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Abstract

Learning and development are essential processes for
an animat to adapt itself to environmental changes so
as to accomplish a given task. This paper proposes
a single mechanism for learning and self-improvement
that results in learning curves similar to the “U-shape”
phenomena observed in several psychological experi-
ments concerning the human learning process such as
in language acquisition. The basic idea is that (1) the
animat monitors its success rate in goal achievemen-
t so as to perceive environmental changes instead of
relying on signals from a teacher, and (2) in order to
reuse acquired knowledge and accelerate reinforcemen-
t learning, the animat does not memorize the action
values but transfers only the learned policy. The resul-
tant policy (a state transition map where transitions
indicate the best actions) may not be optimal in any
given environment but it may be able to better handle
differences between environments. We apply this mod-
el to a mobile robot navigation problem for which the
task is to reach the target while avoiding obstacles by
means of uninterpreted sonar and visual information.
Our experimental results demonstrate the validity of
the model.

1. Introduction

Learning and development are essential processes for bio-
logical and artificial systems alike. Robots, which may be
required to adapt themselves to different environments,
provide a typical example. Conventional methods achieve
goals in different environments by employing a different
module to cope with each kind of environment. However,
such methods are limited by the capacity of processing
modules. How do biological systems overcome this prob-
lem and how could adaptive animats do the same?

In psychology, several experiments indicate the “U-
shape” phenomena in the learning of various kinds of
skills in humans (Elman et al., 1996). First learning im-
proves monotonically, then performance drops, and final-
ly it rises up again. A typical example can be observed in

children who are learning the past tense, that is, to conju-
gate both regular and irregular verbs correctly (Rumel-
hart and McClelland, 1986). Researchers had disputed
whether a single or a dual mechanism was implicated. An
simple solution involves one mechanism for regular verbs
and another for irregular. Instead, Rumelhart and Mc-
Clelland (Rumelhart and McClelland, 1986) showed that
a single mechanism plus a carefully designed learning
schedule could give the same U-shaped results. Despite
much debate and criticism (Pinker and Prince, 1988;
Plunkett and Marchman, 1991; Marcus et al., 1992), mi-
cro U-shaped curves have been observed in child learn-
ing processes for vocabulary development, past tenses
of English verbs, physical event cognition, and so on.
An artificial neural network has produced similar results
(Plunkett et al., 1992), indicating that a single mecha-
nism could cope with different tasks. New tasks were in-
troduced after fixing the policy for the tasks learned so
far. That way, the policy that had already been learned
was not unlearned while new skills were being acquired.

In this paper, we propose a single mechanism for
learning and self-improvement in a mobile robot. The
robot must overcome a navigation problem in differen-
t environments. The robot learner continually monitors
its success rate in achieving the goal in order to perceive
changes in the environment when it encounters them.
Thus, we distinguish our system from models assumed in
several psychological experiments and in artificial neural
networks as applied to supervised learning since these
models make use of explicit signals from a teacher. The
learner does not need to find changes in the environment
unless its success rate worsens.

A task domain similar to ours has been dealt with
in the lifelong learning area of machine learning (Thrun
and Mitchell, 1996). This approach reuses learned poli-
cies as a priori knowledge to accelerate improvement.
Tanaka and Yamamura (Tanaka and Yamamura, 1997)
applied a similar idea to a simple grid-world navigation-
al task using a method which combined reinforcement



learning with stochastic gradient ascent. We distinguish
our method from these because

1. although they accelerate learning, the robot must
have a different policy for each kind of environment;
our model has only a single policy.

2. more importantly, to learn multiple policies, the
robot is explicitly informed of a change in environ-
ment; the robot in our model detects a change only
when necessary, because the success rate worsens.

To realize a single policy mechanism and accelerate
learning, the robot does not keep the action values ob-
tained by reinforcement learning in the previous environ-
ment. It only uses the policy (state transition map where
transitions indicate the best actions) for action selection.

We also adopt the “learning from easy missions”
(LEM) paradigm (Asada et al., 1996) by which the ini-
tial positions of the robot are controlled to accelerate the
learning. Since LEM is basically considered as a tech-
nique for learning in a single environment, we do not
deal with it in details here.

The resultant policy obtained by our model does not
seem optimal in each individual environment, but may
absorb the differences between multiple environments.
The remainder of this article is structured as follows.
First, the method is explained in details with a brief sum-
mary of reinforcement learning, especially Q-learning.
Next, the task and some assumptions are given. Finally,
we examine the experimental results to test the validity
of the model and consider future work.

2. Learning and Self-Improvement

2.1 Basics of Reinforcement Learning
Before getting into the details of our system, we briefly
review the basics of Q-learning (Kaelbling, 1993). For a
more through treatment, see (Watkins and Dayan, 1992).

