
Environmental Complexity Control for Vision-Based Learning
Mobile Robot

Eiji Uchibe, Minoru Asada and Koh Hosoda
Dept. of Adaptive Machine Systems, Graduate School of Eng.,

Osaka University, Suita, Osaka 565-0871, Japan
uchibe@er.ams.eng.osaka-u.ac.jp

Abstract

This paper discusses how a robot can develop its
state vector according to the complexity of the interac-
tions with its environment. A method for controlling
the complexity is proposed for a vision-based mobile
robot of which task is to shoot a ball into a goal avoid-
ing collisions with a goal keeper. First, we provide the
most difficult situation (the maximum speed of the goal
keeper with chasing-a-ball behavior), and the robot es-
timates the full set of state vectors with the order of
the major vector components by a method of system i-
dentification. The environmental complexity is defined
in terms of the speed of the goal keeper while the com-
plexity of the state vector is the number of the dimen-
sions of the state vector. According to the increase of
the speed of the goal keeper, the dimension of the state
vector is increased by taking a trade-off between the
size of the state space (the dimension) and the learn-
ing time. Simulations are shown, and other issues for
the complexity control are discussed.

1 Introduction

One of the ultimate goals of Robotics and AI is to
realize autonomous agents that organize their own in-
ternal structure towards achieving their goals through
interactions with dynamically changing environments.
From a viewpoint of designing robots, there are two
main issues to be considered:
• the design of the agent architecture by which a

robot develop from the interaction with its envi-
ronment to obtain the desired behaviors, and

• the policy how to provide the agent with tasks,
situations, and environments so as to develop the
robot.

The former has revealed the importance of “hav-
ing bodies” and eventually also a view of the internal

observer [7]. In [2], the first issue is focused and a
discussion how the robot can develop from the inter-
action with its environment according to the increase
of the complexity of its environment is given in the
context of a vision based mobile robot of which task is
to shoot a ball into a goal with/without a goal keeper.
In this paper, we put more emphasis on the second
issue, that is, how to control the environmental com-
plexity so that the robot can efficiently improve its
behaviors.

“Shaping by successive approximation” is a well-
known technique in psychology of animal behavior [6].
A simple and straightforward analogy to this situa-
tion is to design a reward function to accelerate the
reinforcement learning. However, this often requires a
priori precise knowledge about the details of the rela-
tionship between the given task and the environment.
Instead of providing such knowledge, an alternative
called “Leaning from Easy Missions” (LEM) paradig-
m was proposed [3].

The basic idea of LEM can be extended to more
complicated tasks, but more fundamental issues to be
considered are how to define complexity of the task
and the environment, and how to increase the com-
plexity to develop robots. Since these issues are too
difficult to deal with as general ones, a case study on a
vision-based mobile robot is given in this paper where
the environmental complexity is defined in the context
of RoboCup Initiative [4] and a method to control the
environmental complexity is proposed. First, we pro-
vide the most difficult situation, that is, the maximum
speed of the goal keeper with chasing-a-ball behavior,
and the robot estimates the full set of state vectors
with the order of the vector components according to
the contributions to reducing the estimation errors by
a method of system identification. The environmental
complexity is defined in terms of the speed of the goal
keeper while the complexity of the state vector to cope
with the environmental complexity is the number of



the dimensions of the state vector. According to the
increase of the speed of the goal keeper, the dimension
of the state vector is increased by taking a trade-off
between the size of the state space (the dimension)
and the learning time.

The rest of the paper is organized as follows: first
we give an overview of the whole learning system,
and basics of the reinforcement learning, especially
Q-learning, Next, a method for efficient learning and
development coping with the increase of the task en-
vironment complexity is proposed. Then, an example
task of shooting with avoiding a goal keeper is intro-
duced. The proposed method is applied to scheduling
the speed of the goal keeper for the efficient develop-
ment of the learner that attempting at coping with
new situations by adding a new axis in its state space.
Finally, the preliminary experiments are shown, and
other issues for the complexity control are discussed.

2 An Overview of The Whole System
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Figure 1: An overview of the whole system

Figure 1 shows an overview of the whole system
consisting of a local predictive model and a learning
architecture. The local predictive model outputs the
state vector list in the order of the value of the es-
timated correlation coefficient with estimation errors.
These state vectors are used to construct the state
space for the reinforcement learning method to be ap-
plied in multi agent environment. About the details
of the whole system, one can find other publications
[9, 10]. Here, we focus on how to accelerate the Q-
learning by appropriately increasing the environmen-
tal complexity. The rest of this section briefly explains
the basics of state vector estimation and the reinforce-

ment learning.

2.1 State Vector Estimation

In order to accelerate the learning according to the
increase of the environmental complexity, it needs a
mechanism to measure the complexity based on its
experience. As such a mechanism, a local predictive
model [9] is considered which estimates the relations
between the learner’s behaviors and the other agents
through interactions (observation and action). In or-
der to construct the local predictive model of other
agents, Akaike’s Information Criterion(AIC) [1] is ap-
plied to the result of Canonical Variate Analysis(CVA)
[5]. We just briefly explained the method (for the de-
tails of the local predictive model, see [9, 10]).

