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Abstract

This paper proposes a method which estimates the
relationships between learner’s behaviors and other a-
gents’ ones in the environment through interactions
(observation and action) using the method of system
identification. In order to identify the model of each
agent, Akaike’s Information Criterion is applied to the
results of Canonical Variate Analysis for the relation-
ship between the observed data in terms of action and
future observation. Next, reinforcement learning based
on the estimated state vectors is performed to obtain
the optimal behavior. The proposed method is applied
to a soccer playing situation, where a rolling ball and
other moving agents are well modeled and the learn-
er’s behaviors are successfully acquired by the method.
Computer simulations and real experiments are shown
and a discussion is given.

1 Introduction

Building a robot that learns to accomplish a task
through visual information has been acknowledged as
one of the major challenges facing vision, robotics, and
AT In such an agent, vision and action are tightly cou-
pled and inseparable [2]. For instance, we, human be-
ings, cannot see anything without the eye movements,
which may suggest that actions significantly affect the
vision processes and vice versa. There have been sever-
al approaches which attempt to build an autonomous
agent based on tight coupling of vision (and/or other
sensors) and actions [15, 13, 14]. They consider that
vision is not an isolated process but a component of
the complicated system (physical agent) which inter-
acts with its environment [3, 16, 8]. This is a quite
different view from the conventional CV approaches
that have not been paying attention to physical bod-
ies. A typical example is the problem of segmentation
which has been one of the most difficult problems in
computer vision because of the historical lack of the
criterion: how significant and useful the segmentation
results are. These issues would be difficult to be evalu-

ated without any purposes. That is, instinctively task
oriented. However, the problem is not the straight-
forward design issue for the special purposes, but the
approach based on physical agents capable of sensing
and acting. That is, segmentation and its organization
corresponds to the problem of building the agent’s in-
ternal representation through the interactions between
the agent and its environment.

The internal representation can be regarded as s-
tate vectors from a viewpoint of control theory because
they include the necessary and sufficient information
to accomplish a given task, and also as state space
representation in robot learning for the same reason
as in the control theory, especially, in reinforcement
learning which has recently been receiving increased
attention as a method with little or no a priori knowl-
edge and higher capability of reactive and adaptive
behaviors [7].

There have been a few work on the reinforcement
learning with vision and action. To the best of our
knowledge, Whitehead and Ballard proposed an ac-
tive vision system [19] in which only a computer sim-
ulation has been done. Asada et al. [6] applied the
vision-based reinforcement learning to the real robot
task. In these methods, the environment does not
include independently moving agents, therefore, the
complexity of the environment is not so high as one
including other agents. In case of multi-robot environ-
ment, the internal representation would become more
complex to accomplish the given tasks [4]. The main
reason is that the other robot has perception (sensa-
tion) different from the learning robot’s. This means
that the learning robot would not be able to discrimi-
nate different situations which the other robot can do,
and vice versa. Therefore, the learner cannot predict
the other robot behaviors correctly even if its policy is
fixed unless explicit communication is available. It is
important for the learner to understand the strategies
of the other robots and to predict their movements in



advance to learn the behaviors successfully.

There are several approaches to multiagent learn-
ing problem (ex., [11], [17]) which utilize the current
sensor outputs as states, and therefore they can not
cope with the changes of the current situation. Fur-
ther, they need well-defined attributes (state vectors)
in order for the learning to converge correctly. How-
ever, it is generally difficult to find such attributes in
advance. Therefore, the modeling architecture (state
vector estimation) is required to enable the reinforce-
ment learning applicable.

In this paper, we propose a method which finds the
relationships between the behaviors of the learner and
the other agents through interactions (observation and
action) using the method of system identification. In
order to construct the local predictive model of other
agents, we apply Akaike’s Information Criterion(AIC)
[1] to the results of Canonical Variate Analysis(CVA)
[10], which is widely used in the field of system identifi-
cation. The local predictive model is based on the ob-
servation and action of the learner (observer). We ap-
ply the proposed method to a simple soccer-like game.
The task of the robot is to shoot a ball which is passed
back from the other robot. Because the environment
consists of the stationary agents (the goal), a passive
agent (the ball) and an active agent (the opponent),
the learner has to construct the appropriate models
for all of these agents. After the learning robot iden-
tifies the model, the reinforcement learning is applied
in order to acquire purposive behaviors. The proposed
method can cope with a moving ball because the state
vector is estimated appropriately to predict its motion
in image. Simulation results and real experiments are
shown and a discussion is given.

