
Vision-based Behavior Learning and Development
for Emergence of Robot Intelligence

M. Asada, K. Hosoda, and S. Suzuki
Dept. of Adaptive Machine Systems, Graduate School of Engineering

Osaka University, Suita, Osaka 565 (Japan)
email: asada@ams.eng.osaka-u.ac.jp

Abstract

This paper focuses on two issues on learning and
development; a problem of state-action space con-
struction, and a scaling-up problem. The former
is mainly related to sensory-motor mapping and
its abstraction, and we show two our methods
for the state and action space construction for
reinforcement learning. For the latter issue, we
attempt to define the environmental complexity
based on the relationships between observations
and self motions. Based on this view, we intro-
duce a method which can cope with the complex-
ity of multi-agent environment by a combination
of a state vector estimation process and a rein-
forcement learning process based on the estimat-
ed vectors. As example tasks in our work, we
adopt the domain of soccer robots, RoboCup [1].
Computer simulations and real robot experiments
are given.

1 Introduction

The ultimate goal of our research is to design the
fundamental internal structure inside physical en-
tities having their bodies (robots) which can e-
merge complex behaviors through the interaction-
s with their environments. In order to emerge the
intelligent behaviors, physical bodies have an im-
portant role of bringing the system into meaning-
ful interaction with the physical environment –
complex, uncertain, but with automatically con-
sistent set of natural constraints. This facilitates
the correct agent design, learning from the envi-
ronment, and rich meaningful agent interaction.
The meanings of “having a physical body” can be
summarized as follows:

1. Sensing and acting capabilities are not sepa-
rable, but tightly coupled.

2. In order to accomplish given tasks, the sensor
and actuator spaces should be abstracted un-
der the resource bounded conditions (mem-
ory, processing power, controller etc.).

3. The abstraction depends on both the funda-
mental embodiments inside the agents and
the experiences (interactions with their envi-
ronments).

4. The consequences of the abstraction are the
agent-based subjective representation of the
environment, and its evaluation can be done
by the consequences of behaviors.

5. In real world, both inter-agent and agent-
environment interactions are asynchronous,
parallel and arbitrarily complex. The agen-
t should cope with increasing complexity of
the environment to accomplish the given task
at hand.

In this paper, we focus on two issues on learning
and development; a problem of state-action space
construction, and a scaling-up problem. The for-
mer is mainly related to 2 and 3, and we show
two our methods for the state and action space
construction for reinforcement learning. One is
based on an off-line learning method [2] and the
other on-line one [3].

The latter issue is closely related to 4 and 5,
and we attempt to define the environmental com-
plexity based on the relationships between obser-
vations and self motions. Based on this view, we
introduce a method which can cope with the com-
plexity of multi-agent environment by a combi-
nation of a state vector estimation process and a
reinforcement learning process based on the esti-
mated vectors [4].

As example tasks in our work, we adopt the
domain of soccer robots, RoboCup, which is an
attempt to foster intelligent robotics research by

providing a standard problem where a wide range
of technologies can be integrated and examined
[1].

The remainder of this article is structured as
follows. We first give an explanation of the prob-
lem of state-action space construction along with
our real robot experiments in the context of rein-
forcement learning. Then, we show our method to
cope with more complicated tasks in multi-agent
environment. Finally, we give a conclusion.

2 A Prob-
lem of State-Action Space
Construction

Reinforcement learning [5, 6] has been receiving
increased attention as a method for robot learn-
ing with little or no a priori knowledge and high-
er capability of reactive and adaptive behaviors.
In such robot learning methods, a robot and an
environment are generally modeled by two syn-
chronized finite state automatons interacting in a
discrete time cyclical processes. The robot senses
the current state of the environment and select-
s an action. Based on the state and the action,
the environment makes a transition to a new s-
tate and generates a reward that is passed back to
the robot. Through these interactions, the robot
learns a purposive behavior to achieve a given
goal.

