
Cooperative Behavior Acquisition by
Learning and Evolution in a Multi-Agent

Environment for Mobile Robots

by

Eiji Uchibe

Submitted to the Department of Mechanical Engineering for

Computer-Controlled Machinery

for the degree of

Doctor of Engineering

at the

Osaka University

on January 1999

Abstract

The objective of my research described in this dissertation is to realize learning and
evolutionary methods for multiagent systems. This dissertation mainly consists of four
parts.

We propose a method that acquires the purposive behaviors based on the estimation of
the state vectors in Chapter 3. In order to acquire the cooperative behaviors in multiagent
environments, each learning robot estimates the Local Prediction Model (hereafter LPM)
between the learner and the other objects separately. The LPM estimate the local in-
teraction while reinforcement learning copes with the global interaction between multiple
LPMs and the given tasks. Based on the LPMs which satisfies the Markovian environment
assumption as possible, robots learn the desired behaviors using reinforcement learning.
We also propose a learning schedule in order to make learning stable especially in the
early stage of multiagent systems.

Chapter 4 discusses how an agent can develop its behavior according to the complexity
of the interactions with its environment. A method for controlling the complexity is
proposed for a vision-based mobile robot. The agent estimates the full set of state vectors
with the order of the major vector components based on the LPM. The environmental
complexity is defined in terms of the speed of the agent while the complexity of the state
vector is the number of the dimensions of the state vector. According to the increase of
the speed of its own or others, the dimension of the state vector is increased by taking a
trade-off between the size of the state space and the learning time.

The vector-valued reward function is discussed in order to cope with the multiple
tasks in Chapter 5. Unlike the traditional weighted sum of several reward functions, we
introduce a discounted matrix to integrate them in order to estimate the value function,
which evaluates the current action strategy. Owing to the extension of the value func-
tion, the learning agent can estimate the future multiple reward from the environment
appropriately.

Chapter 6 discusses how multiple robots can emerge cooperative behaviors through
co-evolutionary processes. A genetic programming method is applied to individual popu-
lation corresponding to each robot so as to obtain cooperative and competitive behaviors.
The complexity of the problem can be explained twofold: co-evolution for cooperative
behaviors needs exact synchronization of mutual evolutions, and three robot co-evolution
requires well-complicated environment setups that may gradually change from simpler to
more complicated situations.

1

2

As an example task, several simplified soccer games are selected to show the validity
of the proposed methods. Finally, discussion and concluding remarks on our work are
given.

Thesis Supervisor : Minoru Asada
Title : Professor of Graduate School of Engineering,

Department of Adaptive Machine Systems, Osaka University

Thesis Committee : Minoru Asada, Chair
Yoshiaki Shirai
Masao Ikeda

Copyright c©1999 Eiji Uchibe

Acknowledgments

So many people have contributed to my growth during my work on this dissertation that
I am sure I will not remember to name them all.

I would like to thank my advisor, Professor Minoru Asada for his support for his
patient guidance and constant encouragement throughout this work. His valuable advice
and detailed criticism have enabled me to complete this dissertation. I also wish to my
gratitude to Professor Yoshiaki Shirai and Professor Masao Ikeda for their constructive
readings of this dissertation and their valuable advice.

A number of people have helped me through my dissertation by giving me words of
encouragement or enthusiasm. I would particularly like to thank Dr. Koh Hosoda for
his valuable guidance and stimulating discussions at the Laboratory. I also wish to my
gratitude to Dr. Sho’ji Suzuki for his useful advice and discussions. I owe thanks to Dr.
Takayuki Nakamura for his useful comments. His dissertation is a good guide to the study
of “reinforcement learning for a vision-based mobile robot.”

I would like to thank all members of the laboratory. Members of RoboCup group,
including Shoichi Noda, Yasutake Takahashi, Masateru Nakamura, Chizuko Mishima,
Hiroshi Ishizuka, and Tatsunori Kato, helped me with the implementation of the real
experiments.

My family has also been a great blessing and source of joy to me over the years. My
deepest thanks to them for always being there for me.

This research was supported by the Japan Society for the Promotion of Science, in
Research for the Future Program titled Cooperative Distributed Vision for Dynamic Three
Dimensional Scene Understanding (JSPS-RFTF96P00501).

