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Abstract. The authors have applied reinforcement learning methods
to real robot tasks in several aspects. We selected a skill of soccer as a
task for a vision-based mobile robot. In this paper, we explain two of
our method; (1)learning a shooting behavior, and (2)learning a shooting
with avoiding an opponent. These behaviors were obtained by a robot in
simulation and tested in a real environment in RoboCup-97. We discuss
current limitations and future work along with the results of RoboCup-
97.

1 Introduction

Building robots that learn to perform a task in a real world has been acknowl-
edged as one of the major challenges facing AI and Robotics. Reinforcement
learning has recently been receiving increased attention as a method for robot
learning with little or no a priori knowledge and higher capability of reactive
and adaptive behaviors [3]. In the reinforcement learning scheme, a robot and
an environment are modeled by two synchronized finite state automatons inter-
acting in discrete time cyclical processes. The robot senses the current state of
the environment and selects an action. Based on the state and the action, the
environment makes a transition to a new state and generates a reward that is
passed back to the robot. Through these interactions, the robot learns a purpo-
sive behavior to achieve a given goal.

As a testbed to apply the reinforcement learning method for real robot tasks,
we have selected soccer playing robots [1]. We have been doing various kinds of
research topics as follows;

1. learning a shooting behavior in a simple environment [11]
2. learning a coordinated behavior of shooting and avoiding an opponent [12][15]
3. self construction of a state space [13]
4. learning of a real robot in a real environment [14]
5. modeling other agents [16]



Two methods ([11] and [15]) are tested in RoboCup-97 in which robots take
actions based on the learned policy that has not include cooperation between
teammate robots yet this year.

In this paper, we summarize our research issues involved in realizing a robot
team for RoboCup-97. This article is structured as follows: In section 2, we ex-
plain the configuration of our robot system. In section 3, we give a brief overview
of Q-learning. In section 4, we explain acquisition of shooting behavior. In sec-
tion 5, we explain acquisition of a coordinated behavior combined shooting and
avoiding an opponent. In section 6, we describe the result. Finally, we give a
conclusion.

2 The Configuration of the Robot System

We have decided to use a radio-controlled model car as a robot body and to
control it based on the remote brain approach [9]. This makes us implement and
monitor the system activities easy.

In RoboCup-97, we participated with five robots consisting four attackers
and one goalie (see Figure 1). In this section, we explain the hardware and the
control architecture for our robots.

(a) The attacker robot (b) The goalie robot

Fig. 1. Our Robots



2.1 Hardware of the Robots

We use radio-controlled model cars with a PWS (Power Wheeled Steering) loco-
motion system. Four of them are called “Black Beast” produced by Nikko as an
attacker robot (see Figure 1(a)), and one called “Blizzard” produced by Kyosho
as a goalie (see Figure 1(b)). A plate is attached to push the ball on the field.
The attacker has the plate in front of the robot and the goalie has on its side.
The robots are controlled by signal generated on the remote computer through
the radio link.

Each robot has a single color CCD camera for sensing the environment and
a video transmitter. The attacker robot has a SONY CCD camera with a wide
lens while the goalie has an omnidirectional vision system [10] so that it can see
the goal and the ball coming in any direction at the same time. The image taken
by the camera is transmitted to the remote computer and processed on it.

For power supply, three Tamiya 1400NP batteries are mounted on the robot.
Two drive two motors for locomotion, and the remaining one supplies 12V
through a DC-DC converter to drive the camera and the transmitter. The life of
the battery is about 20 minutes for locomotion and 60 minutes for the camera
and the transmitter.
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Fig. 2. Configuration of robot controller

2.2 The Control Architecture

The controller of each robot consists of three parts; a remote computer, an
image processor, and a radio-control interface (RC interface). Figure 2 shows a



configuration of the controller in which PC is used as the remote computer.
The action of the robot is controlled by the following steps:

1. the robot transmits the image from its camera,
2. the image processor receives the image through UHF and processes it,
3. the remote computer decides the robot’s action based on the result of image

processing,
4. the RC interface generates a signal corresponding to the decided action, and
5. the robot receives the signal and drives its motors.

We use a color tracking vision board produced by Fujitsu for the image
processing, and a UPP device to generate the control signal. Objects in the
environment (a ball, a goal, and an opponent) are detected as colored regions in
the image according to RoboCup regulations.

3 Q-learning for Robot Learning

In the reinforcement learning scheme, the robot senses the current state of the
environment and selects an action. Based on the state and the action, the envi-
ronment makes a transition to a new state and generates a reward that is passed
back to the robot. Through these interactions, the robot learns a purposive be-
havior to perform a given task (see Figure 3). As a method for reinforcement
learning, we adapted Q-learning that is one of most widely used reinforcemen-
t learning method. In this section, we give a brief overview of Q-learning and
problems when we apply it to real robot tasks.