To apply robot learning methods such as rein-
forcement learning to real robot tasks, we need a
well-defined state-action space by which the robot
learns to select an adequate action for the current
state to accomplish the task at hand. Traditional
notions of state and action in the existing appli-
cations of the reinforcement learning schemes fit
nicely into deterministic state transition model-
s (e.g. one action is forward, backward, left, or
right, and the states are encoded by the locations
of the agent). However, it seems difficult to apply
such deterministic state transition models to re-
al robot tasks. In real world, everything changes
asynchronously [7]. Therefore, the construction
of state-action space is one of the most importan-
t issues in robot learning.

Generally, the design of the state-action space
in which the necessary and sufficient information
to accomplish a given task should be included de-
pends on the capabilities of agent sensing and act-
ing. The abstraction process from sensory infor-
mation to a state seems to depend on the process

from motor commands to an action, and vice ver-
sa. This resembles the well-known “chicken and
egg problem” that is difficult to be solved (see
Figure 1). Therefore, we need a sort of constraint
to solve the problem.

SensorSensorSensor
SpaceSpaceSpace

State-ActionState-ActionState-Action
SpaceSpaceSpace

MotorMotorMotor
SpaceSpaceSpace

Figure 1: The inter-dependence between sensor
and motor spaces from a viewpoint of state-action
space construction

Goal State

. : Input Vectors

: Action Primitives

State

State

State

S

S

S

1

2

2

forward

left

right

Action A1
forward

2A
right

A2
left

Action

Action

Figure 2: A basic idea of state-action space con-
struction

2.1 An Off-Line Learning Method

Basic ideas of our first approach to cope with this
problem are:

• we define an action primitive as a motor com-
mand to be executed during a fixed time in-
terval, and an input vector as sensory data of
the consequence of the action primitive, and

• we define a state as a cluster of input vectors
from which the robot can reach the goal state
(or the state already obtained) by a sequence
of one kind action primitive regardless of its
length, and one action as this sequence of
action primitives.

Figure 2 shows the basic idea of the state-action
space construction. The initial state space con-
sisting of the goal state and the other is iteratively
separated into several states.

Closeup

Possible Actions

Figure 3: Task and environment

x

512

480

x

x
1

2

4
hr hl

x =3 2

hl hr+

x = 5 x3

hl hr-

Figure 4: Input vector consisting of five parame-
ters

The method is applied to a soccer robot which
tries to shoot a ball into a goal (see Fig.3). The
size of the observed image is 512 by 480 pixels,
and the center of image is the origin of the image
coordinate system (see Figure 4). An input vector
x for a shooting task consists of:

• x1: the size of the ball, the diameter that
ranges from 0 to about 270 pixels,

• x2: the position of the ball ranging from -270
to +270, considering the partial observation,

Figure 5: 2-D projection of the result of state
space construction

• x3: the size of the goal, the height average
of the left and right poles (or ends in image)
that ranges from 0 to 480 pixels,

• x4: the position of the goal, the average
of the positions of the left and right poles
(or ends in image) that ranges from -256 to
+256, and

• x5: the orientation of the goal, the ratio of
the height difference between the left and
right poles (or ends) to the size of the goal
x3. x5 ranges from -1.00 to +1.00.

Figure 5 shows the result in which the final
state space is projected into two dimensional s-
pace in terms of the ball size and the goal size
(when their positions are frontal and the orien-
tation of the goal is horizontal). The intensity
indicates the order of the division: the darker is
the earlier. Labels “F” and “B” indicate the mo-
tions of forward and backward, respectively, and
subscript shows the number of state transitions
towards the goal. Grid lines indicate the bound-
aries divided by programmer in the previous work
[8]. The remainder of the state space in Figure 5
corresponds to infeasible situations such as “the
goal and the ball are observed at the center of im-
age, and the size of the goal is large, but that of
the ball is small” although we had not recognized
such a meaningless state in the previous work. As
we can see, the sensor space categorization by the

proposed method is quite different from the one
designed by the programmer (rectangular grids)
in the previous work [8].

