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ABSTRACT

This paper presents a method that acquires a vision-
motor association for a legged robot as a bottom-up
technique for self localization by action based percep-
tion categorization. By the method, the legged robot
can move to the position where it can capture desired
view. The validity of the method is shown by a pre-
liminary experiment, and future work is given.

1 INTRODUCTION

In the RoboCup Initiative [1], each player has to make
quick decisions in any game situations to behave reac-
tively and rationally. In order to realize such capabil-
ities, self-localization has been regarded as one of the
main issues. A typical solution is to reconstruct a glob-
al view of the entire field and then to calculate the self
position from ideothetic and/or allothetic information
such as landmarks and dead-reckoning. In the case of
the wheeled robots, Uchida et. al. used dead-reckoning
and a three-dimensional map [2], and Olson used land-
marks and an environmental model [3]. Veloso also
realized localization of the legged robot by using land-
marks and Bayesian localization procedure [4]. These
approaches, however, need explicit knowledge on pro-
prioception and exteroception such as kinematic pa-
rameters of the robot and the internal / external cam-
era parameters. These should be carefully calibrated in
advance by the designer. This process is often tedious
and time-consuming. From a viewpoint of cognitive
robotics, how to associate robot proprioception with
its exteroception is a more interesting issue, especially
in the case of legged robots to which dead-reckoning is
more difficult to apply than to wheeled robots.

In this paper, we propose a method of action based
perception categorization for a legged robot to move to
any destination in the environment. Once the robot ac-
quires the relationship between actions and the changes
of the view, it can generate the motion with respect to
the observed environment. By utilizing the relation-
ship, it achieve the desired position by feeding back
the difference between the goal view and the current
one. First, the legged robot learns to walk based on
visual cues given by a teacher [5]. This can be regarded
as a kind of adaptive visual servoing [6]. During this
process, the robot observes its walking motion patterns
and the changes of the view. Next, the robot classifies

the walking motion patterns and the changes of the
view separately, and acquires the relationship between
them. Consequently, it can move to any position based
on the relationship and the adaptive servomechanism.

The rest of this article is structured as follows.
First, we explain system requirements for our method.
Next, we present the method of categorizing percep-
tion and acquiring the relationship between action and
perception. Then, we show a preliminary experimen-
tal results in a real environment to verify the validity
of the motion pattern extraction. Finally, the future
work is given.

2 THE SYSTEM AND BASIC BEHAVIORS

2.1 A Legged Robot

We use a following quadruped robot as a legged robot
which has:

• four legs, each of which has three degrees of free-
dom,

• four force sensors attached to each foot for calcu-
lating a zero moment point,

• an uncalibrated TV camera, and

• twelve joint angle sensors.

2.2 Reflective Walk Based on Visual Cues

We present a reflective walk of a quadruped robot
based on reflections to realize an adaptive walk in a
dynamic environment. The combination of reflections,
a vision-cued swaying reflection and a reflective gait,
makes the robot walk reflectively, without program-
ming the exact motion of each joint of the legs. Figure
1 (a) and (b) show outlines of such two reflections.

The former reflection, the vision-cued swaying re-
flection, makes the robot sway to stabilize a visual tar-
get at the desired position in the image. A stimulus to
sway is a motion of the visual target. The latter one,
the reflective gait, makes it change step to avoid falling
down. A stimulus of it is a motion of the zero moment
point (here after, ZMP).

By combining them, the robot sways the body at-
tempting at tracking the visual target, and changes
step if it becomes off balance. Consequently, the walk-
ing motion emerges according to the target motion.
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(a) A vision-cued swaying
reflection
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(b) A reflective gait

Figure 1: Outlines of two reflections

2.2.1 Vision-Cued Swaying Reflection We ap-
ply the adaptive visual servoing to the legged robot in
order to realize the vision-cued swaying reflection. As-
sume that the robot can observe the visual target, and
obtain its kinetic parameters.

Let ΣR, Rp, Rri and l denote a robot coordinate
frame fixed to the robot body, a position vector of a
camera attached to the robot with respect to ΣR, the
i-th foot position vector w. r. t. ΣR and a stance
vector consists of distances between feet, respectively.
Defining Rr by

Rr
4
=

[
RrT

1
RrT

2 · · ·R rT
n

]T
, (1)

we can obtain two velocity relations,

l̇ = J lr
Rṙ , (2)

Rṗ = Jpr
Rṙ , (3)

where J lr = ∂l/∂RrT and Jpr = ∂p/∂RrT , respective-
ly.

