
Co-evolution for Cooperative Behavior Acquisition in a Multiple
Mobile Robot Environment

Eiji Uchibe, Masateru Nakamura, and Minoru Asada
Graduate School of Eng., Dept. of Adaptive Machine Systems

Osaka University, Suita, Osaka 565-0871, Japan
uchibe@er.ams.eng.osaka-u.ac.jp

Abstract

Co-evolution has been receiving increased attention
as a method for multi agent simultaneous learning.
This paper discusses how multiple robots can emerge
cooperative behaviors through co-evolutionary process-
es. As an example task, a simplified soccer game with
three learning robots is selected and a genetic program-
ming method is applied to individual population corre-
sponding to each robot so as to obtain cooperative and
competitive behaviors. The complexity of the prob-
lem can be explained twofold: co-evolution for coop-
erative behaviors needs exact synchronization of mu-
tual evolutions, and three robot co-evolution requires
well-complicated environment setups that may gradu-
ally change from simpler to more complicated situa-
tions. Simulation results are shown, and a discussion
is given.

1 Introduction

Realization of autonomous robots that organize
their own internal structures to accomplish given tasks
through interactions with their environments is one
of the ultimate goals of Robotics and AI. Especial-
ly, emergence of cooperative behaviors between mul-
tiple robots has been receiving increased attention as
a problem of multi agent learning. Uchibe et al. pro-
posed a reinforcement learning supported by system
identification and learning schedule [9] in multi agent
environments. Their method estimates the relation-
ships between learner’s behaviors and other robot ones
through interactions. However, only one robot may
learn and other robots should have fixed policy in or-
der for the learning to converge.

Recently, co-evolution has been receiving increased
attention as a method for multi agent simultaneous
learning. Existing methods have mostly focused on t-
wo competing individuals such as a prey and a preda-
tor. Cliff and Miller [2] have analyzed the relationship
between a prey and a predator, and Floreano and Nolfi

[3] have implemented real robot experiments which
co-evolved prey and predator robots of which skills
gradually leveled up under certain conditions. Luke
et al. [7] have applied the co-evolution technique to
the soccer game to evolve teams each of which can be
regarded as an individual and attempts to beat other
teams, that is, co-evolution for competition.

In the realm of nature, we can see, however, various
aspects of behaviors emerged from multi agent envi-
ronments, not only competition but also cooperation,
ignorance, and so on. That means there could be ar-
tificial co-evolution for other than competition. This
paper discusses how multiple robots can obtain co-
operative behaviors through the co-evolutionary pro-
cess. As an example task, a simplified soccer game
with three learning robots is selected and a GP (ge-
netic programming) method [5, 6] is applied so as to
experimentally evaluate obtained behaviors in the con-
text of cooperative and competitive tasks. Each robot
has its own individual population, and attempts to ac-
quire desired behaviors through interactions with envi-
ronment that is ever changing in the co-evolutionary
process. The complexity of the problem can be ex-
plained twofold: 1) co-evolution for cooperative be-
haviors needs exact synchronization of mutual evolu-
tions, and 2) three robot co-evolution requires well-
complicated environment setups that may contribute
to providing a wide variety of searching area from sim-
pler to more complicated situations in which they seek
for better strategies so that they can emerge coopera-
tive and competitive behaviors simultaneously.

2 Co-evolution in cooperative tasks

Generally, we have following difficult problems in
multi agent simultaneous learning:

1. Unknown Policy
Learning agents do not know other agents’ poli-
cies in advance, therefore they need to estimate
the policies through observations and actions.



What’s the worse is that they may change their
policies through a learning process.

2. Synchronized Learning
Mutual learning robots have to improve their
learned policies simultaneously. If the opponent
learning converged much earlier than itself, one
robot could not improve its strategy against the
difficult environment which its opponent has al-
ready fixed.

