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Abstract

This paper proposes a method that acquires the pur-
posive behaviors based on the estimation of the state
vectors. In order to acquire the cooperative behaviors
in multi robot environments, each learning robot esti-
mates local predictive model between the learner and
the other objects separately. Based on the local predic-
tive models, robots learn the desired behaviors using re-
inforcement learning. The proposed method is applied
to a soccer playing situation, where a rolling ball and
other moving robots are well modeled and the learn-
er’s behaviors are successfully acquired by the method.
Computer simulations and real experiments are shown
and a discussion is given.

1 Introduction

Building a robot that learns to perform a task
through visual information has been acknowledged as
one of the major challenges facing Robotics and AI.
Reinforcement learning has recently been receiving in-
creased attention as a method for robot learning with
little or no a priori knowledge and higher capability of
reactive and adaptive behaviors [1].

In multi-agent environments, the conventional re-
inforcement learning algorithms do not seem applica-
ble because an environment including other learning
robots might change randomly from a viewpoint of
an individual learning robot. It is important for the
learner to understand the strategies of the other robot-
s and to predict their movements in advance to learn
the behaviors successfully.

Littman [5] proposed a framework of Markov
Games in which learning robots try to learn a mixed s-
trategy optimal against the worst possible opponent in
a zero-sum 2-player game in a grid world. He assumed

that the opponent’s goal is given to the learner. Lin
[4] compared window-Q based on both the current sen-
sation and the N most recent sensations and actions
with recurrent-Q based on a recurrent network, and
he showed the latter is superior to the former because
a recurrent network can cope with historical features
appropriately. However, it is still difficult to determine
the number of neurons and the structures of network
in advance. Furthermore, these methods utilize global
information.

Robotic soccer is a good domain for studying multi-
agent problems [2]. Stone and Veloso proposed lay-
ered learning method which consists of two levels of
learned behaviors [6]. The lower is for basic skills
(ex. interception of a moving ball) and the higher
is one which can make decisions (ex. whether or not
to make a pass) based on the decision tree. Uchibe
et al. proposed a method of modular reinforcement
learning which coordinates multiple behaviors taking
account of a tradeoff between learning time and per-
formance [7]. Since these methods utilize the current
sensor outputs as states, their methods can not cope
with the temporal changes of objects.

As described above, these existing learning meth-
ods in multi agent environments need good attributes
(state vectors) in order for the learning to converge.
Therefore, the modeling architecture is required to en-
able the reinforcement learning to be applied. In this
paper, we propose a method which estimates the re-
lationships between a learner’s behaviors and other
robots through interactions (observation and action)
based on the method of system identification. In order
to construct the local predictive model of other robots
from the result of Canonical Variate Analysis(CVA)
[3], we adopt Akaike’s Information Criterion(AIC).

We apply the proposed method to a simplified soc-
cer game. The task of the robot is to shoot a ball
which is passed back from the other robot. After the



learning robot estimates the local predictive models,
the reinforcement learning is applied in order to ac-
quire purposive behaviors.

The rest of this article is structured as follows: at
first we show our basic idea, then we give brief expla-
nation of the local predictive model and reinforcemen-
t learning. The details of the local predictive model
and learning algorithms are described in [8] and [7],
respectively. Finally, we show simulation results and
real experiments and give a discussion.

2 Our Approach

2.1 Architecture
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Figure 1: Proposed architecture

Figure 1 shows a learning architecture for each
robot. At first, the learning robot constructs the lo-
cal predictive models from the sequences of not only
sensor outputs but also its own action since it needs
to acquire the state vectors which can predict future
states in dynamic environments. Next, it learns the
cooperative behaviors based on the estimated state
vectors from the local predictive models. The reason
why two phases learning is as follows. Strictly speak-
ing, all the robots do in fact interact with each other.
Therefore, the learning robots should construct the
local predictive model taking these interactions into
account. However, it is intractable to collect the ade-
quate input-output sequences and estimate the proper
model because the dimension of state vector increases
drastically. Therefore, the learning (observing) robot
first estimates the local predictive models to individ-
ual (observed) robots or objects in an environment
separately and it obtains the higher interactions a-

mong robots through the post reinforcement learning
process.

2.2 Learning schema

In order to acquire the cooperative behaviors in
multi robot environments, we schedule for multi robot-
s reinforcement learning. The actual learning process
can be categorized into three ways.

1. Learning the policy in a real environment:
except an easy task in a simple environment, it
seems difficult to implement.

2. Learning the policy in computer simulation and
policy transfer to a real environment:
since there are still a gap between the simulation
environment and the real one, we need some mod-
ification in the real experiment.

3. Combination of computer simulation and real ex-
periments:
based on the simulation results, learning in a real
environment is scheduled.