Let x be a vector of the image features. Assume
that the visual target is moving so slowly that one can
neglect the velocity of the target comparing to the ve-
locity of the robot. If the feet of the robot are fixed on
the ground, we can obtain a velocity relation,

ẋ = Jxp
Rṗ = JxpJ

+
pr

Rṙ = Jxr
Rṙ. (4)

From eqs.(2) and (4), visual servoing controller for
the vision-cued swaying reflection, which makes the im-
age feature vector x converge to a given desired tra-
jectory xd under a control of the feet distance vector l

constant to fix the feet on the ground, can be derived
as

ur = J+
lrKl (ld − l)

+
(
I − J+

lrJ lr

) {Jxr

(
I − J+

lrJ lr

)}+
{Kx (xd − x)− JxrJ

+
lrKl (ld − l)},

(5)

where ur, Kl and Kx denote a control input vector
and gain matrices, respectively.

In the controller (5), we can obtain the Jacobian
matrix J lr from kinematic parameters of the robot.
But, since the matrix Jxr consists not only of the kine-
matic parameters that are known, but also of intrinsic
and extrinsic camera parameters and of the parameter-
s of the environment, we need to estimate the matrix
Ĵxr that satisfies eq.(4) by correcting r and x. We u-
tilize a least squares method to identify the non-linear
system in the discrete time domain:

{ĵi(k + 1)− ĵi(k)} =

{x(k + 1)− x(k)− Ĵxr(k)ur(k)}i

ρi + ur(k)T W (i,k)ur(k)
W (i,k)ur(k) (6)

where Ĵxr(k), ĵi(k), u(k)(= ∆T ṙ), ρi and W i(k) de-
note a constant Jacobian matrix, its i-th row vector, a
control input vector in the k-th step during sampling
interval ∆T , an appropriate positive constant and a
weighting matrix, respectively. Using the estimated
matrix Ĵxr, we can rewrite the controller (5) as

ur = J+
lrKl (ld − l)

+
(
I − J+

lrJ lr

) {Ĵxr

(
I − J+

lrJ lr

)}+

{Kx (xd − x)− ĴxrJ
+
lrKl (ld − l)}.

(7)

2.2.2 Reflective Gait We use a stability margin,
which is the shortest distance between the zero moment
point (here after, ZMP) and a side of the supporting
leg polygon, as a measure of the stability of the legged
robot (see Figure 2). If the robot sways the body due
to visual servoing, the stability margin becomes small
as shown in Figure 2(b). To increase the margin in
such a case, it has to lift a leg up and move it, which
we call “target leg” in the following.

In Figure 2(b), candidates for the target leg are in-
dicated as “×”. They can not be lifted up because
ZMP is always inside two supporting leg triangles in-
cluding the both target legs. In such a case, therefore,
the reflective gait control lifts one of the other legs so
as to make the target leg to be lifted (see Figure 3(a)),
and moves the target leg to increase the stability mar-
gin (see Figure 3).



Zero Moment Point (ZMP)

Supporting leg polygon

Top view of supporting leg polygon

Stability margin

ZMP

Foot Foot

Foot Foot

(a) a stable pose

Stability margin

..... This foot can't be lifted up

..... This foot can be lifted up

Supporting leg triangles

ZMP

(b) an unstable pose

Figure 2: The relationship between the stability mar-
gin and the feet

3 ACTION BASED PERCEPTION
CATEGORIZATION

3.1 Motion Pattern Extraction

The walking motion patterns of the legged robot can
be described in terms of time series data of all joint
angular velocities. It is, however, difficult to memorize
and utilize such data because of their huge size.

In order to realize compact description for them, we
segment such spatiotemporal data into each walking
cycle under an assumption that the walking motion
patterns are periodic. Then, we compress them using
wavelet transform [7], which localizes a function, called
a mother wavelet, both in space and scaling. We use
DaubechiesN=6 as the mother wavelet (see figure 4)
and remove high and law frequencies from the wavelet
coefficients as noise.

After the transformation, we classify the coeffi-
cients based on the action similarity by using centroid
method which is one of the hierarchical cluster analysis.
The objects to be clustered are the group of features of
the coefficients which are the largest time differential
value and its position in a walking cycle (see figure 5).

3.2 Perception Categorization

Unlike wheeled robots, the motions of actuators of
legged robots do not correspond directly to the mo-

(a) Making the leg a lifted leg

(b) Moving the lifted leg

Figure 3: The reflective gait
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Figure 4: The mother wavelet (Daubechies N=6)

tion with respect to the observed environment. Hence
to acquire such relationship is necessary to achieve the
desired position in the environment. In this method,
we use an optical flow taken from a TV camera on the
legged robot which show the changes of the view owing
to its action and also describe the motion with respect
to the observed environment.

