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Abstract

Sony has provided a remarkable platform for re-
search and development in robotic agents, namely fully
autonomous legged robots. In this paper, we describe
our work using Sony’s legged robots to participate at
the RoboCup’98 legged robot demonstration and com-
petition. Robotic soccer represents a very challenging
environment for research into systems with multiple
robots that need to achieve concrete objectives, partic-
ularly wn the presence of an adversary. Furthermore
RoboCup’98 offers an excellent opportunity for robot
entertainment. We introduce the RoboCup context and
briefly present Sony’s legged robot. We developed a
viston-based navigation and a Bayesian localization al-
gorithm. Team strateqy is achieved through pre-defined
behaviors and learning by instruction.

1 Introduction

Problem solving in complex domains necessarily in-
volves multiple agents, dynamic environments, and
the need for learning from feedback and previous ex-
perience. Robotic soccer 1s an example of one such
complex task where agents need to collaborate in an
adversarial environment to achieve specific objectives.

Research in robotic soccer has been pursued along
several different aspects of the problem: simulation,
small-sized, medium-sized robots, and legged robots. !

In this paper we present some of the initial work
developed with the legged robots built by Sony at
Carnegie Mellon University and Osaka University.
The University of Paris VI is also participating in
the RoboCup’98 games and demonstrations of the
quadruped robots. Legged robots represent a remark-
able advancement for robotics. In the particular con-

1See [9] and http://www.robocup.org/RoboCup/RoboCup.-
html for additional information.

text of robotic soccer, legged robots provide a very
interesting opportunity for robot entertainment.

2 The Concrete RoboCup-98 Setup

The legged robot as a robotic soccer player is a fully
autonomous robotic system without global vision or
wireless remote operation. In addition, in order to
simplify the RoboCup competition, no modification
of hardware by the three different competing teams
was allowed. The Legged Robot Exhibition Match is
therefore a software competition between robots with
the same hardware platforms. Figure 1 shows the field
for the Legged Robot Exhibition Match.
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Figure 1: The RoboCup’98 Soccer Field for Legged
Robot Competition.

The setup of the game includes the following char-
acteristics:

Colored Environment: The important game items,
e.g., the ball and the goals, are painted with dif-
ferent colors so that a stand-alone robot can pro-
cess vision tasks in real time. We use a set of
eight colors distributed in the UV color space.
We selected the colors carefully so that a robot
can easily distinguish the colored objects.



Team: Each team has three players. This is the min-
imum number for each team to do some “team
play” or collaboration tasks, which 1s one of the
research objectives of RoboCup.

Field Size: The field size (2m x 3m), should provide
enough space for six robots to navigate while drib-
bling and passing the ball.

Slanted Wall: The walls surrounding the field with
45° slanted. In addition, we also made a triangu-
lar slanted wall for every corner. These slanted
walls effectively return the ball to the field when
the ball is pushed against the border, which is
a frequent situation at least in our practice with
remote-controlled legged robots.

Landmarks: Six poles are used as landmarks for self-
location. Each landmark 1s painted with two dif-
ferent colors so that six different poles can be
painted with only three different colors. The
robot should measure the angles of three differ-
ent poles to get the self-location in the field.

In addition to the regular soccer game, we will
evaluate software performance based on the RoboCup
Physical Challenge [2, 8], which is defined by the
RoboCup Challenge Committees.

3 A Quadruped Legged Robot

The robot soccer player used in RoboCup Legged
Robot Exhibition Match is based on OPEN-R [5],
which is proposed by Sony as a standard architecture
for Robot Entertainment Systems [6]. The significant
feature of OPEN-R is a decomposition technology for
both of hardware and software modules. This technol-
ogy enables us to build various kinds of robot styles
such as a quadruped robot and wheel-based robot
style, as well as various software configurations [7]. In
addition, for software researchers, OPEN-R can pro-
vide a highly reliable robot platform so that they can
concentrate on software development for a new image
processing algorithm, posture control, agent architec-
ture, and son on. Furthermore, they don’t need to
develop software from scratch, because OPEN-R, pro-
vides some software modules such as color detection
and walking control. This means that OPEN-R can
accumulate the developed software as reusable com-
ponents, and accelerate autonomous robot research.

In addition, hardware researchers can design their
own hardware modules with an OPEN-R, interface,

which can then attach to an existing OPEN-R sys-
tem. In RoboCup-98 Paris, we prohibit modification
of robot hardware, however, in principle, it is possible
for us to build various styles of robots with various
sensors and actuators which have OPEN-R interface.