Environment

Agent

Action,State, as

Reward,r

Fig. 3. Interaction between the robot and the environment



3.1 Basics of Q-learning

We assume that the robot can discriminate the set S of distinct environment
states, and can take the set A of actions on the environment. The environment is
modeled as a Markov process, making stochastic transitions based on its current
state and the action taken by the robot. Let T (s, a, s′) be the probability of
transition to the state s′ from the current state-action pair (s, a). For each state-
action pair (s, a), the reward r(s, a) is defined.

Given the definitions of the transition probabilities and the reward distribu-
tion, we can solve for the optimal policy(a policy f is a mapping from S to A),
using methods from dynamic programming [2]. A more interesting case occurs
when we wish to simultaneously learn the dynamics of the environment and con-
struct the policy. Watkin’s Q-learning algorithm gives us an elegant method for
doing this [6].

Let Q∗(s, a) be the expected action-value function for taking action a in a sit-
uation s and continuing thereafter with the optimal policy. It can be recursively
defined as:

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′). (1)

Because we do not know T and r initially, we construct incremental estimates of
the Q-values on-line. Starting with Q(s, a) equal to an arbitrary value (usually
0), every time an action is taken, the Q-value is updated as follows:

Q(s, a) ⇐ (1− α)Q(s, a) + α(r(s, a) + γ max
a′∈A

Q(s′, a′)). (2)

where r is the actual reward value received for taking action a in a situation s,
s′ is the next state, and α is a learning rate (between 0 and 1).

3.2 Problems in Applying Q-learning to Real Robot Tasks

To apply Q-learning, we must cope with several problems which occur in real
environments. Two major problems are construction of state and action sets,
and reduction of learning time [11].

Construction of State and Action Sets In the environment where the robot
exist, everything changes asynchronously. Thus traditional notions of state in the
existing applications of the reinforcement learning algorithms dose not fit nicely
[5]. The following principles should be considered for the construction of state
and action spaces.

– Natural segmentation of the state and action spaces: The state (action) space
should reflect the corresponding physical space in which a state (an action)
can be perceived (taken).



– Real-time vision system: Physical phenomena happen continuously in the
real environment. Therefore, the sensor system should monitor the changes
of the environment in real time. This means that the visual information
should be processed in video frame rate (33ms).

The state and action spaces are not discrete but continuous in the real envi-
ronment, therefore it is difficult to construct the state and action spaces in which
one action always corresponds to one state transition. We call this “state-action
deviation problem” as a kind of the so-called “perceptual aliasing problems”
[7] (i.e., a problem caused by multiple projections of different actual situations
into one observed state). The perceptual aliasing problem makes it very difficult
for a robot to take an optimal action. The state and action spaces should be
defined considering this state-action deviation problem.

Reduction of Learning Time This is the famous delayed reinforcement prob-
lem due to no explicit teacher signal that indicates the correct output at each
time step. To avoid this difficulty, we construct the learning schedule such that
the robot can learn in easy situations at the early stages and later on learn in
more difficult situations. We call this Learning from Easy Missions (or LEM).

4 Learning a Shooting Behavior

For the first stage, we set up a simple task for a robot [11], to shoot a ball
into a goal as shown in Figure 4. We assume that the environment consists of
a ball and a goal. The ball is painted in red and the goal in blue so that the
robot can detect them easily. In this section, we describe a method for learning
the shooting behavior with consideration of the problem mentioned in section 3.
Here we focus on the method implemented on the attacker robot in RoboCup-97
(see [11] for more detail).

Input  Image
Ball

Learner

Goal

Fig. 4. The task is to shoot a ball into a goal
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Fig. 5. The ball substates and the goal substates

4.1 Construction of Each Space

(a) a state set S: The ball image is classified into 9 substates, combinations
of three classifications of positions (left, center, or right) and three types of sizes
(large (near), middle, or small (far)). In addition to the size and the positions, the
goal image has 27 substates considering the orientation which is also classified
into three categories (see Figure 5). Each substate corresponds to one posture of
the robot towards the goal, that is, the position and the orientation of the robot
in the field.

In addition, we define states for the cases in which the ball or the goal is not
captured in the image: three states (ball-unseen, ball-lost-into-right, and ball-
lost-into-left) for the ball, and three more states (goal-unseen, goal-lost-into-right
and goal-lost-into-left) for the goal. In all, we define 12 (9 + 3) states for the ball
and 30 (27 + 3) states for the goal, and therefore the set of states S is defined
with 360 (12 × 30) states.