3. Credit Assignment
If the credit involves group evaluation only, one
robot may accomplish a given task by itself and
others do just actions irrelevant to the task as
they do not seem to interfere the one robot’s ac-
tions. Else if only individual evaluation is in-
volved, robots may compete each other. This
trade-off should be carefully dealt.

Co-evolution is one of potential solutions for the
first problem by seeking for better strategies in a wide
range of searching area in parallel. The second and
third ones might be solved by careful designs of en-
vironmental setups and fitness functions. Emerging
patterns by co-evolution can be categorized into three.

1. Cycles of switching fixed strategies
This pattern can be often observed in case of a
prey and predator which often shift their strate-
gies drastically to escape from or to catch the op-
ponent. The same strategies iterate many times
and no improvements on both sides seem to be
seen.

2. Trap to local maxima
This corresponds to the second problem stated
above. Since one side overwhelmed its opponents,
both sides reached to one of stable but low skill
levels, and therefore no change happens after this
settlement.

3. Mutual skill development
In certain conditions, every one can improve its
strategy against ever-changing environments due
to improved strategies by other agents. This is
real co-evolution by which all agents evolve effec-
tively.

As a typical co-evolution example, a competitive
task such as prey and predator has been often argued
[2, 3] where heterogeneous agents often change their s-
trategies to cope with the current opponent one. That
is, the first pattern was observed. In case of homoge-
neous agents, Luke et al. [7] co-evolved teams consist-
ing of eleven soccer players among which cooperative

behavior could be observed. However, co-evolving co-
operative agents has not been addressed as a design
issue on fitness function for individual players since
they applied co-evolving technique to teams.

We believe that between one to one individual com-
petition and team competition, there could be other
kinds of co-evolution than competition. Thus, we chal-
lenge to evaluate how the task complexity and fitness
function affect co-evolution processes in case of multi
agent simultaneous learning for not only competitive
but also cooperative tasks through a series of system-
atic experiments. First, we show the experiments for a
cooperative task, that is, shooting supported by pass-
ing between two robots in 4.1 where unexpected co-
operative behavior that can be regarded as the second
pattern was emerged. Next, we add a stationary ob-
stacle before the goal area into the first experimental
set up in 4.2 where the complexity is higher and ex-
pected behavior was observed after longer generation
changes than the previous one. Finally, we add an ac-
tive learning opponent instead of the stationary obsta-
cle to evaluate how both cooperative and competitive
behaviors are emerged in 4.3.

3 Task and assumptions

3.1 Environment and robots

8.22 m

ball

O X

Y

goal goal

defender teammates

robot0

robot1

robot2

Figure 1: Environment

Before explanation of the proposed method, we
show a concrete task for reader’s understanding of the
method. We have selected a simplified soccer game
consisting of two or three robots as a testbed for the
problem because both competitive and cooperative
tasks are involved as stated in RoboCup Initiative [4].
We built an original soccer simulator which models re-
al mobile robots we have been using so far in [1, 8, 9].
The environment consists of a ball and two goals, and



Table 1: Function sets
a ball, goal, other robot 0, other robot 1, · · ·
b left, middle, right, small, medium, large, lost

a wall is placed around the field except the two goal-
s. The sizes of the ball, the goals and the field are
the same as those of the middle league of RoboCup.
Figure 1 shows the size of the environment.

The robots have the same body (power wheeled s-
teering system) and the same sensor (on-board TV
camera), that is, homogeneous agents. In this simula-
tor, the robot can not obtain the complete information
because of limitation of its sensing capability and oc-
clusion of the objects.

3.2 Function and terminal sets
As sets of functions, we prepare the simple condi-

tional branching function “IF a is b” that executes its
first branch if the condition “a is b” is true, otherwise
executes its second branch, where a is a kind of im-
age features, and b is its category. Table 1 shows the
details of this function “IF a is b”.

Terminals in our task are actions that have effects
on the environment. A terminal set consists of the
following four behaviors :

1. shoot : the robot shoots a ball into the opponent
goal based on the visual information about the
ball and the opponent’s goal.