For RoboCup-98 Paris, we will deploy legged robot
with four legs and one head, each of which has three
degree of freedom, and rich sensory channels, for ex-
ample, a head has a color CCD camera, stereo micro-
phone, touch sensors, and a loud speaker.

Most intelligent autonomous robots are imple-
mented with a wheel-based mechanical configuration.
A wheel-based robot has an advantage in simplicity
of motion control, so that researchers can concentrate
on vision, planning, and other high-level issues. How-
ever, since our goal is robot entertainment, we have a
different emphasis. We believe that the capability of
representation and communication using gesture and
motion is very important in entertainment applica-
tions. Therefore, we chose a mechanical configuration
of our robot as a quadruped-legged type, as shown in
Figure 2.

Figure 2: Legged Robot

The merits of the quadruped-legged configuration
are: (1) walking control of a quadruped is easier than
that of a biped robot, and (2) when in a sitting pos-
ture, two hands are free to move, therefore, they can
be used to present emotions or to communicate with
a human.



Since each leg or hand has to be used for various
purposes besides walking, we assign three degree of
freedom (DoF) for each leg/hand. In addition, we add
a tail and three DoF for neck/head so that the robot
has enough representation and communication capa-
bilities using motions. During the RoboCup games,
legs are not necessary used for expressing emotions.
However, they can be used for sophisticated control
of balls, such as passing ball to the side or back, or
engaged in deceptive motions.

One possible disadvantage of using a legged robot
is that their moving speed i1s not as fast as wheel-
based robots. In the future, the speed issue may be
resolved when galloping i1s made possible. For now,
legged robot will be played within dedicated league.
Although serious hardware limitations exist, teams
with efficient leg motion coordination may have major
advantages in the game.

In general, it is difficult for a stand-alone (au-
tonomous) robot to perform navigation and percep-
tion tasks in real time in a real world environment be-
cause of its limited computational power. Remotely
controlled robots and systems with globally overlook-
ing cameras can provide off-board the computational
power. These solutions have disadvantages, such as
the need for having a video transmitter for each robot
in a remotely controlled system, and the lack of indi-
vidual views with the global vision.

We believe that technologies to process images from
each individual robot viewpoint without any global in-
formation will become very important in Robot Enter-
tainment in future. Therefore, we decided to build the
RoboCup System with stand-alone robots under local
communication constraint. We successfully resolved
two hardware issues to enable full on-board vision sys-
tem for small size robots: (1) small camera size, and
(2) large on-board processor power. We solved these
problem by actually manufacturing a dedicated cam-
era and a processor chip [8].

4 Vision-Based Navigation

Each legged robot for RoboCup’98 is equipped with
a single perception sensor, namely a vision camera.
The hardware-based vision processor provides a robust
eight-color discrimination. Robots need to act solely
in response to the visual input perceived. At Carnegie
Mellon, we have therefore decomposed our work along
the following aspects:

o Reliable detection of all of the relevant colors:
orange (ball), light blue (goal and marker), yel-

low (goal and marker), pink (marker), light green
(marker), dark blue (teammate/opponent), and
dark red (opponent/teammate).

e Active ball chasing: the robot actively interleaves
searching for the ball and localization on the field
to evaluate both an appropriate path to the ball
and final positioning next to the ball.

e Game-playing behaviors: robots play attacking
and goal keeping positions.

In this section, we present our on-going research in
addressing these issues.

4.1 Supervised Learning of UV Colors

The Sony legged robot has specialized hardware for
the detection of colors. However, this hardware still
requires pre-setting of appropriate thresholds in YUV
color space for the desired colors. It is well known that
color adjustments are highly sensitive to a variety of
factors, such as lighting and shading.

Given that the legged robots inevitably act under
many different conditions, at Carnegie Mellon we de-
veloped a method to automatically acquire the nec-
essary YUV color thresholds. First we developed a
tool to manually experiment with different boundaries
in the UV space. ? Secondly, and building upon the
experience using the YUV-space tool, we developed
a classification algorithm to automatically learn the
thresholds that maximize the accuracy of the desired
color detections. Our algorithm relies on supervised
classification using a set of training and testing im-
ages. By moving the robot to different positions on
the field, we accumulate a series of images. For each
image, we manually classify the regions of the different
colors. This manual labeling is easily done through an
interface that we developed that overlays the original
image and the supervised classification. Areas of the
image can have their correct classification specified us-
ing tools similar to PC type paint programs.