(b) an action set A: The robot can select an action to be taken in the current
state of the environment. The robot moves around using a PWS (Power Wheeled



Steering) system with two independent motors. Since we can send the motor
control command ωl and ωr to each of the two motors separately, each of which
has forward, stop, and back, we have nine action primitives all together.

We define the action set A as follows to avoid the state-action deviation
problem. The robot continues to take one action primitive at a time until the
current state changes. This sequence of the action primitives is called an action.

(c) a reward and a discounting factor γ: We assign the reward value to be
1 when the ball is kicked into the goal and 0 otherwise. This makes the learning
very time-consuming. Although adopting a reward function in terms of distance
to the goal state makes the learning time much shorter in this case, it seems
difficult to avoid the local maxima of the action-value function Q.

A discounting factor γ is used to control to what degree rewards in the distant
future affect the total value of a policy. In our case, we set the value at slightly
less than 1 (γ = 0.8).

4.2 Simulation

We performed the computer simulation. Figure 6 shows some kinds of behaviors
obtained by our method. In (a), the robot started at a position from where it
could not view a ball and a goal, then found the ball by turning, dribbled it
towards the goal, and finally shot the ball into the goal. This is just a result
of learning. We did not decompose the whole task into these three tasks. The
difference in the character of robot player due to the discounting factor γ is
shown in (b) and (c) in which the robot started from the same position. In the
former, the robot takes many steps in order to ensure the success of shooting
because of a small discount, while in the latter the robot tries to shoot a ball
immediately because of a large discount. In the following experiments, we used
the average value of γ 0.8 as an appropriate discount.

We applied the LEM algorithm to the task in which Si (i=1,2, and 3) cor-
respond to the state sets of “the goal is large”, “medium”, and “small”, respec-
tively, regardless of the orientation and the position of the goal, and the size and
position of the ball. Figure 7 shows the changes of the summations of Q-values
with and without LEM, and ∆Q. The axis of time step is scaled by M (106),
which corresponds to about 9 hours in the real environment since one time step
is 33ms. The solid and broken lines indicate the summations of the maximum
value of Q in terms of action in states ∈ S1 + S2 + S3 with and without LEM,
respectively. The Q-learning without LEM was implemented by setting initial
positions of the robot at completely arbitrary ones. Evidently, the Q-learning
with LEM is much better than that without LEM.

The broken line with “×” indicates the change of ∆Q(S1+S2+S3, a). Two
arrows indicate the time steps (around 1.5M and 4.7M) when a set of the initial
states changed from S1 to S2 and from S2 to S3, respectively. Just after these
steps, ∆Q drastically increased, which means the Q-values in the inexperienced
states are updated. The coarsely and finely dotted lines expanding from the time
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Fig. 6. Some kinds of behaviors obtained by the method
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Fig. 7. Change of the sum of Q-values with LEM in terms of goal size

steps indicated by the two arrows show the curves when the initial positions were
not changed from S1 to S2, nor from S2 to S3, respectively. This simulates
the LEM with partial knowledge. If we know only the easy situations (S1),
and nothing more, the learning curve follows the finely dotted line in Figure
7. The summation of Q-values is slightly less than that of the LEM with more
knowledge, but much better than that without LEM.



5 Shooting a Ball with Avoiding an Opponent

In the second stage, we set up an opponent just before the goal and make the
robot learn to shoot a ball into a goal avoiding the opponent (see Figure8). This
task can be considered as a combination of two subtasks; a shooting behavior
and an avoiding behavior of an opponent. The basic idea is first to obtain the
desired behavior for each subtask, and then to coordinate two learned behaviors.
In this section we focus on the coordination method implemented on the attacker
robot in RoboCup-97, see [12] and [15] for more detail.
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Fig. 8. The task is to shoot a ball into the goal avoiding an opponent.

5.1 Learning a Task from Previously Learned Subtasks

The time needed to acquire an optimal policy mainly depends on the size of state
space. If we apply the monolithic Q learning into a complex task, the expected
learning time is exponential in the size of state space [8]. One technique to
reduce learning time is to divide the task into some subtasks and to coordinate
behaviors which is independently acquired. The simple coordination method is
summation or switching of the previously learned action value functions.

However, these method cannot cope with local maxima and/or hidden states
caused by direct product of individual state spaces corresponding to the subtasks.
Consequently, an action suitable for these situations has never been learned. To
cope with these new situations, the robot needs to learn a new behavior by using
the previously learned behaviors [12]. The method is as follows:

1. Construct a new state space S:
(a) construct the directly combined state space from subtasks’ state s and

s

(b) find such states that are inconsistent with s or s

(c) resolve the inconsistent states by adding new substates ssub ∈ S.
2. Learn a new behavior in the new state space S:



(a) calculate the value of the action value function Qss by simple summation
of the action value functions of each subtasks.