2 Construct the internal model from
observation and action

2.1 Local predictive model of other a-
gents

In order to make the learning successful, it is nec-
essary for the learning agent to estimate appropriate
state vectors. However, the agent can not obtain the
complete information to estimate them because of the
partial observation due to the limitation of its sensing
capability. Then, what the learning agent can do is to
collect all the observed data with the motor commands
taken during the observation and to find the relation-
ship between the observed agents and the learner’s
behaviors in order to take an adequate behavior al-
though it might not be guaranteed as optimal. In the
following, we consider to utilize a method of system
identification, regarding the previous observed data

and the motor commands as the input, and future ob-
servation as the output of the system respectively.

order estimator
state estimator

.

Figure 1: An overview of the learning architecture

Figure 1 shows an overview of the proposed learning
architecture consisting of an estimator of the local pre-
dictive models and a reinforcement learning method.
At first, the learning agent collects the sequence of
sensor outputs and motor commands to construct the
local predictive models, which are described in section
2.2. By approximating the relationships between the
learner’s action and the resultant observation, the lo-
cal predictive model gives the learning agent not only
the successive state of the agent but also the priority
of the state vectors, which means that the validity of
the state vector with respect to the prediction.

2.2 Canonical Variate Analysis(CVA)

A number of algorithms to identify multi-
input multi-output (MIMO) combined deterministic-
stochastic systems have been proposed. Among them,
Larimore’s Canonical Variate Analysis (CVA) [10] is
one representative, which uses canonical correlation
analysis to construct a state estimator.

Let u(t) € ™ and y(t) € R? be the input and
output generated by the unknown system

Ax(t) + Bu(t) + w(t),
y(t) = Cuz(t)+ Du(t) +v(t), (1)
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and A, Q € R B € "™ C € R, D € RIX™,
S € R, R € R4, E{-} denotes the expected
value operator and d;, the Kronecker delta. v(t) € RY
and w(t) € K™ are unobserved, Gaussian-distributed,
zero-mean, white noise vector sequences. CVA uses



a new vector p which is a linear combination of the
previous input-output sequences since it is difficult to
determine the dimension of . Eq.(1) is transformed
as follows:
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and x(t) = Tu(t). We follow the simple explanation
of the CVA method.

1. For {u(t),y(t)}, t = 1,--- N, construct new vec-

tors
[ u(t—1) ]
: y(t)1
p=| M0 = | MY
y(t+k—1)
L y(t—1) |

2. Compute estimated covariance matrices X,

2pf and 2ff7 where 2‘@ and 2‘ff are regular
matrices.

3. Compute singular value decomposition
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and U is defined as:
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4. The n dimensional new vector p(t) is defined as:
pu(t) = [I, 0]Up(1), (5)

5. Estimate the parameter matrix @ applying least
square method to Eq (2).

Strictly speaking, all the agents do in fact interact
with each other, therefore the learning agent should
construct the local predictive model taking these in-
teractions into account. However, it is intractable to
collect the adequate input-output sequences and esti-
mate the proper model because the dimension of state
vector increases drastically. Therefore, the learning
(observing) agent applies the CVA method to each
(observed) agent separately.

2.3 Determine the dimension of other a-
gent

It is important to decide the dimension n of the
state vector  and lag operator [ that tells how long
the historical information is related in determining the
size of the state vector when we apply CVA to the
classification of agents. Although the estimation is
improved if [ is larger and larger, much more historical
information is necessary. However, it is desirable that
l is as small as possible with respect to the memory
size. For n, complex behaviors of other agents can be
captured by choosing the order n high enough.

In order to determine n, we apply Akaike’s Informa-
tion Criterion (AIC) which is widely used in the field
of time series analysis. AIC is a method for balancing
precision and computation (the number of parameter-
s). Let the prediction error be € and covariance matrix
of error be

N—k+1
. 1 T

_ T
R_N—k—l+1 Z e(t)e’ (b).
t=1+1

Then AIC(n) is calculated by
AIC(n) = (N —k —1+1)log|R| +2A(n),  (6)

where A is the number of the parameters. The optimal
dimension n* is defined as

n* = argmin AIC(n).

Since the reinforcement learning algorithm is ap-
plied to the result of the estimated state vector to
cope with the non-linearity and the error of model-
ing, the learning agent does not have to construct the
strict local predict model. However, the parameter [
is not under the influence of the AIC(n). Therefore,
we utilize log | R| to determine [.

1. Memorize the ¢ dimensional vector y(t) about the
agent and m dimensional vector u(t) as a motor
command.

2. From [ = 1---, identify the obtained data.

(a) If log|R| < 0, stop the procedure and deter-
mine n based on AIC(n),

(b) else, increment ! until the condition (a) is
satisfied or ATC(n) does not decrease.

