
Environmental Change Adaptation for Mobile Robot Navigation

Takashi Minato and Minoru Asada
Dept. of Adaptive Machine Systems

Graduate School of Engineering
Osaka University

Suita, Osaka 565-0871, Japan
e-mail:minato@er.ams.eng.osaka-u.ac.jp,asada@ams.eng.osaka-u.ac.jp

Abstract

Most of existing robot learning methods have con-
sidered the environment where their robots work un-
changed, therefore, the robots have to learn from
scratch if they encounter new environments. This pa-
per proposes a method which adapts robots to envi-
ronmental changes by efficiently transferring a learned
policy in the previous environments into a new one and
effectively modifying it to cope with these changes. The
resultant policy (a part of state transition map) does
not seem optimal in each individual environment, but
may absorb the differences between multiple environ-
ments. We apply the method to a mobile robot naviga-
tion problem of which task is to reach the target avoid-
ing obstacles based on uninterpreted sonar and visual
information. Experimental results show the validity of
the method and discussion is given.

1 Introduction

In order for not only biological systems but also ar-
tificial systems, typical example of which is a robot
system, to adapt themselves to changes in different
environments, learning and development are essential
processes. Conventional robot learning methods to
cope with such changes employ multiple modules each
of which corresponds to one or a class of environments
so as to achieve the goal in each environment. Howev-
er, such methods immediately suffer from two serious
problems:

• It takes enormous learning time because the robot
has to learn from scratch if it encounters new en-
vironments due to the lack of knowledge on them.

• It needs large capacity of memory and processing
modules since the robot must have a variety of

policies in terms of each individual environmen-
t to accomplish a given task in various kinds of
environments.

To cope with the first problem, Thrun et al. [4, 3, 5]
proposed “lifelong learning” which accelerates the
learning by storing invariant knowledge for a class
of environments in advance and reuses it as a pri-
ori knowledge in new environments categorized into
the same class. Their methods need a clear definition
for the class of environments to obtain the invariant
knowledge, and therefore, no learning seems necessary
in new environments but just implementation of the
planned navigation. Tanaka and Yamamura [2] ap-
plied the similar idea to a simple navigation task on
a grid world using a reinforcement learning method,
in which the knowledge invariant in previous (n − 1)
environments are extracted in advance and checked in
the n− th environment if it is effective or not. These
methods might accelerate their learning, but the robot
must have many policies corresponding to the indi-
vidual environments, respectively, and therefore the
second problem has not been addressed.

In this paper, we propose a method which adap-
t robots to environmental changes by transferring a
Q-learned policy in the previous environments into a
new one and modifying it to cope with these changes.
The resultant policy (a part of state transition map)
does not seem optimal in each individual environment,
but may absorb the differences between multiple en-
vironments. We apply the method to a mobile robot
navigation problem of which task is to achieve the tar-
get avoiding obstacles based on uninterpreted sonar
and visual information. The difficulty of this task is
twofold: 1) roles of multi-modal sensory information
have not been assigned in advance, therefore the robot
has to determine how to use the multi sensory informa-
tion, that is, the sensory information is uninterpreted,
and 2) both target reaching and obstacle avoidance



tasks have to be achieved simultaneously. Nakamura
et al. [1] considered the above two issues, but their
robot has to learn from scratch if it encounters differ-
ent environments.

Another important issue in applying Q-learning to
real robot tasks is how to construct the state space on
which the learning seriously depends. Too large state
space causes enormous learning time while too com-
pact one causes serious aliasings. Therefore, adequate
state space is necessary to be found. In [4, 3, 5, 2, 1],
the state space is given in a priori by human designer.
Here, we attempt at finding a compact but seemingly
adequate state space by searching for combinations of
sensory features.

The reminders of this article is structured as fol-
lows. First, a brief summary of reinforcement learn-
ing, especially Q-learning is given. Next, task and as-
sumption are given and the process of finding a state
space is shown. Then, the method for environmental
change adaptation is explained. Finally, experimental
results are given to show the validity of the method
and discussion is given.

