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Abstract. We have applied Q-learning method so that a mobile robot
acquire a shooting behavior of a soccer game. Thought the acquired be-
havior is tested in RoboCup-97, the performance is limited because of
the narrow visual angle of the robot. Therefore, we install an omnidi-
rectional vision into a mobile robot to enlarge a visual angle and apply
Q-learning to behavior acquisition of the robot. An attention control
method is also proposed for an omnidirectional vision system by means
of an active zoom mechanism to reduce the learning time. We select a a
goal defending behavior as a task and perform computer simulation and
real robot experiments to show the validity of the proposed system.

1 Introduction

One of major issues in RoboCup is to make a robot adapt itself to changes in
dynamic environments. We have approached to this problem with a reinforce-
ment learning method, Q-learning. We have selected a shooting behavior as an
example task by a mobile robot with a single camera [6] and tested four robot-
s in RoboCup-97 [7]. The performance of the behavior shown there is limited
by several reasons; noises in image, noises in motor control, limitation of image
processing, perceptual aliasing, hidden states, and so on. Especially, the robots
easily lose the rolling ball and is difficult to find out, since they have only fixed
cameras and their view angles are narrow.

To enlarge a visual angle we have developed two types of robots. One has
an omnidirectional vision system which can capture the whole view all around
the imaging system at any instant in time. Another one has an active camera
which can control the pan angle of the camera. Figure 1 shows our robots for
RoboCup-98 which are categorized into three types; a fixed camera type used
in RoboCup-97 (upper left), an omnidirectional vision type (upper right), and
an active camera type (lower). The one with an omnidirectional vision will be
used as a keeper since it can look at the ball and the goal simultaneously. Other
two types of robots will be used as an attacker. In this paper, we particularly
describe about learning of a goal defending behavior by a keeper robot with an
ominidirectional vision system.



Fig. 1. Robots of University Osaka “Trackies” team

Several applications of the ominidirectional vision have been proposed, such
as autonomous navigation [1], visual surveillance and guidance [2], video confer-
ence, virtual reality, and site modeling [3]. These methods have focused on its
opto-geometric features to reconstruct 3-D scene structure. Our approach differs
from their applications in two fold: we don to reconstruct any geometric struc-
ture from the omnidirectional views. Rather, we use it as a sensory system for
a goal defending mobile robot. As a method of behavior acquisition, Q-learning
is used with a state space consisting of ball and goal images.

We introduce an omnidirectional vision system with an active zoom mech-
anism to accelerate the learning. We implement a zoom servoing [4] by which
the target image can be captured at the constant position if the target moves on
the ground plane. It is realized by controlling focal length of the camera. Due
to the active zoom mechanism, the target motion in the radius direction can be
canceled, and only circular motions around the image center can be observed.
This simplifies the image processing and target tracking.

We apply the learning method [6] to a mobile robot with the enhanced om-
nidirectional vision system and the state space is designed for it. The rest of
paper consists as follows. First, we examine the relationship between the target
position in the omnidirectional view in terms of the focal length and the dis-



tance between the robot and the target. Then, we set up a control low to realize
a zoom servoing, Finally, we design the state space for the robot to acquire the
desired behavior based on the reinforcement learning scheme.

2 The Task and the Robot System for a Goal Keeping
Behavior
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Fig. 2. The robot

Our robot is shown in Figure 2(a) where an omnidirectional vision system is
installed onto the 2-DOF's non-holonomic vehicle so that its optical axis can be
coincident with the axis of vehicle rotation. The robot is controlled by a remote
host computer via radio link. Figure 2(b) shows actions of the robot; moving
toward left and right directions, turning to left and right, and combination of
moving and turning. The remote computer sends motor commands to control
the robot motion.

An omnidirectional vision systems consists of a conic mirror and a TV camera
[1] of which optical axis is aligned with the vertical axis of the mirror as shown
Figure 3(a). The projection onto the image plane is determined by the the shape
of the mirror and the camera configuration parameters (height of the camera,
distance between the mirror and the lens, and focal length) which can be designed
according to the purpose. Our omnidirectional vision system has a hyperbolic
mirror and a sample of its image is shown in Figure 3(b). The omnidirectional
image is transmitted to the remote computer via video transmitter and processed
there.
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Fig. 3. A sample of an omnidirectional vision

We set up a simplified soccer game according to the RoboCup context [5].
The task of the robot is to block a ball in front of the goal, that is, a goalie task
(see Figure 4). In order to keep the goal, the robot has to track the moving ball
and move to appropriate position.