CVA uses a discrete time, linear, state space model
as follows:

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (1)

where x(t), u(t) ∈ <m and y(t) ∈ <q denote state
vector, action code vector, and observation vector re-
spectively. A ∈ <n×n, B ∈ <n×m, C ∈ <q×n, and
D ∈ <q×m represent matrices. CVA estimates a state
vector x which is a linear combination of the previous
observation and action sequences as follows:

x(t) = [In 0]Up(t), (2)

where

p(t) = [u(t− 1) · · · u(t− l) y(t− 1) · · · y(t− l)]T ,

and U ∈ <l(m+q)×l(m+q) is a matrix which is calculat-
ed by CVA.

2.2 Basics of Reinforcement Learning

After estimating the state space model given by Eq.
(1), the agent begins to learn behaviors using a rein-
forcement learning method. Q learning [11] is a form
of reinforcement learning based on stochastic dynamic
programming. It provides robots with the capability
of learning to act optimally in a Markovian environ-
ment.

In the previous section, appropriate dimension n of
the state vector x(t) is determined, and the successive
state is predicted. Therefore, we can regard an envi-
ronment as Markovian. A simple version of Q learning
algorithm is shown as follows:

1. Initialize Q(x, u) to 0s for all combination of X
and U .



2. Perceive current state x.

3. Choose an action u according to the action value
function.

4. Execute an action u in the environment. Let the
next state be x′ and immediate reward be r.

5. Update the action value function from x, u, x′,
and r,

Qt+1(x, u) = (1− αt)Qt(x, u)
+ αt(r + γ max

u′∈U
Qt(x′, u′)) (3)

where αt is a learning rate and γ is a fixed dis-
counting factor between 0 and 1.

6. Return to 2.

3 The Method for Efficient Learning
and Development

One can use all the state vectors to make the robot
learn, but it would take enormously long time due to
the large size of the state space. Instead of using the
all vectors, one can start with a small size of the state
vector set first and increase the dimension of the state
space in the following stages. The action value func-
tion in the previous stage works as a priori knowledge
so as to accelerate the learning. In order to transfer
the knowledge smoothly, the state spaces in both the
previous and current stages should be consistent with
each other. Therefore, the robot should have a full list
of the state vectors available in advance, and select-
s one among them at the periods when the robot no
longer can cope with the changing environment with
the current state vector set.

An algorithm to control the increase of the environ-
mental complexity is given as follows:

1. Collect many sequences of data during action ex-
ecutions in the most complex task environment.

2. Construct the local predictive model to the data
and output the state vector lists with estimation
errors.

3. Set up the performance criterion.

4. Start with the minimum state vector set, say one
or two dimensions for the lowest complexity of the
task environment.

5. Keep the complexity until the robot learns the de-
sired behavior (reach the performance criterion).

6. If the robot reaches the performance criterion, in-
crease the complexity and return Step 5. Else,
increase the dimension of the state space (add a
new axis) and return Step 5.

As a learning method, we use modular reinforce-
ment learning [8] based on Q-learning with the state
space specified. The modular reinforcement learning
can coordinate multiple behaviors (in the following,
shooting behavior and avoiding one) taking account
of a trade-off between the learning time and the per-
formance.

4 Experimental Results

4.1 Task and Assumptions

We apply the proposed method to a simplified soc-
cer game including two agents [8]. One is a learner to
shoot a ball into a goal, and the other is a goal keeper
of which speed is a control parameter in the environ-
ment complexity. Each agent has a single color TV
camera and observes output vectors shown in Figure
2. The dimension of the observed vector about the
ball, the goal, and the other robot are 4, 11, and 5
respectively.
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Figure 2: Image features of the ball, goal, and agent

Two robots move around using a 4-wheel steering
system. The effects of an action against the environ-
ment can be informed to the agent only through the
visual information except the reward that is given by
the environment (top down signal). Figure 3 shows
a scene of two real robots and the environment. As
motor commands, each agent has 7 actions such as go
straight, turn right, turn left, stop, and go backward.
Then, the input u is defined as the 2 dimensional vec-
tor as

uT = [v φ] , v, φ ∈ {−1, 0, 1},



Goal
Keeper

Shooter

Ball

Goal

Figure 3: Two real robots and the environment

where v and φ are the velocity of motor and the angle
of steering respectively and both of which are quan-
tized.

We assume that the goal keeper has a basic be-
havior of moving to the ball, but its speed can be
controlled as the complexity parameter.

4.2 Settings

We assign a reward value 1 when the ball was kicked
into the goal or 0 otherwise. On the other hand, a re-
ward value −0.3 is given to the robot when two robots
make a collision between them. Discounting factor γ
is 0.9.

To speed up the learning time, we select actions us-
ing the probability based on semi uniform undirected
exploration. In this method, the learning agent exe-
cutes random actions with a fixed probability. We set
the probability of selecting a random action at 10 %.

