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Abstract

The authors propose an attention control method for an omnidi-
rectional vision by an active zoom mechanism. It is implemented by
controlling focal length of the camera without pan or tilt mechanis-
m. We install an omnidirectional vision with a hyperbolic mirror to a
mobile robot and apply Q-learning for its behavior acquisition. In a
goal defending behavior of a soccer game, the robot can learning the
behavior and the attention control works to reduce learning time. In
this paper, we explain our method and experiment.

1 Introduction

Omnidirectional vision has been receiving increased attentions as a method to capture
the whole view all around the imaging system at any instant in time. This causes a wide
variety of applications which include autonomous navigation [1], visual surveillance and
guidance [2], video conference, virtual reality, and site modeling [3].

Since the omnidirectional vision can capture the visual information from the all di-
rections, no pan or tilt control is necessary. Therefore, almost of the existing methods
with omnidirectional vision system have focused on its optogeometric features to re-
construct 3-D scene structure. In this paper, we introduce an omnidirectional vision
system on a mobile robot enhanced by an active zoom mechanism.

We implement a zoom servoing [4] by which the target image can be captured at the
constant position if it moves on the ground plane. It is realized by controlling focal
length of the camera. Due to the active zoom mechanism, the target motion in the
radius direction can be canceled, and only circular motions around the image center
can be observed. This simplifies the image processing and target tracking.

We apply the learning method [6] to a mobile robot with the enhanced omnidi-
rectional vision system and the state space is designed for it. First, we examine the
relationship between the target position in the omnidirectional view in terms of the
focal length and the distance between the robot and the target. Then, we set up a
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control low to realize a zoom servoing, Finally, we design the state space for the robot
to obtain the desired behavior based on the reinforcement learning scheme.

2 The Task and the Robot System

Figure 1(a) shows our robot with an omnidirectional vision system that is installed
on the 2-DOFs non-holonomic vehicle so that its optical axis can be coincident with
the axis of vehicle rotation. The robot is controlled by a remote host computer via
radio link. Eight actions shown in Figure 1(b), moving toward left and right direction,
turning to left and right, and combination of moving and turning, are installed on the
robot and controlled from the remote computer.

One of omnidirectional vision systems consists of a conic mirror and a TV camera
[1]. The vertical axis of the mirror is aligned with the optical axis of the camera as
Figure 2(a). The projection of the scene in the image plane is determined by the the
shape of the mirror and camera configuration parameter(height of the camera, distance
between the mirror and the lens, and focal length). These are designed according to
the requirement of projection. Our omnidirectional vision system has a hyperbolic
mirror and a sample of its image is shown in Figure 2(b). The omnidirectional image
is transmitted to the remote computer via video transmitter and processed there.
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Figure 1: The robot

We set up a simple soccer like game according to the RoboCup context [5]. The task
of the robot is to block a ball in front of the goal, that is, a goalie task (see Figure
3). In order to keep the goal, the robot has to track the moving ball and move to
appropriate position.
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Figure 2: A sample of an omnidirectiona vision

Figure 3: The task of the robot



3 Active Zoom Control on the Omnidirectional
Vision

We assume that the object is on a flat surface and we define coordinates and parameters
as Figure 4(a). Let P (R, θ, Z) and p(r, θ) donate a point in the environment donated
and a projected point of P in the image plane. The relation of P and p is,

Z = R tan α + c + h

tan γ =
b2 + c2

b2 − c2
tan α +

2bc

c2 − b2

1

cos α

r =
f

tan γ

(1)

Where a, b is parameters of the hyperbolic mirror and R2

a2 − Z2

b2
= −1, c =

√
a2 + b2. In

our system these parameters are α2 = 233.3[mm], β2 = 1135.7[mm], h = 250[mm].
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(a) The projection of the hyperbol-
ic mirror
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Figure 4: The basics of the hyperbolic mirror

We propose an attention control on an omnidirectional vision by controlling focal
length of the camera. In general, an attention control is archived by seeing an object in
a certain position in the image plane which is implemented by controlling pan and tilt
angle of the camera. However, in an omnidirectional vision, matching of the object and
the target in the image become complex since the projection is not simple. Therefore
we propose an attention control by seeing the object in a certain distance in the image
plane from center. It is simply implemented by controlling focal length of the camera
as shown in Figure 5
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Figure 5: Attention control on the omnidirectional vision

Figure 4(b) shows the relation between the distance of the object in the image from
the center donated by r, the distance of the object in the environment donated by R,
and the focal length of the camera f . We control the focal length of the camera with
a following equation;

uf = K(Ird −I r) (2)

where uf is the focal length of the camera, Ird is the desired distance in the image, Ir
is the current distance in the image. For example, if Ir is smaller than Ird it comes
closer by increasing f as shown in Figure 5.

4 Behavior Acquisition by Learning

We apply Q-learning, one of major reinforcement learning method, to acquire a behav-
ior. The state space need to be defined from observed image by the robot [?]. We define
states as Table 1. For comparision, we define states for the robot with and without
attention control.

For the case without attention control, states are defined by the direction and dis-
tance of the ball and the goal in the image. We define 8 substates for the direction
of the ball as Figure 6(a) and 3 substates, far, medium and near, for the distance. In
addition we define 3 substates, change in clock wise, counter clock wise, and no change
for the difference of the direction, 3 substates, farer closer, and no change for the differ-
ence of the distance. Substaes of the direction of the goal is 8 same to the ball and the
distance is two for and close. Total number of states is ×8× 3× 3× 3× 8× 2 = 3456.

For the case with attention control, substates of the distance of the ball can be
canceled since the distance in the image is constant. Direction of the ball, direction
and distance of the goal is define in the same way as above. However, the view of the
goal is different. It corresponds to the distance of ball and the goal, hence it is the
distance of the robot and the goal in the case without attention control. Total number
of states is 8× 3× 2× 8 = 320.



without attention control with attention control

direction of the ball in the image 8 8
change of the direction of the ball 3 3
distance of the ball in the image 3 –
change of the distance of the ball 3 –
direction of the goal in the image 8 8
distance of the goal in the image 2 2

total number of the state 3456 320

Table 1: Substates
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Figure 6: Substates

5 Experiments

We performed a simulation to acquire a goal defending behavior. Figure 7 shows the
environment and initial position of the robot and the ball. The environment is defined
according to the RoboCup middle league regulation. The size of the field is 4575[mm]
width and 4110[mm] equivalent to the half size of field. The goal size is 1500[mm]
width and 600[mm] height and the diameter of the ball is 200[mm]. The goal and the
ball is painted in one color blue and red respectively for easy recognition.

The ball is located on a circle defined by corners and the center of the goal. The
robot is located in the circle randomly. The ball rolls toward the goal with a constant
velocity A trial is finished when the ball comes into the goal or goes out from the field.
Figure 8 shows the result when the robot finished 10000, 20000, 30000, 40000 trials.
It shows a task success rate with the learned behavior. When the attention control is
used the robot can learn quicker than without the attention control.

After learning on simulation, the acquired behavior is implemented on the real robot.
Figure 9(a)-(f) shows an example of the real behavior.



Figure 7: Initial position
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Figure 8: Result
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Figure 9: A sequence of behavior



6 Conclusions

We propose an attention control for an omnidirectional vision by controlling focal length
of the camera. We used the system to robot learning and it helped reduce learning
time. Formulation of the relation between the implemented serve and learning is future
discussion.
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