Figure 6: The robot succeeded in finding and
shooting a ball into the goal

Figure 7: Images taken by the robot during the
task execution

We applied the method to a real robot environ-
ment. The success ratio is worse than the simu-
lation because of the disturbances due to several
causes such as eccentricity of the ball centroid
and slip of the tires that make the ball or the

robot move into unpredictable directions. Figure
6 shows how a real robot shoots a ball into a goal
by using the state and action map obtained by the
method. 16 images are shown in raster order from
the top left to the bottom right in every 1.5 sec-
onds, in which the robot tried to shoot a ball, but
failed, then moved backward so as to find a posi-
tion to shoot a ball, finally succeeded in shooting.
Figure 7 shows a sequence of images taken by the
robot during the task execution shown in Figure
6. Note that the backward motion for retry is
just the result of learning and not hand-coded.

2.2 An On-line Learning Method

The above method needs sufficient amount of u-
niformly sampled data to construct the state s-
pace suitable for the robot to perform the given
task, and therefore, does not cope with dynam-
ic changes happened in the environment. These
problems are resolved by the second approach
[3] which obtains a purposive behavior within
less learning time by incrementally segmenting
the sensor space based on the experiences of
the robot. The incremental segmentation is per-
formed by constructing local models in the state
space, which is based on the function approxima-
tion of the sensor outputs to reduce the learning
time, and the reinforcement signal to emerge a
purposive behavior. They applied their method
to the same task as in [2]. The basic ideas are as
follows:

1. Set up a state space consists of two states;
the goal state and the other.

2. Apply
function approximation to the changes of the
input vectors caused by action primitives. If
the function approximation cannot cope with
these changes, then segment the states into
two and apply the function approximation
to a new state. This process might cause to
merge a state with one of the separated s-
tates. These processes can reduce ineffective
explorations.

3. Initialize the action-value for the new state,
and apply the reinforcement learning. The
learning time is very short because the num-
ber of states to be updated is small.

4. Apply stochastic action selection to cope
with dynamic change of the environment.

goal state

ball diameter

fi
rs

t p
ri

nc
ip

al
 c

om
po

ne
nt

 s
co

re
 o

f
go

al

0 10 20 30 40
−20

0

20

40

Figure 8: Obtained state space

Figures 8, 9, and 10 show the experimental re-
sults. Figure 8 shows a projection of the state
space after 1,110 trials, where the state space in
term of ball size and goal size is indicated when
the position of the ball and the goal are center
of the screen and the orientation of the goal is
frontal. As we can see the shape of the resultan-
t state space is complicated and quite different
from the previous result (see Figure 5). Figure
9 indicates the changes of the success rate and
the number of states in the case that the ball
size is suddenly changed twice at the 500th trial.
These suggest that the method cope with non-
linear mapping between states and actions and

0

10

20

30

0 200 400 600 800 1000
trial number

number of states
success rate (20/20)

Figure 9: Success rate and the number of states

Figure 10: The robot succeeded in shooting a ball
into the goal

deal with dynamic change of the environment.
Figure 10 shows how the robot tries to shoot

a ball into the goal. Because of the sensor noise
and the uncertainty of the motor commands, the
robot often misunderstands the states, and takes
wrong actions, therefore it fails to do the task. 1©
indicates that the robot is going to shoot a ball
into the goal and moves forward. But it fails to
kick the ball at 2© because the speed is too high
to turn. Eventually, the ball is occluded by the
robot in 2©. Then, it goes back left so that it can
shoot a ball at 3©. But it fails again at 4©. Then
it goes back left again at 5©. After all, the robot
shoots the ball into the goal successfully at 6©.