Once the data has been classified, the YUV color
thresholds are learned separately for each color using
a conjugate gradient descent based algorithm. Each
threshold is softened by replacing it by a sigmoid func-
tion: 1

¢ = Traeer (1)
where (' is the classification for this sigmoid, a is the
value of this threshold and t is a variable equivalent
to the current temperature in a simulated annealing

2This tool was developed by Kwun Han, for which we thank
him.



algorithm. The classifications of the different thresh-
olds are multiplied and gradient descent is performed
on the sum-squared error. Initially the temperature
is quite high. It is reduced gradually over time as the
sigmoids are learned.

In our experiments, we generally use about twenty
images for training. The learning algorithm converges
in less than one hour achieving a high classification
accuracy.

4.2 Bayesian Probabilistic Localization

The CMU legged Robot team uses Markovian Lo-
calization to determine the robot position on the field.

Relying on dead-reckoning in the legged robot for
localization is completely unrealistic. The effects of
movement actions are highly noisy and modeling them
accurately did not seem feasible to us. However, to
compensate to the highly unreliable dead reckoning,
the field environment for RoboCup’98 includes several
fixed colored landmarks. Therefore, at Carnegie Mel-
lon, we developed a Bayesian localization procedure
(e.g., [4, 3]. As the robot cannot keep enough markers
in view at all times to calculate its location directly,
our algorithm uses a probabilistic method of localiza-
tion using triangulation based on two landmarks.

The field is discretized in grid locations. The con-
tinuous robot head angles are also discretized. We
create a state space with these discretized grid cells
and robot headings. Observations of the landmarks
are combined with the state space for the position cal-
culation. There are two passes to our localization al-
gorithm. The first incorporates observations into our
probability distribution. The second takes into ac-
count the movement actions selected. Incorporation
of observations is based upon Bayes’ Rule:

P(S;)P(0]5)
> P(S;)P(O|S))

where P(S;) is the apriori probability that the robot
is in state S;, P(S;|0) is the posterior probability that
the robot is in state S; given that it has just seen obser-
vation O and P(0]S;) is the probability of observing
O 1n state S;.

To represent the probability distribution P(S;) we
use a table of values. The table i1s a three dimensional
mapping X xY x 8 — 5. A table of values was chosen
because of some of the distributions we wish to repre-
sent do not have a nice parametric form. For instance,

P(S;|0)

(2)

given a uniform prior distribution, the observation of
the angle between two markers gives a high probability

circle through the state space that is not representable
by a Gaussian distribution.

Incorporation of movement is based upon a transi-
tion probability matrix. Given a previous movement
M | for each state, the algorithm computes the proba-
bility that the robot be in that state:

P(Si|M) = Y P(S)P(S; = SiIM)  (3)

where P(S;) is the apriori probability of state S; and
P(S; = S;| M) is the probability of moving from state
S; to state S; given the movement M. It is assumed
that the transition probabilities, P(S; = S;|M), take
into account any noise in M.

For example, imagine the robot sees an angle of 90°
between two markers, turns to the left and then sees
an angle of 90° between two more markers. Initially
it does not know where it is - our prior distribution is
flat. After its first observation, the projection of the
state probability matrix onto the X, Y plane would be
as shown in Figure 3(a). During the turn, the projec-
tion spreads over the XY plane - representing the in-
creased uncertainty introduced by the dead reckoning
as the robot turns (see Figure 3(b)). The second ob-
servation finally localizes the robot (see Figure 3(c)).
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Figure 3: The positioning probability: (a) after the
1st observation; (b) after a 90° turn; (c) after the 2nd
observation.

Our localization algorithm 1s invoked actively, 1.e.,
the robot searches for two landmarks when the max-
imum state probability is below a pre-defined thresh-
old. In our experiments, the robots localize themselves
with high accuracy.



4.3 Role-Based Behaviors

Following up on our experience with the small-size
RoboCup wheeled robots [11, 12], we developed differ-
ent behaviors based on positioning on the field. As of
now, robots play two different roles, namely attacking
and goal keeping.

The procedure used by an attacking robot consists
of the following steps: (i) find the ball; (ii) localize
attacking goal; (iii) position behind the ball, aligned
with the goal; (iv) shoot or pass.