We assume that the robot can discriminate the set S
of distinct world states, and can take the set A of actions
on the world. The world is modeled as a Markov process,
making stochastic transitions based on its current state
and the action taken by the robot. Let T (s, a, s′) be the
probability that the system will transit to the next s-
tate s′ from the current state-action pair (s, a). For each
state-action pair (s, a), the reward r(s, a) is defined.

Without initial knowledge on T and r, we construct
incremental estimates of the action values called Q val-
ues on line. Starting with Q(s, a) at any value, usually
0, every time an action is taken update the Q value as
follows:

Q(s, a) ⇐ (1− α)Q(s, a) + α(r(s, a) + γ max
a′∈A

Q(s′, a′)).

(1)
where r is the actual reward value received for taking
action a in a situation s, s′ is the next state, and α is a
learning rate (between 0 and 1).

2.2 Algorithm
As described in 1, the basic ideas of our method are:

1. by monitoring its success rate, the robot can decide
when to restart Q-learning, regardless of the actu-
al change in the environment it encounters (this ap-
proach is quite different from existing methods); and,

2. in order to accelerate learning, the action values ob-
tained by Q-learning in the previous environment are
not reused for Q-learning in the current environment,
but only the policy (action selection) is used. Actu-
ally, we have attempted to reuse the action values,
but we have often observed that they prevented the
robot from learning a new policy.

The algorithm is as follows:

1. Quantize the state space as S.
2. Apply Q-learning to the initial environment, and ob-

tain the policy P : S → A(A:action set) with the
success rate Rs

3. Apply P to any environments unless Rs decrease.
4. If Rs decreases, then find states Sr ⊂ S where P fails

to achieve the goal, and modify P for such states by
applying Q-learning as follows until Rs recovers to
pre-specified adaptability rate β.
(a) Apply Q-learning to Sr ⊂ S. Action selection

during the learning is as follows:
if s ∈ Sr ∪ Sn follow the normal action
selection in Q-learning, where Sn ⊂ S
denotes inexperienced states.

else follow P

(b)
5. Go to 3 with the obtained policy P .

The adaptability rate β determines the extent to
which re-learning occurs, that is:

Rsd = Rsc + β(Rsp −Rsc), (2)

where Rsp, Rsc, Rsd denotes the success rates in the pre-
vious environment, in the current one, and the desired
one, respectively.

Based on the selected state vector, we apply the algo-
rithm to the given task with the following specifications:

– the learning rate α = 0.25, and the discounting factor
γ = 0.9.

– If the robot reaches the target, the positive reward 1
is given. Otherwise 0.

– One trial terminates if the robot reaches the target,
makes a collision with any obstacles, or the given
time limit expires.



3. Task, Robot, and Assumptions

3.1 Our Robot
Our robot has a Power Wheeled Steering (hereafter P-
WS) system driven by two motors. We can send com-
mands to each motor independently. In our experiment,
we quantized each motor command ωl(r) into three lev-
els which correspond to forward, stop, and backward,
respectively. Totally, the robot has 9 actions.

The robot is equipped with a ring of 12 ultrasonic
range sensors (ranging from 0.0 to 300 cm), which have
high accuracy for incident angles of less than 15◦ from the
surface normal. The robot is also equipped with a CCD
camera. These sensors have their inherent characteristics
as follows:
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Figure 1 Sensory information

– Sonar
Using 12 sonar sensors, our robot can sense its sur-
rounding environment in robot centered polar coor-

dinates as a profile of the distance Di (i = 0 ∼ 11)
as shown in Figure 1(a). Each sonar sensor in the
ring has a field view of roughly 30◦. Sonar sensors
cannot identify the object (the target or something
else).

– Vision
Image processing provides the position and size of
the target in the image, even if the object’s senso-
ry projections are deformed by occlusion (see Figure
1(b)). However, it is not given information on how to
detect obstacles and, therefore, cannot detect them.

3.2 Task
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Figure 2 Task and environment

The task of the robot is to reach the target while
avoiding obstacles as shown in Figure 2. As mentioned
earlier, there are two difficulties with this task:

– visual and sonar information has not been pre-
assigned to specified roles in order to accomplish the
given task; therefore, the robot has to learn what
kind of information is to be used in which situation.
In other words, the sensory data has not been inter-
preted for the robot, and

– both target reaching and obstacle avoidance tasks
have to be achieved simultaneously, through the
learning process.

Nakamura et al. (Nakamura et al., 1996) have devised
a system that has a limited ability to cope with the above
problems in a single isolated environment, but it suf-
fered from the curse of dimensionality: a huge state s-
pace. In addition, the environment may change in a few
ways here:

1. target and obstacles configuration may change, and
2. the number of obstacles may also change.

Therefore, a learned policy obtained in a single environ-
ment may not be applicable to different environments,
and usually it takes an enormous amount of time if the
robot learns from scratch.