3 A Scaling-Up Problem

Since each species of animals can be regarded
to have its own intelligence, difference of intelli-
gence seems to depend on the agent (capabilities
in sensing, acting, and cognition) and its environ-
ment. If agents have the same bodies, differences
or levels in intelligence can occur in the complexi-
ty of interactions with their environments. In case
of our soccer playing robot with vision, the com-
plexity of interactions may change due to other
agents in the field such as common side players,

opponents, judges and so on. In the following,
we attempt at showing our view about the level-
s of complexity of interactions, especially from a
viewpoint of the existence of other agents.

1. Self body and Static Environment: The
self body or static environment can be de-
fined in a sense that the observable parts
of which changes in the image plane can be
directly correlated with the self motor com-
mands (ex. looking at your hand showing
voluntary motion, or observing an optical
flow of the environment when changing y-
our gaze). Theoretically, discrimination be-
tween “self body” and “static environment”
is a hard problem because the definition of
“static” is relative and depends on the se-
lection of the reference (the base coordinate
system) which also depends on the context of
the given task. Usually, we suppose the natu-
ral orientation of the gravity, which provides
the orientation of the ground coordinate sys-
tem.

2. Passive agents: As a result of actions of the
self or other agents, passive agents are mov-
able or can be stopped. A ball is a typical
one. As long as they are stationary, they can
be categorized into the static environment.
But, not so simple correlation with motor
commands as the self body or the static en-
vironment can be expected when they are in
motion.

3. Active (other) agents: Active other a-
gents do not have a simple and straightfor-
ward relationship with the self motions. In
the early stage, they are treated as noise
or disturbance because of not having direct
visual correlation with the self motor com-
mands. Later, they can be found as having
more complicated and higher correlation (co-
ordination, competition, and others). The
complexity is drastically increased.

According to the complexity of the environ-
ment, the internal structure of the robot should
be higher and more complex to emerge vari-
ous intelligent behaviors. We show one of such
structure coping with the complexity of agent-
environment interactions with real robot experi-
ments and discuss the future issues.

3.1 A More Complicated Task in
Multi-Agent Environment

In a multi-agent environment, the conventional
reinforcement learning algorithm does not seem
applicable because the learner’s sensory informa-
tion may change regardless of the learner’s motion
due to the motion of other active agents in the en-
vironment. Therefore, the learner cannot predict
the other agent behaviors correctly unless explic-
it communication is available. It is important for
the learner to discriminate the strategies of the
other agents and to predict their movements in
advance to learn the behaviors successfully.

The existing methods in multi agent environ-
ments (ex., [9],[10],[11],[12],[13] and so on.) need
state vectors in order for the learning to converge.
However, it is difficult to obtain a reasonable ana-
lytical model in advance. Therefore, the modeling
architecture is required to make the reinforcement
learning applicable.

Here, we show a method which estimates the
relationship between the learner’s behaviors and
the other agents through interactions (observa-
tion and action) using the method of system i-
dentification. In order to construct the local pre-
dictive model of other agents, we apply Akaike’s
Information Criterion(AIC) [14] to the result of
Canonical Variate Analysis(CVA) [15], which is
widely used in the field of system identification.
The local predictive model is constructed based
on the observation and action of the learner (ob-
server).

We apply the proposed method to a simple
soccer-like game in a physical environment. The
task of the agent is to shoot a ball which is passed
back from the other agent. Since the environmen-
t consists of the stationary agents (the goal and
the line), a passive agent (the ball) and an active
agent (the passer), the learner has to construct
the adequate models for these agents. After con-
structing the models and estimating their param-
eters, the reinforcement learning is applied in or-
der to acquire purposive behaviors. The proposed
method can cope with the moving ball because a
state vector for learning is selected appropriately
so as to predict the successive steps.

Figure 11 shows an overview of the proposed
method consisting of local predictive models and
reinforcement learning architecture. At first, the
learning agent collects the sequence of sensor out-
puts and motor commands to construct the lo-
cal predictive models. By approximating the re-
lationship between inputs (learner’s action) and

Goal

state vectors
Estimated

n

Ball

state vectors
Estimated

n

Robot

state vectors
Estimated

n

State space

with full dimension
Information

Criterion

AIC(n)

Prediction error

matrix R

Error Estimator

l = 1, 2, ...