2 Basics of Q-Learning

Q-learning is a form of model-free reinforcement
learning based on stochastic dynamic programming.
It provides robots with the capability of learning to ac-
t optimally in a Markovian environment. We assume
that the robot can discriminate the set S of distinc-
t world states, and can take the set A of actions on
the world. A simple version of a Q-learning algorithm
used here is shown as follows.

1. Initialize Q(s, a) to 0 for all state s and action a.

2. Perceives current state s.

3. Choose an action a according to action value func-
tion.

4. Carry out action a in the environment. Let the
next state be s′ and immediate reward be r.

5. Update action value function from s, a, s′, and r,

Qt+1(s, a) = (1− αt)Qt(s, a)
+αt(r + γ max

a′∈A
Qt(s′, a′))

where αt is a learning rate and γ is a fixed dis-
counting factor between 0 and 1.

6. Return to 2.

3 Task, Robot, and Assumptions

3.1 Our Robot

Our robot has a Power Wheeled Steering (PWS)
system driven by two motors into each of which we
can send a motor command, independently. In our
experiment, we quantized each motor command into
three levels which correspond to forward, stop, and
backward, respectively. Totally, the robot has 9 ac-
tions.

The robot is equipped with a ring of 12 ultrasonic
ranging sensors (ranging from 0.0 to 300 cm) which
has a field view of roughly 30◦ (see Figure 1(a)). The
robot is also equipped with a color CCD camera. Im-
age processing procedure provides the position and the
size of the target area in the image as visual informa-
tion(see Figure 1(b)). However, it cannot detect ob-
stacles, because it is not given how obstacles can be
seen.

3.2 Task

The task of the robot is to reach the target while
avoiding obstacles as shown in Figure 2. Nakamura
et al. [1] has demonstrated a limited ability coping
with the above problems in a single isolated environ-
ment, but they suffered from the curse of dimension
problem, a huge state space. In addition to this, the
environment may change in a few ways here:

1. configurations of the target and obstacles may
change, and

2. the number of obstacles also changes.

Therefore, a learned policy obtained in a single envi-
ronment may not be applicable to different environ-
ments, and usually it takes enormous learning time if
the robot learns from scratch.

3.3 State Vector Selection

As mentioned above, the state space construction
problem is one of the most serious issues in reinforce-
ment learning even in an isolated single environment.
Since our robot has a considerably large sensor space,
we have to build a reduced-size state space from the
original sensor space. As primitive features, we have
selected the center position gx and the height gh of the
target image from vision as image features, and follow-
ings (Table 1) from sonar profile as sonar features (see
Figure 3).



0 1
2

3

4
5

7
8

10
11

9Sonar sensor

Profile of Distance

0 1 11

30deg

(a) sonar

Target

Obstacle

Camera
60deg

g x

hg

Image Plane

(b) vision

Figure 1: Sensory information

Target

Obstacle

Mobile Robot

Obstacle

reach
avoid

Figure 2: Task and environment

Table 1: sonar features
range feature

dmin minimum range value
dmax maximum range value observed
dmean mean range value observed
ddiff dmax − dmin

direction feature
θmin direction of dmin

θmax direction of dmax

θmean mean between θmin and θmax

θdiff width between θmin and θmax

min
mean

max

diff

mind

maxd

meand diffd

d

limitd

Figure 3: Primitive features from sonar profile

Since these features still consists a large feature s-
pace, we have constructed several spaces as the com-
binations of one or two image features and one or two
sonar features, and applied Q-learning to the robots
having each state space in a single environment (see
Figure 2). Here, we have appropriately quantized each
state space under a constraint of the maximum num-
ber of substates to realize physical memory capaci-
ty constraint. Figure 4 shows the success rates by
applying each obtained policy to the environment, in
which dnone and θnone means no features. Hereafter,
we define the success rate as (number of successful
target reaching)/(trials). In Figure 4, feature vectors
including θmin show high success rates regardless of
the range features, which means that the robot pays
its much more attention to the direction of the mini-
mum range value than to the value itself. According
to the result of these analysis, we have selected the
following state vector x for the task.