3

Contents

1 Introduction 13
1.1 Background . 13
1.2 Our Approach . 14

2 Related Works 17
2.1 From a Viewpoint of Methodologies . 17

2.1.1 Evolutionary Technique . 17
2.1.2 Reinforcement Learning . 17

2.2 From a Viewpoint of Agent Architectures 18
2.2.1 Neural Network . 18
2.2.2 Tree Representation . 19

2.3 From a Viewpoint of the Role of Other Agents 19
2.3.1 Learning by Teaching (Demonstration) 19
2.3.2 Imitation . 20

3 Local Prediction Model 21
3.1 Introduction . 21
3.2 Construction of Internal Model . 23

3.2.1 Architecture for Each Learning Robot 23
3.2.2 State Representation in the LPM 24
3.2.3 Determination of the Parameters in the LPM 26

3.3 Integration of the LPMs and Reinforcement Learning 28
3.3.1 State Space Construction for Reinforcement Learning 28
3.3.2 Modification of the Action Value Function according to the Change

of the LPMs . 30
3.4 Learning Schedule for a Multiagent Environment 30
3.5 Task and Assumptions . 32

3.5.1 Environment and Robots . 32
3.5.2 Observation and Action Spaces . 32
3.5.3 Experimental Setup . 34

3.6 Experimental Results . 37
3.6.1 Estimated Dimensions and Historical Length 37

5

6 CONTENTS

3.6.2 Obtained Performance . 42
3.7 Discussion and Future Works . 47

4 Environmental Complexity Control 49
4.1 Introduction . 49
4.2 Definition of the Interaction Complexity 51
4.3 Learning from Easy Mission in Multiagent Environment 52

4.3.1 Basic Idea . 52
4.3.2 Algorithm for Efficient Reinforcement Learning 54

4.4 Task and Assumptions . 56
4.4.1 Environment and Robots . 56
4.4.2 Experimental Setup . 57

4.5 Experimental Results . 59
4.5.1 Speed Control of the Shooter . 59
4.5.2 Speed Control of the Defender . 64

4.6 Discussion and Future Works . 70

5 Vector-Valued Reward Function 71
5.1 Introduction . 71
5.2 Vector-valued Reward Function . 72

5.2.1 Temporal Difference . 72
5.2.2 Evaluation Function for Vector-Valued Rewards 73

5.3 Behavior Learning . 75
5.3.1 Estimation of the Policy . 75
5.3.2 Pareto based Action Selection . 75

5.4 Task and Assumptions . 77
5.4.1 Environment and Robots . 77
5.4.2 Experimental Setup . 78

5.5 Experimental Results . 80
5.5.1 Shooting a Ball into the Goal . 80
5.5.2 Shooting a Ball into the Goal without Collisions 82
5.5.3 Shooting and Passing a Ball without Collisions 85
5.5.4 A Simplified Soccer Game among Three Robots 88

5.6 Discussions and Future Works . 90

6 Co-Evolution for Cooperative and Competitive ... 91
6.1 Introduction . 91
6.2 Co-Evolution in Cooperative Tasks . 92
6.3 Task and Assumptions . 95

6.3.1 Environment and Robots . 95
6.3.2 Function and Terminal Sets . 95
6.3.3 Fitness Measure . 95
6.3.4 The GP Implementation . 99

CONTENTS 7

6.4 Experimental Results . 100
6.4.1 Two Learners . 100
6.4.2 Two Learners and One Stationary Robot 104
6.4.3 Three Learners . 109

6.5 Discussion and Future Works . 113

7 Conclusion 115

A Basics of Subspace State Space Identification 117
A.1 Problem Description . 117
A.2 CVA Algorithm . 118

B Basics of Reinforcement Learning 121
B.1 Standard Reinforcement Learning . 121

B.1.1 Problem Description . 121
B.1.2 Q Learning . 122

B.2 Coordination of Interfering Multiple Behaviors 122
B.2.1 Background . 122
B.2.2 Finding Inconsistent States among Interfering Multiple Behaviors . 123
B.2.3 Learning Rules . 125