Fig. 4. The task of the robot

3 Learning of a Robot with an Omnidirectional Vision
and an Embeded Zoom Control
3.1 Active Zoom Control on the Omnidirectional Vision

The coordinate system and parameters are shown in Figure 5(a). Let P(R, 0, Z)
and p(r,0) denote a point in the environment and a projected point of P in the



image plane, respectively. We assume that the object is on the ground plane,
therefore Z becomes a constant and P is uniquely projected onto p. The relation
between P and p is given by,

Z = Rtana + c+ h,
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where a and b are the parameters of the hyperbolic mirror, f—j — f—; = —1,

and ¢ = va? + b2. In our system these parameters are a? = 233.3[mm], 32 =
1135.7[mm], and h = 250[mm].
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Fig. 5. The basics of the hyperbolic mirror

We add an attention control on an omnidirectional vision by controlling focal
length of the camera in order to reduce the learning time for behavior acquisition.
In general, an attention control is realized by tracking an object in the image
plane, which is implemented by controlling pan and tilt angles of the camera.
However, in an omnidirectional vision, matching of the object with the target
image is complicated since the projection is not simple. Therefore we propose
an attention control by seeing the object in a certain distance from the center in



the image plane. The change of the distance of the target in the image is tracked
by changing focal length of the camera as shown in Figure 6.

Fig. 6. Attention control on the omnidirectional vision

Figure 5(b) shows the relation between r the distance of the object in the
image from the center, R the distance of the object in the environment, and f
the focal length of the camera. We control the focal length of the camera with a
following equation;

up = K('rg ="7), (2)
where uy is the focal length of the camera, Trq is the desired distance in the
image, 'r is the current distance in the image. For example, if 7 is smaller than
Trq it comes closer by increasing f as shown in Figure 6.

3.2 Learning of a Goal Keepint Behavior

We use Q-learning, one of major reinforcement learning methods, to acquire
a goal defending behavior. The state space needs to be defined from the image
observed from the robot [6]. We define the substates as shown in the first column
in Table 1. The second column shows the numbers of quantisation for each
substates. In addition, the numbers of the quantisation of the substates without
the attention control are shown.

For the case without attention control, the states are defined in terms of the
direction and the distance of the ball and the goal in the image. We define 8
substates for the direction of the ball as shown in Figure 7(a) and 3 substates
(far, medium and near) for the distance as shown in Figure 7(b). In addition we
define temporal changes of the direction and the distance, respectively. They are



clock wise/counter clock wise/no change and farther /nearer/no change, respec-
tively. The numbers of the substaes for the direction of the goal is 8, the same
quantisation for the ball, and the that of the distance is two (far and near). The
total number of states is 3456(=8 x 3 x 3 x 3 x 8 x 2).

For the case with attention control, substates of the distance and the tempo-
ral change of the distance of the ball are not necessary since the distance in the
image is constant. The direction of the ball and the goal are defined in the same
manner as above. The distance of the goal is far and near, however, the observed
image of the goal changes when the attention control is used. The distance of the
goal can be represented by a monotonic function in terms of the actual distance
between the robot and the ball. The total number of states is 320(= 8 x3x2x8).

“With attention control|without attention control

direction of the ball in the image 8 8
change of the direction of the ball 3 3
distance of the ball in the image - 3
change of the distance of the ball — 3
direction of the goal in the image 8 8
distance of the goal in the image 2 2
ltotal number of the state “ 3456 320

Table 1. Substates
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Fig. 7. Substates



4 Experiments

We performed a computer simulation to acquire a goal defending behavior. Fig-
ure 8 shows the environment and the initial positions of the robot and the ball.
The environment is built according to the RoboCup middle league regulation-
s. The size of the field is 4575[mm)] in width and 4110[mm)] in length which is
equivalent to the half size of the field. The goal size is 1500[mm] in width and
600[mm] in height and the diameter of the ball is 200[mm]. The goal and the
ball are painted in blue and red respectively for easy detection.

Fig. 8. Initial position

The ball is located on a half circle defined by the center of the goal and two
corners, and the robot is located inside the circle randomly. The ball rolls toward
the goal at a constant velocity. One trial terminates when the ball comes into
the goal or goes out from the field. Figure 9 shows the task success rate with
the learned behavior. When the attention control is used the robot learn quicker
than the case without the attention control.

After learning in the simulation, the acquired behavior is implemented on
the real robot. Figures 10(a)-(f) show a sequence of the real behavior, when the
robot succeeded in blocking the ball in front of the goal.

5 Conclusions

We have proposed an attention control for an omnidirectional vision by con-
trolling focal length of the camera and implemented it on a mobile robot. We
have applied Q-learning method for acquisition of a goal defending behavior and
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Fig. 9. Result

Fig. 10. A sequence of behavior

shown that the attention control effectively worked to reduce the learning time.
We will test our method in RoboCup-98.

In this paper, we have shown a case that an embedded servo worked effectively
for learning of the robot. However, we have not considered on a trade-off between
installing a servoing mechanism and reduction of the learning time. This is the
future work.
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