Observation,

Motor command

Canonical Variate
 Analysis

l

Environment

Q map
state

action reward

Local Predictive

 Model

Reinforcement

 Learning

Figure 11: An overview of the proposed method

outputs (observation), the local predictive mod-
el gives the learning agent not only the succes-
sive states of the agent but also the priority of
state vectors, which means that first a few vec-
tors might be sufficient to predict the successive
states.

The flow of the proposed method is summa-
rized as follows:

1. Collect the observation vectors and the mo-
tor commands.

2. Estimate the state space with the full dimen-
sion directly from the observations and mo-
tor commands (Section 3.1.1).

3. Determine the dimension of the state vectors
which is the result of the trade off between
the error and the complexity of the model.

4. Apply the reinforcement learning based on
the estimated state vectors.

3.1.1 Canonical Variate Analysis

A number of algorithms to identify multi-input
multi-output (MIMO) combined deterministic-
stochastic systems have been proposed [16]. In
contrast to ‘classical’ algorithms such as PEM
(Prediction Error Method), the subspace algo-
rithms do not suffer from the problems caused by
a priori parameterizations. Larimore’s Canonical
Variate Analysis (CVA) [15] is one of such algo-
rithms, which uses canonical correlation analysis
to construct a state estimator

Let u(t) ∈ <m and y(t) ∈ <q be the input and
output generated by the unknown system

x(t + 1) = Ax(t) + Bu(t) + w(t),
y(t) = Cx(t) + Du(t) + v(t), (1)

with

E

{[
w(t)
v(t)

] [
wT (τ) vT (τ)

]}
=

[
Q S

ST R

]
δtτ ,

and A, Q ∈ <n×n, B ∈ <n×m, C ∈ <q×n,
D ∈ <q×m, S ∈ <n×q, R ∈ <q×q. E{·} denotes
the expected value operator and δtτ the Kroneck-
er delta. v(t) ∈ <q and w(t) ∈ <n are un-
observed, Gaussian-distributed, zero-mean, white
noise vector sequences. CVA uses a new vector
µ which is a linear combination of the previous
input-output sequences since it is difficult to de-
termine the dimension of x. Eq.(1) is transformed
as follows:

[
µ(t + 1)

y(t)

]
= Θ

[
µ(t)
u(t)

]
+

[
T−1w(t)

v(t),

]
,

(2)
where

Θ̂ =
[

T−1AT T−1B
CT D

]
, (3)

and x(t) = Tµ(t). We follow the simple explana-
tion of the CVA method.

1. For {u(t), y(t)}, t = 1, · · ·N , construct new
vectors

p(t) =

u(t− 1)
...

u(t− l)
y(t− 1)

...
y(t− l)

, f(t) =

y(t)
y(t + 1)

...
y(t + k − 1)

 ,

2. Compute estimated covariance matrices
Σ̂pp, Σ̂pf and Σ̂ff , where Σ̂pp and Σ̂ff are
regular matrices.

3. Compute singular value decomposition

Σ̂
−1/2

pp Σ̂pfΣ̂
−1/2

ff = UauxSauxV T
aux, (4)

UauxUT
aux = I l(m+q), V auxV T

aux = Ikq,

and U is defined as:

U := UT
auxΣ̂

−1/2

pp .

4. The n dimensional new vector µ(t) is defined
as:

µ(t) = [In 0]Up(t), (5)

5. Estimate the parameter matrix Θ applying
the least square method to Eq (2).

Strictly speaking, all the agents do in fact inter-
act with each other, therefore the learning agent
should construct the local predictive model tak-
ing these interactions into account. However, it is
intractable to collect the adequate input-output
sequences and estimate the proper model because
the dimension of state vector increases drastically.
Therefore, the learning (observing) agent applies
the CVA method to each (observed) agent sepa-
rately.