2. pass : the robot kicks a ball to one teammate
based on the visual information about the ball
and other robots including the teammate.

3. avoid : the robot avoids collisions with oth-
er robots based on the visual information about
them.

4. search : the robot searches the ball by turning to
the left or right based on the visual information
about the goal.

Although we design these behaviors by hand in these
experiments, these primitive behaviors can be ac-
quired by other learning algorithms such as ones in
[1, 8, 9].

3.3 Fitness measure
One of the problems to apply an evolutionary al-

gorithm is the design of fitness function which leads
robots to purposive behaviors. We utilize the stan-
dardized fitness representation, that has a positive val-
ue. The smaller is the better (0.0 is the best). We first

consider the following parameters to evaluate team be-
haviors such as cooperation between teammates and
competition with opponents:

• G(i) : the total number of achieved goals for the
team to which robot i belongs,

• L(i) : the total number of lost goals for the team
to which robot i belongs.

With these parameters only, most robots tend to be i-
dle (passive cooperation) except one that attempts at
achieving the goal for itself, and therefore no active
cooperation can be seen. Then, we introduce the fol-
lowing more individual evaluation to encourage robots
to interact with each other while to minimize the num-
ber of collisions:

• K(i) : the number of ball-kicking by robot i,

• C(i) : the number of collisions between robot i
and other ones.

In addition to the above, the following is involved to
make robots achieve the goal earlier.

• steps : the number of steps until one trial ends,
where a step is defined as a time period for one
action execution against the sensory input of a
robot (1/30 [msec]).

The fitness function is calculated by linear combi-
nation of these parameters. In our case, the fitness
value which the robot i receives is given by :

fs(i) = αkh(K(i), β) + αgh(G(i), Tmax) + αl ∗ L(i)
+αc ∗ C(i) + αs ∗ steps (1)

h(x, y) =
{

y − x if x < y
0 otherwise ,

where Tmax denotes the maximum number of trials,
and αk ∼ αs and β are constants. In the following
experiments, we set αk = αg = 1, αl = 0.5, αc = 0.05,
αs = 0.0001, and β = 10. If two or more individuals
have the same fitness value, we prefer to one with more
compact tree depth.

3.4 Other parameters in genetic pro-
gramming

Other parameters in GP here are: the size of each
population is 80, the number of generations for which
the evolutionary process should run is 60, the maxi-
mum depths during the creation of a genetic and by
crossing two trees are 10 and 25, respectively.

The best performing tree in the current generation
will survive in the next generation. In order to selec-
t parents for crossover, we use tournament selection



with size 10. The crossover, reproduction and mu-
tation probabilities are set to 95 %, 5 %, and 10 %,
respectively.

After each population selects one individual sepa-
rately, the selected individuals participate in the game.
We perform 20 games to evaluate them. One trial is
terminated if the robot shoots a ball into the goal or
steps exceeds 1000. As a result, it needs 1600 trials to
alter a new generation.

4 Simulation results

4.1 Two learners

At first, we demonstrate the experiments to ac-
quire cooperative behaviors between two robots. Both
robots belong to the same team, and they obtain the
score if they succeed in shooting a ball into the goal.
The number of function sets is 28(= 7(ball) + 2 ×
7(two goals) + 7(teammate)).

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot0 best fitness
robot1 best fitness

(a) best fitness

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot0 average fitness
robot1 average fitness

(b) average fitness

Figure 2: fitness in case of two learners

Figures 2 (a) and (b) show the results of evolution
process in the case of two robots. The fitness values of
the best individuals converged in generation 20 (See
(a)). The tree depths and the numbers of nodes of
the best-robot 0 (expected to be a passer) and 1 (ex-
pected to be a shooter) are (29, 637) and (21,611),
respectively. In this case, robot 0 does not kick the
ball by itself but shakes its body by repeating the be-
haviors search and avoid. On the other hand, robot
1 approaches the ball and passes the ball to robot 0.
After robot 0 receives the ball, it executes shoot be-
havior. However, robot 1 approaches the ball faster
than robot 0. As a result, robot 0 shoots the ball into
the goal while robot 1 avoids collisions with robot 0.