We adopt the third one and make a learning schedule
(see Figure 2).
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Figure 2: Schedule for learning in multi robots envi-
ronments

If the multiple robots learn the behaviors simulta-
neously, the learning process may be unstable, espe-
cially in the early stage of learning. Therefore, we plan
for the robots to learn the behaviors in turn to make
the learning process stable. At first, each robot con-
structs the local predictive models (estimating phase)
in the computer simulation. The robots move ran-
domly because they do not have any policies due to
initialized zeros in their action value functions. Next,
we select one robot to make learn, and fix the action
strategy of other robots. The robot executes random



actions with a fixed probability or the optimal actions
(learning phase). Other robots execute actions based
on the strategies which are acquired previously (no-
learning phase). Therefore, the robots except learn-
ing robot is stationary in the first period of behavior
learning. After the selected robot finishes learning,
we select the other robot to learn. We repeat this for
robots to acquire the purposive behaviors. Finally, we
transfer the result of the computer simulation to the
real robots. The robots construct the local predictive
models and learns the behavior in the same way. As
a result, enormous learning time can be reduced.

3 Local predictive models in the multi
agent environment

A number of algorithms to identify multi-
input multi-output (MIMO) combined deterministic-
stochastic systems have been proposed. Among them,
Larimore’s Canonical Variate Analysis (CVA) [3] is
typical one, which uses canonical correlation analysis
to construct a state estimator. We utilize CVA to re-
alize the local predictive model. For more through
treatment of CVA, see [3]. Here, we give a brief ex-
planation of CVA method.

CVA uses a discrete time, linear, state space model
as follows: Let be the input and output generated by
the unknown system

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (1)

where x(t), u(t) ∈ <m and y(t) ∈ <q denote state
vector, action code vector, and observation vector re-
spectively. A ∈ <n×n, B ∈ <n×m, C ∈ <q×n, and
D ∈ <q×m represent matrices. CVA estimates a state
vector x which is a linear combination of the previous
observation and action sequences as follows:

x(t) = [In 0]Up(t), (2)

where

p(t) = [u(t− 1) · · · u(t− l)y(t− 1) · · · y(t− l)]T ,

and U ∈ <l(m+q)×l(m+q) is a matrix which is calculat-
ed by CVA.

Figure 3 shows an overview of the local predictive
model. The local predictive model estimates the state
vector x from the sequences of input u and output y.
If the model can not obtain the adequate precision, it
increases the historical length l to improve the mod-
el. Next, It reduces the order of the estimated state
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Figure 3: Local predictive model

vector n based on the Akaike’s Information Criterion
(AIC) to make the size of the state space tractable. By
approximating the relationships between the learner’s
action and the resultant observation, the local pre-
dictive model gives the learning agent not only the
successive state of the agent but also the priority of
the state vectors, which means that the validity of the
state vector with respect to the prediction.

4 Reinforcement learning based on the
local predictive models

Since the local predictive model merely represents
the local interaction between the learner and one of
other objects separately, the learning robot has to es-
timate the global interaction among models and decide
to take actions to accomplish given tasks.

In the following, we give a brief explanation of Q
learning and modular reinforcement learning to accel-
erate the learning time with multiple goals.

4.1 Q learning

A Q learning method provides robots with the ca-
pability of learning to act optimally in a Markovian
environment. A simple version of Q learning algorith-
m is shown as follows:

1. Initialize Q(x, u) to 0s for all combination of X
and U .

2. Perceive current state x.

3. Choose an action u according to the action value
function.



4. Execute an action u in the environment. Let the
next state be x′ and immediate reward be r.

5. Update the action value function from x, u, x′,
and r,

Qt+1(x, u) = (1− αt)Qt(x, u)
+ αt(r + γ max

u′∈U
Qt(x′, u′)) (3)

where αt is a learning rate parameter and γ is a
fixed discounting factor between 0 and 1.

6. Return to 2.

4.2 Modular reinforcement learning

Since the time needed to acquire an optimal be-
havior mainly depends on the size of the state space,
it seems difficult to apply the normal Q learning to
multiple tasks. Therefore, we use the modular rein-
forcement learning method [7].

Figure 4 shows the basic idea of the modular rein-
forcement learning, where the number of the tasks n
is two for the sake of reader’s understanding. In or-
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Figure 4: Basic idea of the modular reinforcement
learning

der to reduce the learning time, the whole state space
X is classified into two categories based on the maxi-
mum action values separately obtained by Q learning:
the area where one of the learned behaviors is direct-
ly applicable (no more learning area), and the area
where learning is necessary due to the competition
of multiple behaviors (re-learning area). Eventually

the whole state space X is classified into the no more
learning area Xi, i = 1 · · ·n and the re-learning area
Xrl. These areas are exclusive.

In the case of states belonging to the no more learn-
ing area, the learning robot uses the action value func-
tions which are acquired previously since it does not
need to update action value function any more. If
the learning robot is in the re-learning area, the robot
estimates the discounted value γ to learn the action
value function appropriately. As a result, the modular
reinforcement learning can take account of a tradeoff
between the learning time and performance when the
robot coordinates multiple behaviors.