3.1.2 Determine the dimension of other
agent

It is important to decide the dimension n of the
state vector x and lag operator l that tells how
long the historical information is related in de-
termining the size of the state vector when we
apply CVA to the classification of agents. Al-
though the estimation is improved if l is larger
and larger, much more historical information is
necessary. However, it is desirable that l is as s-
mall as possible with respect to the memory size.
For n, complex behaviors of other agents can be
captured by choosing the order n high enough.

In order to determine n, we apply Akaike’s In-
formation Criterion (AIC) which is widely used
in the field of time series analysis. AIC is a
method for balancing precision and computation
(the number of parameters). Let the prediction
error be ε and covariance matrix of error be

R̂ =
1

N − k − l + 1

N−k+1∑

t=l+1

ε(t)εT (t).

Then AIC(n) is calculated by

AIC(n) = (N − k − l + 1) log |R̂|+ 2λ(n), (6)

where λ is the number of the parameters. The
optimal dimension n∗ is defined as

n∗ = arg min AIC(n).

Since the reinforcement learning algorithm is
applied to the result of the estimated state vec-
tor to cope with the non-linearity and the error
of modeling, the learning agent does not have to

construct the strict local predict model. Howev-
er, the parameter l is not under the influence of
the AIC(n). Therefore, we utilize log |R̂| to de-
termine l.

1. Memorize the q dimensional vector y(t)
about the agent and m dimensional vector
u(t) as a motor command.

2. From l = 1 · · ·, identify the obtained data.

(a) If log |R̂| < 0, stop the procedure and
determine n based on AIC(n),

(b) else, increment l until the condition (a)
is satisfied or AIC(n) does not decrease.

3.2 Reinforcement Learning

After estimating the state space model given by
Eq. 2, the agent begins to learn behaviors us-
ing a reinforcement learning method. Q learn-
ing [17] is a form of reinforcement learning based
on stochastic dynamic programming. It provides
robots with the capability of learning to act opti-
mally in a Markovian environment. In the previ-
ous section, appropriate dimension n of the state
vector µ(t) is determined, and the successive s-
tate is predicted. Therefore, we can regard an
environment as Markovian.

3.3 Task and Assumptions

We apply the proposed method to a simple
soccer-like game including two agents (Figure 12).
Each agent has a single color TV camera and does
not know the location, the size and the weight of
the ball, the other agent, any camera parameters
such as focal length and tilt angle, or kinemat-
ics/dynamics of itself. They move around using
a 4-wheel steering system. As motor commands,
each agent has 7 actions such as go straight, turn
right, turn left, stop, and go backward. Then, the
input u is defined as the 2 dimensional vector as

uT = [v φ] , v, φ ∈ {−1, 0, 1},

where v and φ are the velocity of motor and the
angle of steering respectively and both of which
are quantized.

The output (observed) vectors are shown in
Figure 13. As a result, the dimension of the ob-
served vector about the ball, the goal, and the
other robot are 4, 11, and 5 respectively.

passer

shooter

Figure 12: The environment and our mobile robot

(,)4x y4

goal

x y(,)1 1

2x y(,)2

3x y(,)3

robot

h

w

ball (x, y)

area

(x, y)

(x, y)

area area

center position

width

height radius 4 corners

center position center position

robot ball goal

image features

Figure 13: Image features of the ball, goal, and
agent

3.4 Experimental Results

3.4.1 Simulation Results

Table 1: The estimated dimension (computer
simulation)

agent l n log |R| AIC
goal 1 2 −0.001 121
ball 2 4 0.232 138

random walk 3 6 1.22 232
move to the ball 3 6 −0.463 79

Table1 shows the result of identification. In or-
der to predict the successive situation, l = 1 is
sufficient for the goal, while the ball needs 2 step-
s. The motion of the random walk agent can not
be correctly predicted as a matter of course while
the move-to-the-ball agent can be identified by
the same dimension of the random agent, but the
prediction error is much smaller than that of ran-