We suppose that the reasons why they acquire such
behaviors are as follows :

• In order for robot 0 to pass the ball to robot 1,
robot 1 has to shoot the ball which is passed back

from robot 0. This means that the development
of both robots needs to be exactly synchronized.
It seems very difficult for such a synchronization
to be found.

• Robot 1 may shoot the ball by itself whichever
robot 0 kicks the ball or not. In other words,
robot 1 does not need the help by robot 0.

As a result, the behavior of robot 1 dominates this
task while robot 0 does not improve its own behavior.
This is the second pattern explained in 2.

4.2 Two learners and one stationary
robot

Next, we add one robot as a stationary obstacle to
the environment described in section 4.1. The number
of function sets is 35(= 7(ball)+2×7(two goals)+2×
7(teammate and opponent)).

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot0 best fitness
robot1 best fitness

(a) best

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot0 average fitness
robot1 average fitness

(b) average

Figure 3: fitness in case of the two learners and one
stationary robot

Figures 3 (a) and (b) show the results of evolution-
ary process where a good synchronization between the
best individuals of robots 0 and 1 can be seen (See
(b)). The tree depths and the numbers of nodes of
the best-robots 0 and 1 are (11,63) and (19, 577), re-
spectively. Although both learning robots are placed
in the same way as in the previous experiments, the
acquired cooperative behaviors are quite different. S-
ince it becomes more difficult for robot 1 to shoot the
ball for itself because of the existence of robot 2, robot
1 has to evolve behaviors with robot 1 synchronously.

A history of evolution is as follows. Although both
robots 0 and 1 kick the ball until generation 4, robot
0 begins to pass the ball towards robot 1. However,
robot 1 can not shoot the ball from the robot 0 directly
because robot 0 can not pass the ball to the robot
1 precisely. Therefore, robot 1 kicks the ball to the
wall and continues to kick the ball to the opponent’s



goal along the wall until generation 15 (See Figure 4).
After a number of generations, both robots improve

1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Figure 4: Robot 1 shoots a ball into the goal along the
wall

their own behaviors and acquire cooperative behaviors
in generation 61, where robot 0 kicks the ball to the
front of robot 1, then robot 1 shoots the ball into the
opponent’s goal. As a result, both robots improve the
cooperative behaviors synchronously. This is a kind
of the third pattern described in 2

4.3 Three learners

Finally, we test the co-evolution among three robot-
s. That is, robot 2 added in section 4.2 evolves its
behavior with robots 0 and 1 simultaneously. The d-
ifference from sections 4.1 and 4.2 is involvement of
competition between robot 2 and robots 0 and 1. The
number of function sets is as many as the case of sec-
tion 4.2.

We prepare a fitness function in which αg = 0 in
eqn. (1) to evolve robot 2 as a keeper. Figures 5
(a) and (b) show the results. Because it seems simple
for robot 2 to save the ball from the robots 0 and 1
by shaking its body in front of the goal, the behavior
of robot 2 comes to dominate the game in the early
generation. Therefore, both robots 0 and 1 obtain the
suboptimal behavior because of the low fitness. This
is also the second pattern.

Then, we setup the same fitness function (eqn. (1)).
The results are shown in Figure 6. As compared with
the only cooperative tasks in section 4.2, fitness values
rather oscillate than stay stable. The tree depths and

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot0 best fitness
robot1 best fitness
keeper best fitness

(a) best

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot0 average fitness
robot1 average fitness
keeper average fitness

(b) average

Figure 5: fitness in case of three learners (different
fitness function)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot 0 best fitness
robot 1 best fitness
robot 2 best fitness

(a) best

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fit
ne

ss

generation

robot 0 average fitness
robot 1 average fitness
robot 2 average fitness

(b) average

Figure 6: fitness in case of three learners (same fitness
function)

the numbers of nodes of the best-robot 0, 1, and 2 are
(24,1143), (15, 1093) and (21, 749), respectively.