5 Experiments

5.1 Task and assumptions

We apply the proposed method to a simplified soc-
cer game including two mobile robots (Figure 5). Each

Figure 5: The environment and our mobile robot

robot has a single color TV camera and does not know
the locations, the sizes and the weights of the ball and
the other agent, any camera parameters such as focal
length and tilt angle, or kinematics/dynamics of it-
self. They move around using a 4-wheel steering sys-
tem. The effects of an action against the environment
can be informed to the agent only through the visual
information. As motor commands, each agent has 7
actions such as go straight, turn right, turn left, stop,
and go backward. Then, the input u is defined as the
2 dimensional vector as

uT = [v φ] , v, φ ∈ {−1, 0, 1},

where v and φ are the velocity of motor and the angle
of steering respectively and both of which are quan-
tized.
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Figure 6: Image features of the ball, goal, and agent

The output (observed) vectors are shown in Figure
6. As a result, the dimensions of the observed vector
about the ball, the goal, and the other robot are 4, 11,
and 5 respectively.

5.2 Computer simulation and real exper-
iments

At first, the shooter and the passer construct the
local predictive models for the ball, the goal, and the
other robot in computer simulation. Next, the passer
begins to learn the behaviors under the condition that
the shooter is stationary. After the passer has finished
its learning, we fix the policy of the passer. Then, the
shooter starts to learn shooting behaviors. We assign
a reward value 1 when the shooter shoots a ball in-
to the goal and the passer passes the ball toward the
shooter. Further, a negative reward value −0.3 is giv-
en to the robots when a collision between two robots is
happened. In these processes, the modular reinforce-
ment learning is applied for shooter (passer) to learn
shooting (passing) behaviors and avoiding collisions.

Next, we transfer the result of computer simula-
tion to the real environments. In order to construct
the local predictive models in the real environment,
the robot selects actions using the probability based
on the semi uniform undirected exploration. In other
words, the robot executes random actions with a fixed
probability (20 %) and the optimal actions learned in
computer simulation (80 %). We performed 100 trials
in real experiments. After the local predictive models
are updated, the robots improve the action value func-
tion again based on the obtained real data. If the local
predictive model in the real environment increases the
estimated order of the state vector, the action val-
ue functions are initialized based on the action value
functions in computer simulation in order to acceler-

Table 1: The estimated dimension
observer target l n log |R| AIC

computer simulation
ball 2 4 0.23 138

shooter goal 1 2 −0.01 121
passer 3 6 1.22 210

passer ball 2 4 0.78 142
shooter 3 5 0.85 198

real experiments
ball 4 4 1.88 284

shooter goal 1 3 −1.73 −817
passer 5 4 3.43 329

passer ball 4 4 1.36 173
shooter 5 4 2.17 284

Table 2: Performance result in real experiments
before learning after learning

success of 57/100 32/50shooting
success of 30/100 22/50passing
number of 25/100 6/50collisions

average steps 563 483

ate the learning. Finally, we performed 50 trials to
check the result of learning in the real environment.

Table 1 shows the result of the estimated state
vectors in computer simulation and real experiments,
where log |R| and AIC denote the logarithm of covari-
ance matrix of error of the local predictive model and
Akaike’s information criterion, respectively. In order
to predict the successive situation, l = 1 is sufficient
for the goal, while the ball needs 2 steps. We suppose
the reasons why the estimated orders of state vectors
are different between computer simulation and real ex-
periments are :

• because of noise, the prediction error of real ex-
periments is much larger than that of computer
simulation, and

• in order to collect the sequences of observation
and action, the robots do not select the random
action but move based on the result of computer
simulation. Therefore, the experiences of passer
and shooter are quite different from each other.

As a result, the historical length l of the real experi-
ments is larger than that of the computer simulation.
On the other hand, the estimated order of state vec-
tor n for the other robot of real experiments is small-



er than that of computer simulation since the com-
ponents for higher and more complicated interactions
can not be discriminated from noise in the real envi-
ronments.

Table 2 shows the comparison of performance be-
tween the simple transfer of the result of computer
simulation and the result of re-learning in real envi-
ronments. We checked what happened if we replace
the local predictive models between the passer and the
shooter. Eventually, large prediction errors of both
sides were observed. Therefore the local predictive
models can not be replaced between physical agents.
Figure 7 shows a sequence of images where the shooter
shoots a ball which is kicked by the passer.

6 Concluding remarks

This paper proposes a method of behavior acquisi-
tion so as to apply the reinforcement learning to the
multi robot environments. Our method takes account
of the tradeoff among the precision of prediction, the
dimension of state vector, and the length of steps to
predict. The local predictive model can also be ap-
plied to controlling the enviromental complexity so as
to learn the policy efficiently [9].

In the current system, we consider just two robot-
s, and regard that the current system can cope with
global interactions. However, more robots in the field
we have, more complicated and higher interactions
occur. As future works, we challenge to extend our
method when more than two robots learn cooperative
and competitive behaviors.
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