MC68040
MaxVideo
DigiColor
parallel I/O

UHF
antenna

tuner

Monitor

Sun WS

R/C
transmiter

UHF
transmiter

TVCamera

Soccer Robot

VME BOX
SPARC station 20

UPP

Figure 14: A configuration of the real system.

dom walk.
Table 2 shows the success rates of shooting and

passing behaviors compared with the results in
our previous work [8] in which only the current
sensor information is used as a state vector. We
assign a reward value 1 when the robot achieved
the task, or 0 otherwise. If the learning agent
uses the only current information about the ball
and the goal, the leaning agent can not acquire
the optimal behavior when the ball is rolling. In
other words, the action value function does not
become to be stable because the state and action
spaces are not consistent with each other.

Table 2: Comparison between the proposed
method and using current information

state vector success of success of
shooting (%) passing (%)

current position 10.2 9.8
using CVA 78.5 53.2

3.4.2 Real Experiments

We have constructed the radio control system
of the robot, following the remote-brain project
by Inaba et al. [19]. Figure 14 shows a configu-
ration of the real mobile robot system. The im-
age taken by a TV camera mounted on the robot
is transmitted to a UHF receiver and processed
by Datacube MaxVideo 200, a real-time pipeline

Table 3: The estimated dimension (real environ-
ment)

from the shooter
l n log |R| AIC

ball 4 4 1.88 284
goal 1 3 −1.73 −817

passer 5 4 3.43 329
from the passer

l n log |R| AIC
ball 4 4 1.36 173

shooter 5 4 2.17 284

video image processor. In order to simplify and
speed up the image processing time, we painted
the ball, the goal, and the opponent red, blue,
and yellow, respectively. The input NTSC col-
or video signal is first converted into HSV color
components in order to make the extraction of
the objects easy. The image processing and the
vehicle control system are operated by VxWorks
OS on MC68040 CPU which are connected with
host Sun workstations via Ether net. The tilt an-
gle is about −26 [deg] so that robot can see the
environment effectively. The horizontal and ver-
tical visual angles are about 67 [deg] and 60 [deg],
respectively.

The task of the passer is to pass a ball to the
shooter while the task of the shooter is to shoot a
ball into the goal. Table 3 and Figure 15 show the
experimental results. The value of l for the ball
and the agent are bigger than that of computer
simulation, because of the noise of the image pro-
cessing and the dynamics of the environment due
to such as the eccentricity of the centroid of the
ball. Even though the local predictive model of
the same ball for each agent is similar (n = 4, and
slight difference in log |R| and AIC) from Table3,
the estimated state vectors are different from each
other because there are differences in several fac-
tors such as tilt angle, the velocity of the motor
and the angle of steering. We checked what hap-
pened if we replace the local predictive models
between the passer and the shooter. Eventually,
the large prediction errors of both side were ob-
served. Therefore the local predictive models can
not be replaced between physical agents. Figure
16 shows a sequence of images where the shooter
shoots a ball which is kicked by the passer.

-10

-5

0

5

10

0 50 100 150 200 250 300

er
ro

r
(p

ix
el

)

time steps (1/30 s)

error of y position

(a) y position of the ball

-6

-4

-2

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

er
ro

r
(p

ix
el

)

time steps (1/30 s)

error of y position

(b) y position of the left-upper of the goal

Figure 15: Prediction errors in the real environ-
ment

1 2

3 4

passer

shooter

(a) top view

1 2

3 4

(b) obtained images (left:shooter, right:passer)

Figure 16: Acquired behavior

4 Concluding Remarks

Along with examples of soccer robots, we have
claimed the importance of the design of the inter-
nal structure which reflects the complexity of the
interactions with the agent’s environment. Al-
though the task and the environment seem sim-
ple and limited, the design of the soccer robot-
s includes a variety of the fundamental and im-
portant issues as a standard problem in robotics
and AI [1]. We expect that more agents in the
field cause much higher interactions among them,
which emerges a variety of more complex behav-
iors.