4.3 Speed Control for the Goal Keeper
with Fixed Dimension

At first, we demonstrate the experiments to con-
trol the complexity of the interactions in case of the
fixed dimension of the estimated state vector about
the goal keeper. The learning robot collects sequences
of observation and action with the highest complexity,
that is, the maximum speed vmax of the goal keeper,
and applied the local predictive model to the obtained
data. As a result, we obtained the list of the state vec-
tor for the goal keeper and others. The dimension of
the estimated state vector of the goal keeper, the ball
and the goal is 4, 4 and 2, respectively. The learning
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Figure 4: The dimension of the state vector n is one
(the minimum dimension).
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Figure 5: The dimension of the state vector n is 2.
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Figure 6: The dimension of the state vector n is 3.



0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

pe
rc

en
t (

%
)

trial (× 100)

shoot
collision

Figure 7: The dimension of the state vector n is 4 (the
maximum dimension).

robot chooses the dimension of the only state vector
about the goal keeper (other vectors are remained un-
changed) which is estimated by the local predictive
model to cope with the change of the complexity of
the interaction.

Figures 4 ∼ 7 show graphs of the performance da-
ta (success rates of shooting and collision avoidance)
in terms of the speed of the goal keeper with fixed di-
mension of the state vector for the goal keeper (from 1
to 4). The speed is increased when the robot achieves
the pre-specified success rate (80%) or no improve-
ment can be seen. The arrows show the time when
the speed of the goal keeper is changed (10 % speed
increase of the maximum motion speed vmax from 0
(stationary)). In spite of the number of dimensions,
the best success rate of shooting is about 80 %. How-
ever it takes much time for learning agent to acquire
the best performance when the dimension of the state
space for the goal keeper increases. In Figure 7, the
performance data until the speed of 0.4vmax is shown
because of the space limit. As we can see from the
Figures 4 ∼ 7,

• the success rate of shooting becomes worse when
v/vmax > 0.2, and

• the collision rate is larger than success one of
shooting when v/vmax > 0.4.

The learning agent has to take account of the trade
off between shooting behavior and avoiding behavior
while the goal keeper only pushes the ball. Therefore,
the learning agent might not accomplish the shooting
task if the goal keeper moves quickly.

4.4 Speed Control for the Goal Keeper
with Variable Dimensions

Figure 8 shows the result of the speed control for
the efficient learning. Short and long arrows indicate
the times to increase the speed of the goal keeper and
the dimension of the state vector, respectively. We set
up 50% performance criterion by which the timing of
the speed increase of the goal keeper is decided. Com-
pared with Figures 4 ∼ 7 , we may conclude that the
fewer dimensions of the state space contribute to the
reduction of the learning time but less performance
and vice versa. For example, one dimensional state
vector cannot cope with 0.2vmax while two dimension-
al state vector can not represent the situation with
0.3vmax for the learner to learn shooting behaviors. If
we start with one dimension case and step up the di-
mension, we also give up 0.4vmax but with four dimen-
sions the collision rate is much less than the success
rate around 15,000 trials (See Figure 7).

Our proposed scheduling method can achieve the
almost the same performance faster than the case of
learning by the maximum dimension of the state vec-
tor from the beginning. We suppose that the reasons
why our method can achieve the task faster are as fol-
lows. First, the time needed to acquire an optimal
behaviors mainly depends on the size of the state s-
pace, which are determined by the dimension of the
state vector estimated by the local predictive model.
Our method assigns the appropriate dimension of the
state vector according to the complexity while the full
dimension of the state space (Figure 7) is redundant
in the early state of learning. Second, since our pro-
posed method utilizes the action value function which
is previously acquired as the initial value, it can re-
duce the learning time. In other words, our method
consider not only the size of the state space according
to the complexity but also the initial values of the ac-
tion value function which is usually initialized zeros.
Finally, we show the example of an acquired behavior
in Figure 9. The two lines emerged from the agent
show its visual angle.

5 Discussion

We have shown the method of controlling the en-
vironmental complexity along with a simplified soc-
cer task. There are two main issues to be considered.
First, the number of control parameters is one in our
experiments, but generally multiple, each of which is
related to each other. Even in the example task, the
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Figure 8: Result of the proposed method

speed of the learner, the dimensions of the state s-
pace, the resolution of the each dimension (fixed (3
partitions) in the experiments) and the initial config-
urations of the ball, the goal, the learner, and the goal
keeper should be considered together with the speed of
the goal keeper. In such a case, since designer cannot
completely understand the relationships among them,
it seems difficult to decide how to control the com-
plexity completely.

Then, the second issue is revealed. To cope with un-
known complexity, the robot should estimate the state
vectors anytime when the task performance becomes
worse. However, this causes inconsistency in state vec-
tor sets between the current and next learning stages.
Therefore, the knowledge transfer is limited to the ini-
tial controller (action selection) and the robot needs
much more memory and the learning time. Since this
is against resource bounded condition, we should de-
velop a new method which can take account of this
trade-off.
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