We can see two typical settlements in this three-
robot soccer game. One is the same behaviors de-
scribed in section 4.2 : robot 0 kicks the ball toward
robot 1, then robot 1 shoots the ball into the goal
avoiding collisions with robot 2 (See Figure 7). The
other one is that robot 2 intercepts the ball and shoots
the ball into the goal (See Figure 8). The ratio be-
tween the former and the latter is about 25 % : 75
%. It depends on each other for robots 0 and 2 to
achieve each goal. However, robot 2 can observe the
ball and the opponent’s goal at the same time and it
may shoot the ball by itself while robot 0 needs to
pass the ball to robot 1. As a result, we suppose that
the predominance of robot 2 may be caused by the
different complexity of the given tasks, that is, task
complexity for robots 0 and 1 is higher than that for
robot 2.

5 Concluding remarks

This paper showed how co-evolution technique
could emerge not only competitive behaviors but al-



1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Figure 7: Two robots (r0 : robot 0, r1 : robot 1)
succeed in shooting a ball into the goal against the
keeper (r2 : robot 2)

so cooperative ones through a series of experiments
in which two or three robots play a simplified soc-
cer game. In order to co-evolve cooperative agents,
it should be noted that robots must synchronize their
evolutionary processes. This also suggests that the en-
vironment itself should co-evolve from simpler to more
complicated situations to assist the development of de-
sired skills of cooperations and competitions.

More systematic understanding is, however, needed
to make clear what are necessary and sufficient con-
ditions to lead co-evolutionary processes to successful
situations. Also, we are planning to implement re-
al experiments to check the validity of the proposed
method and the obtained behaviors.

Acknowledgement

This research was supported by the Japan Society
for the Promotion of Science, in Research for the Fu-
ture Program titled Cooperative Distributed Vision
for Dynamic Three Dimensional Scene Understanding
(JSPS-RFTF96P00501).

References

[1] M. Asada, S. Noda, S. Tawaratumida, and K. Hoso-
da. Purposive behavior acquisition for a real robot by
vision-based reinforcement learning. Machine Learn-
ing, 23:279–303, 1996.

[2] D. Cliff and G. F. Miller. Co-evolution of pursuit and
evasion II : Simulation methods and results. In Proc.

1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Figure 8: The keeper (r2 : robot 2) succeeds in shoot
a ball into the goal against the two robots (r0 : robot
0, r1 : robot 1)

of the 4th International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 4, pages
506–515, 1996.

[3] D. Floreano and S. Nolfi. Adaptive behavior in com-
peteing co-evolving species. In Fourth European Con-
ference on Artificial Life (ECAL97), pages 378–387,
1997.

[4] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa,
and H. Matsubara. Robocup a challenge problem for
ai. AI Magazine, 18(1):73–85, 1997.

[5] J. R. Koza. Genetic Programming I : On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, 1992.

[6] J. R. Koza. Genetic Programming II : Automatic Dis-
covery of Reusable Programs. MIT Press, 1992.

[7] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler.
Co-evolving soccer softbot team coordination with ge-
netic programming. In Proc. of the RoboCup-97 Work-
shop at the 15th International Joint Conference on Ar-
tificial Intelligence (IJCAI97), pages 115–118, 1997.

[8] E. Uchibe, M. Asada, and K. Hosoda. Behavior coordi-
nation for a mobile robot using modular reinforcement
learning. In Proc. of the 1996 IEEE/RSJ Internation-
al Conference on Intelligent Robots and Systems, pages
1329–1336, 1996.

[9] E. Uchibe, M. Asada, and K. Hosoda. Cooperative be-
havior acquisition in multi mobile robots environment
by reinforcement learning based on state vector esti-
mation. In Prof. of IEEE International Conference on
Robotics and Automation, pages 1558–1563, 1998.