Acknowledgment

We like to thank Eiji Uchibe, Yasutake Taka-
hashi, Masateru Nakamura, and Chizuko Mishi-
ma for their supports of our work described in
this paper.

References

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. No-
da, E. Osawa, and H. Matsubara. “robocup:
A challenge problem of ai”. AI Magazine,
18:73–85, 1997.

[2] M. Asada, S. Noda, and K. Hosoda. Action-
based sensor space categorization for robot
learning. In Proc. of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems 1996 (IROS ’96), pages 1502–1509,
1996.

[3] Y. Takahashi, M. Asada, and K. Hoso-
da. Reasonable performance in less learn-
ing time by real robot based on incremen-
tal state space segmentation. In Proc. of
IEEE/RSJ International Conference on In-
telligent Robots and Systems 1996 (IROS96),
pages 1518–1524, 1996.

[4] E. Uchibe, M. Asada, and K. Hosoda. Vision
based state space construction for learning
mobile robots in multi agent environments.
In Proceedings of 6-th European Workshop
on Learning Robots, EWLR-6, pages 33–41,
1997.

[5] C. J. C. H. Watkins and P. Dayan. “Tech-
nical note: Q-learning”. Machine Learning,
8:279–292, 1992.

[6] R. S. Sutton. “Special issue on reinforcemen-
t learning”. In R. S. Sutton(Guest), editor,
Machine Learning, volume 8, pages –. Kluw-
er Academic Publishers, 1992.

[7] M. Mataric. “Reward functions for acceler-
ated learning”. In Proc. of Conf. on Machine
Learning-1994, pages 181–189, 1994.

[8] M. Asada, S. Noda, S. Tawaratumida, and
K. Hosoda. Purposive behavior acquisition
for a real robot by vision-based reinforce-
ment learning. Machine Learning, 23:279–
303, 1996.

[9] Peter Stone and Manuela Veloso. Using ma-
chine learning in the soccer server. In Proc.
of IROS-96 Workshop on Robocup, 1996.

[10] E. Uchibe, M. Asada, and K. Hosoda. Be-
havior coordination for a mobile robot using
modular reinforcement learning. In Proc. of
IEEE/RSJ International Conference on In-
telligent Robots and Systems 1996 (IROS96),
pages 1329–1336, 1996.

[11] Michael L. Littman. Markov games as
a framework for multi-agent reinforcemen-
t learning. In Proc. of Conf. on Machine
Learning-1994, pages 157–163, 1994.

[12] Tuomas W. Sandholm and Robert H.
Crites. On multiagent Q-learning in a semi-
competitive domain. In Workshop Notes of
Adaptation and Learning in Multiagent Sys-
tems Workshop, IJCAI-95, 1995.

[13] Long-Ji Lin. Self-improving reactive agents
based on reinforcement learning, planning
and teaching. Machine Learning, 8:293–321,
1992.

[14] H. Akaike. A new look on the statistical
model identification. IEEE Trans. AC-19,
pages 716–723, 1974.

[15] W. E. Larimore. Canonical variate analy-
sis in identification, filtering, and adaptive
control. In Proc. 29th IEEE Conference on
Decision and Control, pages 596–604, Hon-
olulu, Hawaii, December 1990.

[16] Peter Van Overschee and Bart De Moor.
A unifying theorem for three subspace sys-
tem identification algorithms. Automatica,
31(12):1853–1864, 1995.

[17] C. J. C. H. Watkins and P. Dayan. Techni-
cal note: Q-learning. Machine Learning, pp.
279–292, 1992.

[18] E. Uchibe, M. Asada, and K. Hosoda. Be-
havior coordination for a mobile robot using
modular reinforcement learning. In Proc. of
IEEE/RSJ International Conference on In-
telligent Robots and Systems 1996 (IROS96),
pp. 1329–1336, 1996.

[19] M. Inaba. Remote-brained robotics : In-
terfacing AI with real world behaviors. In
Preprints of ISRR’93, Pitsuburg, 1993.