List of Figures

3.1 A basic idea of our approach: integration of multiple LPMs and the rein-
forcement learning . 22

3.2 A whole system of our proposed method 24
3.3 Flowchart of the LPM to determine the historical length and the dimension

of the state vector . 27
3.4 Schedule for efficient learning in multiagent environments 31
3.5 Two robots and the environment . 33
3.6 Image features of the ball, goal, and other robot 33
3.7 A configuration of the real system. 36
3.8 Prediction error in the real environment 39
3.8 (continued) Prediction error in the real environment 40
3.9 Acquired singular values in the real environment 41
3.10 Success rates in computer simulation with the proposed scheduling method 44
3.11 Acquired cooperative behavior in computer simulation 45
3.12 Acquired cooperative behavior in the real environment 46

4.1 Interpretation of principal angles . 53
4.2 Transfer of the new action value function according to the environmental

complexity . 54
4.3 A flowchart of environmental complexity control method 56
4.4 Two real robots and the environment . 58
4.5 The success rate with the fixed dimension 61
4.5 (continued) The success rate with the fixed dimension 62
4.6 Success rate of shooting behavior with the variable dimension 63
4.7 The success rate with the fixed dimension 66
4.8 (continued) The success rate with the fixed dimension 67
4.9 Success rate of shooting and avoiding behaviors with the variable dimension 69
4.10 The shooter shoots the ball into the goal avoiding collisions with the defender 69

5.1 TD error (λ = 0) . 73
5.2 The integration of the LPMs and the actor-critic architecture 77
5.3 Three robots and the environment . 79
5.4 Differences of the acquired performance in a case of shooting behavior . . . 81

9

10 LIST OF FIGURES

5.5 Acquired shooting behavior in computer simulation 81
5.6 Acquired shooting and avoiding behavior in computer simulation 83
5.7 Experimental results of the acquired performance in a case of shooting and

avoiding behaviors . 84
5.8 Experimental results of the acquired performance in a case of shooting and

avoiding behaviors . 86
5.9 Acquired cooperative behavior (shooting and passing) in computer simulation 87
5.10 Curves of scores . 89

6.1 Difference between the previous method and ours 94
6.2 Three robots and the environment . 96
6.3 An example of a tree controller . 96
6.4 Two robots (r0 and r1) succeed in shooting a ball into the goal 101
6.5 Experimental results in a case of two learners with fixed fitness function . . 102
6.6 Experimental results in a case of two learners with varying fitness function 103
6.7 r0 shoots the ball into the goal . 105
6.8 r1 shoots the ball into the goal along the wall at generation 15 106
6.9 After r0 pushes the ball toward the in front of r1, r1 shoots the ball into

the goal avoiding collision with r2 . 106
6.10 Experimental results in a case of two learners and one stationary agent

with fixed fitness function . 107
6.11 Experimental results in a case of two learners and one stationary agent

with varying fitness function . 108
6.12 Experimental results in a case of three learners with fixed fitness function . 110
6.13 Experimental results in a case of three learners with varying fitness function 111
6.14 Two robots (r0 and r1) succeed in shooting a ball into the goal against the

defender (r2) . 112
6.15 The defender (r2) succeeds in shoot a ball into the goal against the two

robots (r0 and r1) . 112

B.1 Basic idea for coordination of interfering multiple behaviors based on rein-
forcement learning . 124

List of Tables

3.1 Learning schedule in this experiment . 35
3.2 Differences of the estimated dimension . 38
3.3 Performance results in real experiments . 45

4.1 The outline of the experiments . 59
4.2 The estimated dimension and the historical length in shooting task 60
4.3 The estimated dimension and the historical length in shooting and avoiding

tasks . 65

5.1 The summary of a series of the experiments 79

6.1 Function sets . 96
6.2 The parameters used in the fitness functions 98
6.3 Other parameters used in GP . 99
6.4 The tree depths and the number of nodes in a case of two learners experiments 101
6.5 The tree depths and the number of nodes in a case of two learners experiments 105
6.6 The tree depths and the number of nodes in a case of three learners exper-

iments . 109

11

Chapter 1

Introduction

1.1 Background

Building agents that learn to accomplish tasks through interactions with their environ-
ments has been acknowledged as one of the major challenges facing artificial intelligence
and robotics. Especially, multiagent systems have been receiving increased attention
in the field of artificial intelligence, computer vision, artificial life and behavior-based
robotics. Multiagent systems are important to study for a number of reasons, both in
terms of the analysis of existing systems, and in terms of the more effective synthesis of
new systems in such fields as distributed computation, decentralized control, distributed
artificial intelligence. Multiagent systems are often required because of spatial or geo-
graphic distribution, or in situations where centralized information is not available or is
not practical. Even when a distributed approach is not required, multiple agents may still
provide an excellent way of scaling up to approximate solutions for very large problems
by streamlining the search through the space of possible policies.