First, we segment the image plane into four regions
and calculate a vector which denote the spatial average
of the whole optical flow in each region (see Figure 6)
to reduce the dependency on the specific position in
the environment. Next, we calculate the time averages
of such vectors during a walking cycle and obtain a vec-
tor consists of them. Finally, we classify the obtained
vectors by using the centroid method, and acquire the
flow pattern which denote the change of the view dur-
ing the cycle.

3.3 Vision-Motor Association

The robot can acquire a simple map which denotes the
relationship between the clusters of the action and the
flow patterns described above. If the flow patterns are
sufficient to represent the robot motion with respect
to the observed environment, the robot can move to
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Figure 5: The feature point of the wavelet coefficients

anywhere in the environment. For example, if we give
the robot the view of landmarks from the goal posi-
tion, the robot selects the flow pattern to move the
position of the landmarks in the image plane to the
goal, and generates the corresponding walking motion
pattern by the map. Consequently, it achieves the goal
by feeding back the difference between the goal view
and the current one.

4 EXPERIMENTS

4.1 Experimental Systems

In Figure 7, a legged robot TITAN-VIII [8] and its con-
troller used for the experiment are shown. The legged
robot is equipped with one camera (EVI-310, SONY).
The image from the camera is sent to a tracking u-
nit (TRV-CPD6, Fujitsu) equipped with a high-speed
correlation processor [9]. Before starting an experi-
ment, we give four 16[pixel]×16[pixel] patterns (called
reference patterns) to be tracked. During the experi-
ment the unit feeds coordinates where the correlation
coefficient is the highest with respect to the reference
patterns to the host computer G6-200 (Gateway2000,
CPU:Intel Pentium Pro 200MHz) through a PCI-bus
link in real-time (33[ms]). Each joint of the legged
robot is equipped with a potentiometer to observe its
joint angle. Each foot is also equipped with a force sen-
sor to observe its foot force and to estimate the position
of ZMP. The observed joint angles and the foot forces

image plane

The spatial average of optical flows

Figure 6: The four regions and a coarse flow (average
of the whole flow)

are sent to the computer through an A/D converter
board (RIF-01, Fujitsu). The computer calculates the
desired joint velocities and sends the commands to the
velocity controllers of joints through a D/A converter
board (RIF-01, Fujitsu). A hand cart is used to move
three target marks.

Figure 7: Experimental systems

4.2 Experimental Results

We show preliminary experimental results of the mo-
tion pattern extraction for the legged robot. In this
experiment, the visual targets were moved to forward
and rightward of the robot. Figures 8 (a) and (b) show
how the robot walks reflectively.

During walking, the robot memorizes the time se-
ries data of the angular velocities of all joints, and seg-
ments them into each walking cycle (Ci) which can be
observed by foot force sensors. In this case, the robot
memorized ten walking cycles (C1···10). The motion of
the robot during C1 to C5 were forward and the others
were rightward. In a part of figures 8 (a) show the mo-
tion during C1, and in a part of figures 8 (b) show the
motion during C6. Figures 9 (a), (b), (c), (d), (e), and
(f) show the time series data of right-foreleg during C1

and C3. Figures 10 (a), (b), (c), (d), (e), and (f) also
show the data during C6 and C8.

Next, the robot compresses the data based on
wavelet transform, and classifies them by using the
centroid method. Figures 11 show the wavelet coef-
ficients of the first joint during C1 and C6. A result
of classification is shown in figure 12. This figure in-
dicates that the robot motion can be clearly classified
by the method.

5 CONCLUSION

In this paper, we presented the method that acquires
a vision-motor association for the legged robot which



is capable of the vision guided reflective walking. We
showed the preliminary experiment and verified that
motion patterns can be extracted by the method based
on wavelet transform and the centroid method.

We are currently preparing experiment to verify
flow pattern categorization. In the future work, we
will achieve the navigation based on the vision-motor
association for the legged robot.
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Figure 8: The reflective walk
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Figure 9: The angular velocities of the right-foreleg
during foward motion

(a) The  1st  joint  (C )6

(b) The  2nd  joint  (C )6

(c) The  3rd  joint  (C )6

(d) The  1st  joint  (C )8

(e) The  2nd  joint  (C )8

(f) The  3rd  joint  (C )8
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Figure 10: The angular velocities of the right-foreleg
during rightward motion
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Figure 11: The wavelet coefficients of the first joint
angular velocity
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Figure 12: The result of classification


