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Abstract

Q-learning, a most widely used reinforcement learn-
ing method, normally needs well-defined quantized state
and action spaces to converge. This makes it difficult
to be applied to real robot tasks because of poor perfor-
mance of learned behavior and further a new problem
of state space construction.

This paper proposes a continuous valued Q-learning
for real robot applications, which calculates contribu-
tion values for estimate a continuous action value in
order to make motion smooth and effective. The pro-
posed method obtained the better performance of de-

sired behavior than the conventional real-valued Q-learning

method, with roughly quantized state and action.

To show the wvalidity of the method, we applied the
method to a vision-guided mobile robot of which task
is to chase the ball. Although the task was simple, the
performance was quite impressive. Further improve-
ment is discussed.

1 Introduction

Reinforcement learning has been receiving increased
attention as a method with little or no a priori knowl-
edge and higher capability of reactive and adaptive
behaviors through such interactions [1]. Asada et al.
have presented a series of works on soccer robot agents
which chase and shoot a ball into the goal or pass
it to another agent. In their reinforcement learning
methods, the state and action spaces are quantized by
the designer [2, 3] or constructed through the learning
process [4, 5, 6] in order to make Q-learning, a most
widely used reinforcement learning method [7], appli-
cable. That is, well-defined and quantized state and
action spaces are needed to apply Q-learning to real
robot tasks. This causes two kinds of problems:

e Performance of robot behavior is not smooth,
but jerky due to quantized action commands

such as forward and left turn.

e State space construction which satisfies Marko-
vian assumption is a new problem as noted in
[4, 5, 6]

In this paper, we propose a continuous valued Q-
learning for real robot applications. There were sev-
eral related works so far. Boyan and Moore reported
that the combination of dynamic programming and
parameterized function approximation had shown poor
performances even for benign cases [13]. Saito and
Fukuda[l1] and Sutton[12] proposed to use sparse-
coarse-coded function approximator (CMAC) for Q-
value estimation. However CMAC has its own prob-
lem of quantization and generally need a lot of learn-
ing data. This means their method takes long learning
time.

On the other hand, the proposed method inter-
polates continuous values between roughly quantized
states and actions. This contributes to realize smooth
motions with much less computational resources.

To show the validity of the method, we applied the
method for a vision-guided mobile robot of which task
is to chase the ball. Although the task was simple, the
performance was quite impressive.

The rest of this article is structured as follows: first,
Q-learning is briefly described, then our method is
explained. The method is applied to the domain of
soccer robot, RoboCup [8], where a learning robot at-
tempts to approach a ball. Finally, the real robot
learning results are shown and a discussion is given.

2  An Overview of Q-Learning
Before getting into the details of our method, we
will briefly review the basics of Q-learning, a most
widely used reinforcement learning algorithm.
Q-learning is a form of model-free reinforcement
learning based on stochastic dynamic programming.



It provides robots with the capability of learning to act
optimally in a Markovian environment. We briefly ex-
plain one-step Q-learning algorithm. We assume that
the robot can discriminate the set S of distinct world
states, and can take the set A of actions on the world.

1. Initialize Q(s,a) to 0 for all state s and action
a.

2. Perceives current state s.

3. Choose an action a according to action value
function.

4. Carry out action a in the environment. Let the
next state be s’ and immediate reward be 7.

5. Update action value function from s,a,s’, and
T’

Qt+1(57a) = (170‘)Qt(sva)

+a(r +7 max Q'(s',a")) (1)
aeA

where « is a learning rate parameter and + is a
fixed discount factor between 0 and 1.

6. Return to 2.

3 Continuous Valued Q-Learning
3.1 State and Action Representation

Sensor space

Figure 1: Calculation of contribution value w; for the
representative state s; in the case of two-dimensional
state space

The basic idea for continuous value representation
of state, action, and reward in Q-learning is to de-
scribe them as contribution vectors of representative
states, actions, and rewards. For the readers’ under-
standing, here we assume that the n-dimensional sen-
sory information directly construct the n-dimensional

state space, and the motor space has m-dimensions.
The robot perceives the current sensory information
as a state vector @ = (x1,x9,- - x,), and executes
motor command w = (u1,us, - Uy,). The following
explanation is for the state representation, but it is
also the case for action representation.