3 Reinforcement Learning

After estimating the state space model given by Eq.
2, the agent begins to learn behaviors using a rein-
forcement learning method. Q learning [18] is a form



Figure 2: The environment and our mobile robot

of reinforcement learning based on stochastic dynamic
programming. It provides robots with the capability
of learning to act optimally in a Markovian environ-
ment. In the previous section, appropriate dimension
n of the state vector u(t) is determined, and the suc-
cessive state is predicted. Therefore, we can regard an
environment as Markovian.

4 Task and Assumptions

We apply the proposed method to a simple soccer-
like game including two agents (Figure 2). Each agent
has a single color TV camera and does not know the
location, the size and the weight of the ball, the oth-
er agent, any camera parameters such as focal length
and tilt angle, or kinematics/dynamics of itself. They
move around using a 4-wheel steering system. As mo-
tor commands, each agent has 7 actions such as go
straight, turn right, turn left, stop, and go backward.
Then, the input u is defined as the 2 dimensional vec-
tor as

ul = [v 9], wv,de€{-1,0,1},

where v and ¢ are the velocity of motor and the angle
of steering respectively and both of which are quan-
tized.

The output (observed) vectors are shown in Figure
3. As a result, the dimension of the observed vector
about the ball, the goal, and the other robot are 4, 11,
and 5 respectively.

5 Experimental Results

5.1 Simulation Results

Tablel shows the result of identification. In order to
predict the successive situation, [ = 1 is sufficient for
the goal, while the ball needs 2 steps. The motion of
the random walk agent can not be correctly predicted
as a matter of course while the move-to-the-ball agent
can be identified by the same dimension of the random

x5) G»

( )| ( )
X15Y1 X3,Y3
(%) )G
¢
W
X £ X b
image features (x2.32) +:74)
robot ball goal
area area area
center position center position center position
height radius 4 corners
width

Figure 3: Image features of the ball, goal, and agent

Table 1: The estimated dimension (computer simula-
tion)

’ agent | 1 [n]log|R| [ AIC |
goal 120001 121
ball 2 14| 0.232 138
random walk 3|16 1.22 232
move to the ball | 3 | 6 | —0.463 79

agent, but the prediction error is much smaller than
that of random walk.

Table 2 shows the success rates of shooting and
passing behaviors compared with the results in our
previous work [6] in which only the current sensor in-
formation is used as a state vector. We assign a re-
ward value 1 when the robot achieved the task, or 0
otherwise. If the learning agent uses the only current
information about the ball and the goal, the leaning
agent can not acquire the optimal behavior when the
ball is rolling. In other words, the action value func-
tion does not become to be stable because the state
and action spaces are not consistent with each other.

Table 2: Comparison between the proposed method
and using current information

state vector success of success of
shooting (%) | passing (%)
current position 10.2 9.8
using CVA 78.5 53.2

5.2 Real Experiments

We have constructed the radio control system of
the robot, following the remote-brain project by Ina-



Sun WS

SPARC station 20
VME BOX
} IICﬁS'Q 40 I:I Monitor
DigiColor W

UHF

Soccer Robot

Figure 4: A configuration of the real system.

Table 3: The estimated dimension (real environment)
’ from the shooter ‘

I|n|log|R| | AIC
ball 414 1.88 284
goal | 1|3 | —1.73 | —817

passer | 5 | 4 3.43 329

] from the passer \

I |n|log|R|| AIC

ball 414 1.36 173
shooter | 5 | 4 2.17 284

ba et al. [9]. Figure 4 shows a configuration of the
real mobile robot system. The image taken by a TV
camera mounted on the robot is transmitted to a UHF
receiver and processed by Datacube MaxVideo 200, a
real-time pipeline video image processor. In order to
simplify and speed up the image processing time, we
painted the ball, the goal, and the opponent red, blue,
and yellow, respectively. The input NTSC color video
signal is first converted into HSV color components in
order to make the extraction of the objects easy. The
image processing and the vehicle control system are
operated by VxWorks OS on MC68040 CPU which
are connected with host Sun workstations via Ether
net. The tilt angle is about —26 [deg] so that robot
can see the environment effectively. The horizontal
and vertical visual angle are about 67 [deg] and 60
[deg], respectively.