The procedure used by the goal keeping robot is
a simplified version of the CMUnited’97’s goal keeper
and consists of the following steps: (i) find the ball; (ii)
remain close to the goal; (iii) move sideways aligned
with ball; (iv) clear the ball when it gets close to it.

5 Behavior Acquisition by Teaching

The final goal of the Legged Robot Project in
the Osaka University is to establish the methodol-
ogy to acquire behaviors for team cooperation in the
RoboCup context from the interactions between the
legged robots through multi sensor-motor coordina-
tions. The desired behaviors can be categorized into
three levels: a basic level, a basic cooperation level,
and a higher team cooperation level. In this section,
we briefly explain our first step for the first level skill
acquisition with preliminary results. That is behavior
acquisition by direct teaching.

The most fundamental feature of the legged robot
is that they move by their four legs (12 DOFs), which
is quite different from conventional mobile robots (2
or 3 DOFs). From a viewpoint of sensor-motor learn-
ing and development, multi sensory information and
multi DOFs control should be established simultane-
ously, that is, affecting each other, the sensory infor-
mation is abstracted and the multi joint motions are
well coordinated at the same time [1]. However, it
seems very difficult for artificial systems to develop
both together. Our goal is to design such a method.

From our experiences on robot learning, we realized
that the number of trials by real robot is limited and a
good trade-off between computer simulations and real
robot experiences is essential for good performance.
However, the computer simulation of the legged robots
seems difficult to build, then we decided to adopt a
direct teaching method in order to reduce the number
of trials by real robot.

First, we collect test data, pairs of an action com-
mand given by human trainer and the sensory infor-
mation during the action execution. Next, we apply

C4.5 [10] to the test data to extract rule sets. Then,
the validity of the rule sets are checked against test
data by applying the rule sets. Specifications of the
data for shooting skill acquisition are as follows:

e action command forward, backward, left-shift,
right-shift, left-rotation, and right rotation (20
degs/sec): these abstracted action commands will
be decomposed into more primitive motor com-
mands in future.

e sensory information head direction (rad.) and
image features of both the ball and the goal in
the observed 88 x 60 image: area (pixels), posi-
tion (x,y coordinates), bounding rectangle (z,y
coordinates of corners), height, and width. (See
Figure 4.)

e training position and sampling rate: initial
positions of direct teaching by serial line connec-
tion are evenly distributed in the field heading the
goal, and the sampling rate is 300ms. One trial
from the initial position to the goal takes about
10 seconds.

Figure 4: Typical situation of Right-Shift motion

We have collected about 740 pairs of an action com-
mand and sensory information for training data to
make rule sets, and 500 pairs for test data to check
the validity of the rule sets. Both sets of data are
obtained in the same manner starting from the simi-
lar initial positions, but individual pairs are different
from each other trial by trial.

The number of rules obtained is about 30, and typ-
ical ones for forward(F), left-rotation (LR), and right-
shift (RS) are the following:



Forward: Left-Rotation: Right-Shift:
BallArea>56 BallArea>49 BallArea<=40
HeadDir>-.14 HeadDir>.52 BallYcen>8
HeadDir<=.37 HeadDir<=1.10 BallXmin>3

GoalXmin<=11 BallWidth<=11 HeadDir<=-.24
GoalArea<=665

GoalXmax<=64

Figure 4 shows the typical situation of right-shift
motion.

Due to the inaccurate teaching by the human
trainer (actually, the human trainer is not experienced
yet to do this sort of teaching), the learning algorithm
is not completely reliable yet. The following table in-
dicates a confusion matrix showing where some miss-
classification of the training cases occurs:

<-clasgified as

111 13 3 -- 4 --  (a): LEFT

14 -- -- 2 9 --  (b): LEFT_TURN
-- -- 8 16 9 --  (c): RIGHT_TURN
-~ -- 20 151 34 --  (d): RIGHT

1t -- 3 13 91 --  (e): FORWARD
-- —= —= —= —= - (f): BACK

Note in that several miss-classifications are shown
(in particular LEFT_TURN does not have any correct
classifications). We are planning to skill up teaching
and also to use more training data to construct robust
classification. Generalization is one of the big issues of
direct teaching, and explanation-based learning seems
one alternative to solve the problem. These general-
ization techniques are under the investigation.

6 Conclusion

In this paper, we reported on some of our work us-
ing the Sony quadruped legged robots to play robotic
soccer. We briefly described the components of Sony’s
legged robots. We then presented our vision-based
navigation, Bayesian localization, role-based behav-
iors, and behavior acquisition by teaching.
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