First, we tessellate the state space into n-dimensional
hyper cubes!. The vertices of all hyper cubes can be
the representative state vectors x' = (x4, 2%,---2%)
i = 1,---,N (here, N denotes the number of the
vertices), and we call each vertex the representative
state s;. The contribution value w¥ for each repre-
sentative state s; when the robot perceives the input
x = (1,29, - x,) is defined as follows:

1. Specify a hyper cube including the input x =
(1‘1,332, T xn)-

2. Tessellate the cube into 2™ hyper boxes based on
the input x (see Fig.1 for the two dimensional
case)

3. Calculate the volume of each hyper box.

4. Assign the volume w? of the box diagonal to the
state s;.

5. If the input @ is on the surface of the hyper cube,
the volume can be reduced to the area or the
length.

6. Any other contribution values for the states which
do not compose the above cube are all zeros.

Mathematical formulation of the above process is given
by

w¥ = H Li(zy), (2)

k=1

n
where

— |yt —
lz(xk):{(l) |2k — @]

Fig.1 shows the case of two-dimensional sensor space.
The area wi¥ is assigned as a contribution value for
state s;. The summation of contribution values w
for the input « is one, that is,

wa =1 (4)

Thus, the state representation corresponding to the
input @ is given by a state contribution vector w® =

(if |2t — 2k < 1)
(else)k ’ (3)

Ithe unit length is determined by normalizing the length of
each axis appropriately



(wf, -+, w¥). Similarly, the action representation cor-
responding to the output u is given by an action con-
tribution vector w* = (wi, .-, w¥), where M de-
notes the number of the representative actions a; in
the tessellated action space.

3.2 Modified Learning Algorithm

Since the state and the action are represented by
the definition mentioned above, we have to modify the
standard Q-learning algorithm as follows:

The Q-value when executing the representative ac-
tion a; at the representative state s; is denoted by
Qi ;- A Q-value at any state and action pair (x,u) is
given by:

N M

Q(m, u) = Z Z’w?w;"@zﬂ (5)

i=1 j=1

Given the representative state s;, the optimal rep-
resentative action is calculated by argmax; @; ;. The
optimal action contribution vector w®* for any state
x is given by:

N
w® = Zw;’pe(argmaXQi,j)a (6)
j
i=1

where e(k) denotes an M-dimensional vector of which
k-th component is one and of which others are zeros.

Mapping from the optimal action contribution vec-
tor w®* to motor command u* is given by:

~—

M
* u* g
u—gwju, (7
Jj=1

where w}‘* denotes the j-th component of w™*.
In order to obtain the optimal action based on eq.(6),
max @ is calculated by:

N M
max Q) = Z waw;u* Qi j (8)

i=1 j=1

Then, the action value when choosing an action u
at the current state x, and transiting the next state
@’ given reward r is updated by:

QY = (1 - auwfPuwih)Q} ; + awfuwl (r + ymaxQ"),
(9)
where max Q' denotes @ value when choosing the op-
timal action at the next state.
3.3 Time to Update Action Values
One of the problems with the rough quantization of
the state space is that one action does not always cor-
responds to one state transition. For example, in the

contribution
value fpr
representative X
states / time to update
X
W, W h

‘ ‘ time

Figure 2: sampling time

case of a mobile robot with a TV camera mounted on
it, one physical action (ex. forward motion command)
may result in a small change in the camera image,
which means the action is not sufficient to cause one
state transition. The Q-value updating just after tak-
ing a physical actions without state transition causes
an underestimate of Q-value for the state-action pair,
and the learner cannot acquire any appropriate pol-
icy. Asada et.al. called this “state-action deviation
problem” [2] and re-defined one action as a series of
one kind physical action primitives which causes one
state transition. That is, one physical action primitive
is repeated until a state transition.

To avoid this problem, we update Q value using
eq.(9) at not every physical fixed time step, but sam-
pled time step considering the time to update. We
specify the time to update Q value as follows: The
time to update is the moment when the contribution
value of the representative state which has maximum
value reaches the maximum (see Fig.2), and the mo-
ment when the situation doesn’t change for a specific
period. This manner has the same policy as that in
[2], that is “once the state has changed, the learner
update the action value function”.