x =
(

gx gh θmin dmin

)T (1)



10

20

30

40

0

min

max

mean

diff

none
mind

maxd
meand

diffdnoned

(a) gx, θ∗, d∗

20

40

60

0

min

max

mean

diff

none
mind

maxd
meand

diffdnoned

(b) gh, θ∗, d∗

20

40

60

80

min

max

mean

diff

none
mind

maxd
meand

diffdnoned
0

(c) gx, gh, θ∗, d∗

Figure 4: Performance of each state space

4 Environmental change adaptation

The basic idea to accelerate the learning and to
save memory is to adapt a robot to a new environmen-
t by transferring the Q-learned policy in the previous
environments and modifying it to cope with environ-
mental changes. The robot realizes the environmen-
tal changes by a drop of the success rate. Unless the
success rate drops, the robot does not realize the en-
vironmental change even if the environment actually
changes.

If the robot realizes the environmental change, it re-
learns the policy of the states where it fails to achieve
the goal. Figure 5 shows an example of two environ-
ments which have different state transitions. Using the
policy in the environment 2 which has been obtained
in the environment 1 (optimal path), the robot fails
the task (e.g. makes a collision with the obstacles)
at the state A. Then the robot re-learns the policy
only around state A so that it can achieve the goal
and as a result, it finds the policy A → a2, which is
not optimal but feasible in the both environment. It
is expected that the robot adapts the environmental
changes by modifying the policy around states where it
fails. However, there is in practice a trade-off to what
extent the current policy can be modified. Then, we
introduce the adaptability rate β by which the robot
controls to what extent the previous policy can be de-

stroyed.

Action

State

a2

a1
a3

Feasible Path

Optimal Path

a1
a2

a3

Feasible Path

Optimal Path

Environment 1

Environment 2

start
goal

fail!

Figure 5: Not an optimal path but a feasible one can
be found.

The algorithm is as follows:

1. Quantize the state space as S.

2. Apply Q-learning to the initial environment, and
obtain the policy P : S → A(A:action set) until
the success rate exceeds the pre-specified success
rate RS.

3. Apply P to any environment unless RS decreases.

4. If RS decreases, then find states Sr ⊂ S where
P fails to achieve the goal, and modify P for such
states by applying Q-learning as follows until RS
recovers to pre-specified adaptability rate β.

5. Apply Q-learning to Sr ⊂ S. Action selection
during the learning is as follows:

if s ∈ Sr ∪Su follow the normal action
selection in Q-learning, where Su ⊂ S
denotes inexperienced states.

otherwise follow P

6. Go to 3 with the obtained policy P .

The adaptability rate β determines the extent to
which re-learning occurs, that is:

RSd = RSc + β(RSp −RSc), (2)

where RSp, RSc and RSd denote the success rates in
the previous environment, in the current one, and the
desired one, respectively.



Based on the selected state vector, we apply the
algorithm to the given task with the following specifi-
cations:

• αt = 0.25, γ = 0.9, β = 0.5. The number of all
states is 3060.

• If the robot reaches the target, the positive re-
ward 1 is given. Otherwise 0.

• One trial terminates if the robot reaches the tar-
get, makes a collision with any obstacles, or the
given time interval expires.

• The states Sr are around states where the robot
makes a collision with any obstacles.

5 Experimental Results

We tested five different environments called
E1, . . . , E5 shown in Figure 6 where a solid black cir-
cle, gray circles, and empty pentagons indicate the
target, obstacles, and robot trajectories, respectively.
The sequence of the environments the robot encoun-
ters is E1, E2, . . . , E5, where E1 is the initial environ-
ment. Table 5 shows the success rates in terms of Pi
which is obtained policy in Ei by the method. The
second column shows the number of states found to
be re-learned when Pi applied to E(i + 1). Here, we
set β = 0.5 but iteration of modification is performed
in terms of discreet state space. Therefore, some of
policies were improved much more than β.

