future
outputs. In order to accomplish the more com-
plicated task, the learning robot can determine
the minimum dimension of the state vectors
in accordance with the increase of the level of
the task complexity (Uchibe and Asada, 1997).
We are planning to extend the “Learning from
Easy Missions” paradigm (Asada et al., 1995)
to the complicated task.

• In our experiments, we quantized each of the el-
ements of the estimated state vectors into three
categories based on its variance. Several seg-
mentation methods such as Parti game algo-
rithm (Moore and Atkeson, 1995) and Asada’s
method (Asada et al., 1996) can be alternative.

• In order to accomplish the more complicated
cooperative tasks, the learning robot should es-
timates the interaction among all the objects.
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