3.3 State Vector Selection
As mentioned above, the state space construction prob-
lem is one of the most serious issues in reinforcement
learning even in a single isolated environment. Since our
robot has a considerably large sensor space, we have to
build a reduced-size state space from the original sensor
space. As primitive features, we have selected the center
position gx and the height gh of the target image from
vision, and the following from sonar profile (see Figure
3).

– dmin: minimum range value
– dmax: maximum range value observed
– dmean: mean range value observed
– ddiff :dmax − dmin

– θmin: direction of dmin

– θmax: direction of dmax

– θmean: mean between θmin and θmax

– θdiff : width between θmin and θmax
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Figure 3 Primitive features from sonar profile

Since these features still constitute a large feature s-
pace, we have checked all combinations of state vectors
under the constraints of memory space and limited learn-
ing time in a single environment, and selected the follow-
ing state vector x for the task. To focus on the skill acqui-
sition and self-improvement, we skip the details of this
procedure, which have been published elsewhere (Minato
and Asada, 1998).

x =




x1

x2

x3

x4


 =




gx

gh

θmin

dmin


 (3)

4. Experimental Results

In order to show the validity of the proposed method,
we have applied three kinds of methods to a series of
five different environments called A, B, C, D, and E of
which top views are shown in Figures 4 and 5 where a
solid black circle and gray circles indicate the target and
obstacles, respectively. As we can see, the configuration
of the goal and obstacles, and/or the number of obstacles
are different from each other.

Figure 4 Environment A and successful trajectories

(a) B (b) C

(c) D (d) E

Figure 5 Four more environments and successful trajectories



Three methods are:

1. Q-learning with multiple policies: the robot is in-
formed when the environments changes, and all ac-
tion values are initialized for new learning

2. The proposed method:
3. Another method similar to the proposed one: instead

of policy transfer for action selection, all the action
values are always retained during the learning.

Each trial terminates when

– the robot reaches the goal,
– the robot makes a collision with any obstacles, or
– the pre-specified period (300 time steps) is expired.

Figure 6 shows the change of the success rate of the
Q-learning with multiple policies. The horizontal axis in-
dicates the number of trials. The success rate is measured
every 500 trials, the first 200 of which are for normal Q-
learning, and the remaining 300 of which are for success
rate measuring based on the current policy (action se-
lection is fixed). If the success rate stably achieves the
pre-specified one (here 90%), then the policy is fixed and
all 500 trials are for success rate measuring. As men-
tioned in 1, we applied the LEM (Learning from Easy
Missions) paradigm, in this case, three learning stages
(easy, moderate, and hard ones) are prepared, therefore
two sudden drops can be seen until around the 35,000th
trial where the environments changes from A to B, and
all the action values are reset to all zeros for new learn-
ing in B. Similarly, the robot encounters C, D, and E.
Totally, about 145,000 trials are needed for the robot to
adapt itself to different environments.

Figure 7 shows the change of the success rate of the
proposed method. The pre-specified success rate is 90%,
the same as the above, and we set the adaptability rate β
as 0.8. The shape of the curve until around the 35,000th
trial is completely the same as in Figure 6, but here-
after, the curve has different shape from that by the
first method. The changes of the environments have not
been informed, but the robot has perceived these changes
by monitoring the success rate. Comparing with Figure
6, the total learning time is almost half, and when it
encounters A again, the robot has not perceived any
changes because the success rate has not dropped down.
This implies that the resultant policy is capable of not
simply adaptation but also generalization, too.

As the acquired knowledge, the proposed method
transfers only the current policy. Further, we may ex-
pect to use the action values to accelerate new learning.
Figure 8 shows the result of this attempt where it has
taken much longer time to adapt itself to B and C, and
what’s worsen is no convergence can be seen for D un-
til the 200,000th trial. The main reason seems that the
state transitions can be different and sometimes oppo-
site, therefore it may take much more time to obtain the

correct action values than in case of resetting all action
values to zeros.

Examples of the successful trials are shown in Figures
4 and 5 as robot trajectories, some of which do not seem
optimal due to a single policy mechanism.
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Figure 6 Q-learning with multiple policies
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5. Discussion

We have proposed the model of skill acquisition and self-
improvement for a mobile robot to adapt itself to dif-
ferent environments. The learned policy have shown the
similar curves in human child learning process often seen
in psychological experiments, that is, micro U-shapes.
Similar to the method in (Rumelhart and McClelland,



1986), that is, carefully designed input schedule, we have
implemented the LEM paradigm to control the order of
the situations the robot encounters.

There are many issues to be considered: 1) the defi-
nition of the task class in which the robot can gradually
skill up the learned policy, 2) state vector selection which
is currently off-line process but should be included in on-
line learning process, and 3) real robot experiments.
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