When the robot encounters an inexperienced envi-
ronment, the success rate starts to decrease and robot
realizes that the environment has been changed. Af-
ter policy modification, the robot obtained the policy
which may cope with the previous environments, too.
The successful trajectories in Figure 6 are the result
of application of the final policy P5 to each environ-
ment. The final policy does not seem optimal in each
individual environment, but can absorb the differences
between multiple environments. For example, in Fig-
ure 6(e), the most left trajectory includes curves turn-
ing to the right although its optimal policy was just a
straight path to the target.

Next we tested how transferring a Q-learned poli-
cy accelerated the learning. Two methods in E2 are
compared.

• case 1:the normal learning method from scratch
in E2.

• case 2:our method with P1.

5400 (case 1) trials and 1900 (case 2) trials were need-
ed for the two methods to converge. By transferring
the policy the convergence was accelerated up to 35%.

Finally, we apply the learned policy to a real situ-
ation as a new environment. Figure 7 shows the re-
sult of real robot experiment. The system used is al-
most same as in [1]. We used a mobile robot platform
“Yamabico” which is modeled in section 3.1. There
are a target (trash can) and two obstacles (trash can-
s) in the environment, and Yamabico uses the policy
P5. Then, Yamabico succeeded in reaching the target
avoiding two obstacles.

Table 2: Success rates of each policy [%]
policy # of s ∈ Sr E1 E2 E3 E4 E5

P1 - 90.9 61.0 (48.2) (47.3) (61.5)
P2 61 92.4 90.8 45.2 (50.2) (69.5)
P3 75 88.2 88.8 93.3 82.7 (68.9)
P4 44 82.2 87.0 93.2 87.5 67.4
P5 69 89.4 89.9 89.8 76.4 84.7

6 Discussion and Future work

We have proposed a method which adapts robots
to environmental changes by transferring a Q-learned
policy in the previous environments into a new one
and modifying it to cope with them. The resultant
policy could absorb the differences between multiple
environments. The resultant policy includes:

1. invariant state-action pairs common to all envi-
ronments,

2. state-action pairs common to some environment
but may not be applicable in other environments,

3. state-action pairs effective in the last environ-
ments,

but excludes state-action pairs that conflicts from each
other (class 4) in multiple environments. Our method
attempts at minimizing the number of class 4 by
adopting not optimal but feasible solutions. However,
to make the obtained policy reasonable, we need to
be careful about the sequence of environments which
the robot encounters. Next, a method that defines the
task class in such a way that the robot can gradually
skill up the learned policy should be developed. In
addition to that, there is another problem of state s-
pace construction: state vector selection is currently
off-line process, but ideally the issue should be includ-
ed in the on-line learning process. These are under
the investigation.



(a) Env.E1 (b) Env.E2 (c) Env.E3

(d) Env.E4 (e) Env.E5

Figure 6: Environments and successful trajectories

References

[1] T. Nakamura, J. Morimoto, and M. Asada. Direc-
t coupling of multisensor information and actions
for mobile robot behavior acquisition. In Proc. of
1996 IEEE/SICE/RSJ International Conference
on Multisensor Fusion and Integration, pages 139–
144, 1996.

[2] F. Tanaka and M. Yamamura. An approach to life-
long reinforcement learning through multiple envi-
ronments. In 6th European Workshop on Learning
Robots, pages 93–99, 1997.

[3] S. Thrun. A lifelong learning perspective for
mobile robot navigation. In Proc. of the
IEEE/RSJ/GI Conference on Intelligent Robots
and Systems, pages 23–30, 1994.

[4] S. Thrun and T. Mitchell. Lifelong robot learn-
ing. Technical Report IAI-TR-93-7, University of
Bonn, Dept. of CS III, 1993.

[5] S. Thrun and J. O’Sullivan. Discovering structure
in multiple learning tasks: The tc algorithm. In
Proc. of the thirteenth International Conference on
Machine Learning, 1996.

3

4

2

1

Camera Image Detected Image

Obstacle

Target
Detected
Target Area

(a) Real input images

Target

Obstacle

Obstacle

Yamabico

(b) Success trajectory

Figure 7: Experimental result