4 Experimental Results
4.1 Task of real mobile robot

In order to show the validity of the proposed method,
we apply the method to a mobile robot of which task
is to chase a ball, one of the vision-guided behavior
acquisition. Fig.3 shows a picture in which the mobile
robot we have designed and built and the ball to chase
are shown. A simple color image processing (Hitachi
IP5000) is applied to detect the ball area in the image
in real-time (every 33ms).

The robot has a TV camera of which visual angles
are 35 degs and 30 degs in horizontal and vertical di-
rections, respectively. The camera is tilted down 23.5
degs to capture the ball image as large as possible.



Figure 3: A mobile robot and a ball

The image area is 256 by 220 pixels, and the state
space is constructed in terms of the centroid of the
ball image. The driving mechanism is PWS (Power
Wheeled System), and the action space is constructed
in terms of two torque values to be sent to two motors
corresponding to two wheels. These parameters of the
robot system are unknown to the robot, and it tries
to estimate the mapping from sensory information to
appropriate motor commands by the method.
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Figure 4: An overview of the robot system

The state and action spaces are two-dimensional
ones, and tessellated into 9 by 9 and 5 by 5 grids,
respectively. The learning rate a and the discount
factor v are 0.2 and 0.9, respectively. The parameters
are constant during the learning.

Action selection during the learning was random
and the goal state is a situation that the robot cap-
tures the ball region at the center of the image and
its size is pre-specified value so that the ball is lo-
cated just in front of the robot (about 50cm apart).
In other words, the goal state is that the coordinates
of the centroid of the ball region is (128,110).

Figure 5: The distribution of the centroid of the ball
image

right wheel motor command

left wheel motor command

Figure 6: The distribution of the action data: the left
(horizontal) and right (vertical) torques sent to the
robot

To show the efficiency of the exploration and smooth-
ness of the motion, we compare the results with stan-
dard Q-learning based on the quantized state and ac-
tion spaces. We prepared the same data of experi-
ences, and give them to the both methods. Fig.5 dis-
plays the distribution of the centroid of the ball image.
Fig.6 shows the distribution of the action data corre-
sponding to Fig.5.

Next, we show the difference in the step responses
of the robot behavior after the learning. The ball is
positioned 3m far from the robot. Fig.7 shows the
step responses, where the behavior based on the pro-
posed method successfully reaches the goal state with
smaller error and smoother motion than the standard
Q-learning method. The standard Q-learning method
sometimes lost the ball and oscillated left and right
before reaching the goal state. Fig.8 indicates the mo-
tor commands for the step response. The vertical axis
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Figure 7: Step responses with/without our method

indicates the torque ratio for the left and right wheels,
respectively. Fig.8 (a) shows the change of motor com-
mands by our method, where the robot turns (the op-
posite torque ratio can be seen) for the first ten steps,
then goes straightforward to the ball. While, Fig.8
(b) shows that the motor commands by the standard
Q-learning oscillated.

Fig.9 shows a picture in which a sequence of action
results is shown. First, the ball was at the top left
corner, then it was pushed into the top right corner.
We can see the robot approached the ball, and then
turned right to chase the ball.

5 Discussion

In this paper, we have proposed a continuous valued
Q-learning, which could obtain the much smoother be-
havior than the standard Q-learning. Rough quanti-
zation of the state and action spaces often causes a
bad performance, or a divergence of the learned pol-
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Figure 8: Motor commands for the step response

icy. On the other hand, fine quantization of the state
space needs much computational resources, therefore
a lot of learning data are required. This is one the
most serious issues to apply reinforcement learning to
real robot tasks. Many researchers have attacked this
problem by constructing the state space through the
experiences. However, our method could obtain the
better performance with less computational resources.

We are now investigating the theoretical formula-
tion of our approach and planning to apply more com-
plicated tasks. As a future work, we will make some
comparisons between the proposed method and the
other ones which use parameterized function approxi-
mations or memory-based methods.
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Figure 9: An image sequence of robot’s chasing a ball

(JSPS-RFTF96P00501)[15].
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