Qss = max
a∈A

(Q1((s1, ∗), a) + Q2((∗, s2), a)) (3)

where Q1((s1, ∗), a) and Q2((∗, s2), a) donate the extended action value
functions. ∗ means any states, therefore each of these functions considers
only the original states and ignores the states of other behaviors.

(b) initialize the value of the action value function Q for the normal states
s and the new substates ssub with Qss. That is,

Q(s, a) = Qss(s, a)
Q(ssub, a) = original value of Qss(s, a) (4)

(c) control the strategy for the action selection in such a way that a conser-
vative strategy is used around the normal states s and a high random
strategy around the new substates ssub in order to reduce the learning
time.

For the first subtask (shooting behavior), we have already obtained the policy
by using the state space shown in Figure 5. For the second subtask (avoiding
behavior), we defined the substates for the opponent in the same manner to the
substate of the ball in Figure 5. That is, a combination of the position (left,
center, and right) and the size (small, medium, and large) is used.

A typical example of inconsistent states is the case where the ball and the
opponent are located at the same area and the ball is occluded by the opponent
from the viewpoint of the robot. In this case, the robot cannot observe the ball,
and therefore the corresponding state for shooting behavior might be the state
of “ball-lost,” but it is not correct. Of course, if both the ball and the opponent
can be observed, this situation can be considered consistent. This problem is
resolved by adding new substates ssub ∈ S. In the above example, a new situation
“occluded” is found by estimating the current state from the previous state, and
the corresponding new substates are generated (see [12] for more detail).

5.2 Simulation

Based on the LEM algorithm, we limit the opponent’s behavior when the robot
learns. If the opponent has learned the professional techniques to keep the goal,
the robot might not be able to learn how to shoot the ball into the goal anymore
because of almost no goals. From this viewpoint, the opponent’s behavior is
scheduled so that the shooting robot has its confidence to shoot a ball into the
goal.

In the simulation the robot has succeeded to acquire a behavior for a shooting
the ball into the goal (see Figure 9). In the figure, the black is the learner and
the white is the opponent. In (a), the robot watches the ball and the opponent.
In (b),(c), and (d), the robot avoids the opponent and moves toward the ball.
In (e) and (f), the robot shoots the ball into the goal.
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Fig. 9. The robot succeeded in shooting a ball into the goal

6 Experimental Result in RoboCup-97

We participated the middle size robot league of RoboCup-97 with five robots:
four attackers and one goalie. For the goalie, we defined a set of rules and im-
plemented on it as a goal keeping behavior. For the attackers, we implemented
the behavior obtained by the simulation described in section 4.2 and 5.2.

Our team had five matches in total; two preliminary, two exhibition matches
and the final. The result is shown in Table 1. Figure 10 and Figure 11(a) show
a scene of a match, in which an attacker shoots the ball and the goalie keeps
the goal respectively. Figure 11(b) is the view of the goalie in the situation of
Figure 11(a). Our robot could get two goals in total, because four of two goals
were own goals by the opponent team (USC).

7 Conclusions

In this paper, we have explained two of our reinforcement learning method-
s applied for real robot tasks tested in RoboCup-97. Our robots had learned
a shooting behavior and a shooting behavior with avoiding an opponent, and
played five matches there. They got two goals during more than 50 minutes of
total playing time (time of one match was 10 minutes).



Fig. 10. One attacker shoots the ball

(a) The goalie and an opponent (b) The view of the goalie

Fig. 11. A behavior of the goalie

We are difficult to say that the robot performed the task well. However,
getting two goals means that the robot could performed the task when it met
a certain situation. This fact shows a potential ability of reinforcement learning
methods to make the robot adapt to the real environment.

There are some reasons why the performance was not good enough. We had
a trouble with color recognition because of noise on image transmission and
uneven lighting condition on the field. Especially there were a plenty of noise
sources around the field and the image became black and white so often. Though
these problems are beyond the scope of our research issue, treatment of these



date match opponent team score result

25 August preliminary RMIT Raiders 0-1 us win
26 August preliminary USC Dreamteam 2-2 us draw
27 August exhibition UTTORI United 0-1 us win
28 August final USC Dreamteam 0-0 us draw
28 August exhibition The Spirit of Bolivia 1-0 us lose

Table 1. The Result of matches

problems will improve the performance of the task.
A problem of our methods was construction of the state space. We ignored

the case when the robot watches several robots in its view at a time, though
nearly 10 robots existed on the field in every matches. In our future work, we
need to focus state construction in a multi robot environment. Some topics have
been already started, such as self construction of states by the robot [13],[14]
and estimation and prediction of an opponent’s behavior [16].
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