In a multiagent environment, interactions among agents is inevitable. Otherwise, we
can not say “multiagent” environment. Interactions can be classified into several cate-
gories : competition, cooperation, interference, ignorance, and so on. In general, cooper-
ative behaviors or social behaviors is difficult to design in a dynamic environment unless
all behaviors of other agents can be completely predicted. However, perfect prediction is
almost impossible due to the limit of sensing capability (partial information and dynamic
changes in the environment caused by actions of multiagent).

Generally, we have following difficult problems in multiagent learning:

1. State representation
Learning agents do not know other agents’ policies in advance, therefore they need
to estimate the policies through observations and actions. What’s the worse is that
they may change their policies through a learning process.

2. Credit assignment
If the credit involves group evaluation only, one robot may accomplish a given task

13

14 CHAPTER 1. INTRODUCTION

by itself and others do just actions irrelevant to the task as they do not seem to
interfere the one robot’s actions. Else, if only individual evaluation is involved,
robots may compete each other. This trade-off should be carefully dealt.

There have been a variety of approaches in distributed artificial intelligence, and behavior-
based robotics.

Distributed Artificial Intelligence

Distributed artificial intelligence (hereafter DAI) research can be divided into two general
categories: distributed problem solving and multiagent systems [26]. One of the key issues
in DAI research has been finding efficient mechanisms for coordination among multiple
intelligent agents. Coordination may also be achieved by means of negotiation. For
example, the contract net protocol [59] assigns tasks to agents on the basis of a bidding
mechanism. Agents respond to task announcements with bids indicating how well they
believe they can perform the task [51].

Recently, there has been a great deal of interest in incorporating learning into DAI
systems. Reinforcement learning [15, 27, 66] has been receiving increased attention as a
method for robot learning with little or no a priori knowledge and higher capability of
reactive and adaptive behaviors.

However, there is still a gap between them because the assumptions are different
between the task for DAI and robotics. Although the information derived from DAI
researches is seen to be of value to robotics, we need more study to realize multiagent
learning.

Behavior-Based Robotics

Since Brooks [11] proposed the behavior-based approach called “subsumption architec-
ture”, their group invented several kinds of behavior-based robots. The behavior-based
approaches might be promising as fundamental issues since they can react to a dynamic
environment such as multiagent environment.

Because these robots can take reflexive actions against the environment, we still lack
a capability of generating purposive behaviors. Therefore, some methods which combine
the robustness of the subsumption architecture and machine learning in order to overcome
this problem.

1.2 Our Approach

The objective of this dissertation is to develop techniques for behavior acquisition by
learning and evolution in a multiagent environment. We assume that

• there are no communication among the learning agents explicitly,

1.2. OUR APPROACH 15

• there are no global vision,

to acquire cooperative and/or competitive behaviors.
This dissertation consists of eight chapters and three appendices. Chapter 2 shows a

survey of related works from several viewpoints.
Chapter 3 describes one of our basic ideas. We propose a concept of Local Prediction

Model (hereafter LPM) to obtain an internal representation of several interactions from
a viewpoint of integration of observation and action. In order to apply reinforcement
learning to cooperative behavior acquisition in multiagent environments, each learning
robot estimates the LPMs between the learner and the other objects separately. Based
on the LPMs, robots learn the desired behaviors using reinforcement learning.

Chapter 4 gives an another application of LPM. In other words, we discusses how a
robot can develop its state vector according to the complexity of the interactions with
its environment. A method for controlling the complexity is proposed for a vision-based
mobile robot. First, we provide the most difficult situation, and the robot estimates the
full set of state vectors with the order of the major vector components based on the the
LPM. According to the increase of the environmental complexities, the dimension of the
state vector is increased by taking a trade-off between the size of the state space.

Chapter 5 shows the vector-valued reward function and behavior learning in the con-
text of multiple behavior coordination to cope with the tradeoff between the individual
and group utility. Unlike the traditional weighted sum of several reward functions, we
define a vector-valued value function which evaluates the current action strategy by in-
troducing a discounted matrix to integrate several reward functions. We implement the
actor-critic architecture [66] as an integration of the LPMs and the vector-valued reward
function.