The task of the passer is to pass a ball to the shoot-
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Figure 5: Prediction errors in the real environment

er while the task of the shooter is to shoot a ball into
the goal. Table 3 and Figure 5 show the experimental
results. The value of [ for the ball and the agent are
bigger than that of computer simulation, because of
the noise of the image processing and the dynamics
of the environment due to such as the eccentricity of
the centroid of the ball. Even though the local predic-
tive model of the same ball for each agent is similar
(n = 4, and slight difference in log |R| and AIC) from
Table3, the estimated state vectors are different from
each other because there are differences in several fac-
tors such as tilt angle, the velocity of the motor and
the angle of steering. We checked what happened if we
replace the local predictive models between the pass-
er and the shooter. Eventually, the large prediction
errors of both side were observed. Therefore the local
predictive models can not be replaced between physi-
cal agents. Figure 6 shows a sequence of images where
the shooter shoot a ball which is kicked by the passer.

6 Conclusion

This paper presents a method of behavior acquisi-
tion in order to apply reinforcement learning to the en-
vironment including other agents. Our method takes
account of the trade-off among the precision of pre-
diction, the dimension of state vector and the length
of steps to predict. Spatial quantization of the image
into objects has been easily solved by painting objects
in single color different from each other. Rather, the
organization of the image features and their tempo-
ral segmentation for the purpose of task accomplish-
ment have been done simultaneously by the method.
The method is applied to a soccer playing game in
which one robot can shoot a rolling ball passed by
other robot.

In the proposed method, we need a quantization
procedure of the estimated state vectors. Several seg-
mentation methods such as Parti game algorithm[12]
and Asada’s method [5] might be promising.



(b) obtained images (left:shooter, right:passer)

Figure 6: Acquired behavior

References

1]
2]

3]

[4]

[5]

[6]

H. Akaike. A new look on the statistical model iden-
tification. IEEE Trans. AC-19, pp. 716-723, 1974.

Y. Aloimonos. Introduction: Active vision revisited.
In'Y. Aloimonos ed., Active Perception, chapter 0, pp.
1-18. Lawrence Erlbaum Associate, Publishers, 1993.

Y. Aloimonos. Reply: What i have learned. CVGIP:
Image Understanding, 60:1:74-85, 1994.

M. Asada. An agent and an environment: A view
of “having bodies” — a case study on behavior learn-
ing for vision-based mobile robot —. In Proc. of 1996
IROS Workshop on Towards Real Autonomy, pp. 19—
24, 1996.

M. Asada, S. Noda, and K. Hosoda. Action-based sen-
sor space categorization for robot learning. In Proc.
of the 1996 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1996.

M. Asada, S. Noda, S. Tawaratumida, and K. Hoso-
da. Purposive behavior acquisition for a real robot by

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

19]

vision-based reinforcement learning. Machine Learn-
ing, 23:279-303, 1996.

J. H. Connel and S. Mahadevan.
Kluwer Academic Publishers, 1993.

Robot Learning.

S. Edelman. Reply: Representation without recon-
struction. CVGIP: Image Understanding, 60:1:92-94,
1994.

M. Inaba. Remote-brained robotics : Interfacing Al
with real world behaviors. In Preprints of ISRR’93,
Pitsuburg, 1993.

W. E. Larimore. Canonical variate analysis in identi-
fication, filtering, and adaptive control. In Proc. 29th
IEEE Conference on Decision and Control, pp. 596—
604, Honolulu, Hawaii, December 1990.

M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proc. of the
11th International Conference on Machine Learning,
pp- 157-163, 1994.

A. W. Moore and C. G. Atkeson. The parti-game al-
gorithm for variable resolution reinforcement learning
in multidimensional state-spaces. Machine Learning,
21:199-233, 1995.

T. Nakamura and M. Asada. Motion sketch: Acqui-
sition of visual motion guided behaviors. In 14th
International Joint Conference on Artificial Intelli-
gence, pp. 126-132. Morgan Kaufmann, 1995.

T. Nakamura and M. Asada. Stereo sketch: Stere-
o vision-based target reaching behavior acquisition
with occlusion detection and avoidance. In Proc. of
IEEE International Conference on Robotics and Au-
tomation, pp. 1314-1319, 1996.

G. Sandini. Vision during action. In Y. Aloimonos ed.,
Active Perception, chapter 4, pp. 151-190. Lawrence
Erlbaum Associate, Publishers, 1993.

G. Sandini and E. Grosso. Reply: Why purposive
vision. CVGIP: Image Understanding, 60:1:109-112,
1994.

E. Uchibe, M. Asada, and K. Hosoda. Behavior coor-
dination for a mobile robot using modular reinforce-
ment learning. In Proc. of the 1996 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pp. 1329-1336, 1996.

C. J. C. H. Watkins and P. Dayan. Technical note:
Q-learning. Machine Learning, pp. 279-292, 1992.

S. D. Whitehead and D. H. Ballard. Active perception
and reinforcement learning. In Proc. of Workshop on
Machine Learning-1990, pp. 179-188. Morgan Kauf-
mann, 1990.