Chapter 6 discusses how multiple robots can emerge cooperative behaviors through
co-evolutionary processes. A genetic programming method is applied to individual popu-
lation corresponding to each robot so as to obtain cooperative and competitive behaviors
through evolutionary processes. The complexity of the problem can be explained twofold:
co-evolution for cooperative behaviors needs exact synchronization of mutual skill devel-
opments, and three robot co-evolution requires well-complicated environment setups that
may gradually change from simpler to more complicated situations so that they can ob-
tain cooperative and competitive behaviors simultaneously in a wide range of search area
in various kinds of aspects.

Chapter 7 discusses the open problems of our system and gives some comments.
Finally, we summarize the key points of the dissertation and gives additional conclusion.

Chapter 2

Related Works

2.1 From a Viewpoint of Methodologies

2.1.1 Evolutionary Technique

Recently, co-evolution has been receiving increased attention as a method for multiagent
simultaneous learning. Genetic Algorithm (hereafter GA) [20] and Genetic Programming
(hereafter GP) [32, 33] are often used by the many researchers whose interests are co-
evolution, Artificial Life, and so on.

Pursuit problem between two robots (prey and predator) is often argued as an example
task. Cliff and Miller [12] have analyzed the relationship between a prey and a predator
in computer simulation. Floreano and Nolfi [18] have implemented simulated and real
robot experiments which co-evolved prey and predator robots of which skills gradually
leveled up under certain conditions. In this problem, the relation between the prey and
the predator is completely competitive.

Luke et al. [39] apply a GP method to the soccer game to evolve teams each of which
can be regarded as an individual and attempts to beat other teams, that is, co-evolution
for competition.

As described above, the previous researches related to co-evolution coped with com-
petition between individuals. In the realm of nature, we can see various aspects of behav-
iors emerged in multiagent environments, not only competition but also cooperation,
ignorance, and so on. That means there could be artificial co-evolution for other than
competition.

2.1.2 Reinforcement Learning

Sen et al. [57] described two-agent block pushing experiments, where the agents try to
make the block follow a line by independently applying forces to it. It is not clear why
they used Q learning, since this is not a sequential reinforcement learning problem where
the goal is to maximize the immediate reinforcement at each step.

17

18 CHAPTER 2. RELATED WORKS

Ono et al. [53] utilized Q learning and proposed modular Q learning in order to avoid
the state explosion problem in reinforcement learning. This method has to decompose the
state space and allocate suitable modules of modular Q learning in advance. Kohri et al.
[31] improved their method which can allocate the Q modules appropriately. Arai et al.
[3] applied modified profit sharing based on the Rationality Theorem [47] and Q learning
into the pursuit problem in a toroidal grid world. They concluded that profit sharing
is more suitable than Q learning experimentally in multiagent reinforcement learning.
However, in these methods, the behaviors of other agents do not considered.

Littman [38] proposed the framework of Markov Games in which Q-learning agents
try to learn a mixed strategy optimal against the worst possible opponent in a zero-
sum 2-player game in a grid world. He assumed that the opponent’s strategy is given
to the learner (the opponent tries to minimize a single reward function, while it is to be
maximized by the learning agent). Recently, Hu and Wellman [25] extended the Littman’s
work to the non-zero-sum 2-player game. However, they assume that

• the reward and action can be perceived each other, and

• the state space are shared among learning agents.

This assumption does not hold in robotic applications.
Sugita and Tani [64] implemented not only model learning but also behavior learning

by one recurrent neural network and realize a simplified cooperative game between two
robots in the real environment. However, they use the abstract features to train the
network, and their application is essentially unstable.

Stone and Veloso [62, 63] proposed a hierarchical learning architecture called “layered
learning” to develop a team of soccer agents. In the lowest level, the neural network coped
with the interception of moving a ball. The second layer classify the state space whether
the passing behavior can be accomplished or not by C4.5 [54] which is a kind of a decision
tree algorithm.

2.2 From a Viewpoint of Agent Architectures

Hidden state is common in multiagent contexts, since each agent may only perceive its
own local information using its own sensors. The perceptual aliasing problem has recently
received a great deal of attention from AI researchers who are attempting to build situated
or embedded agents, that is, agents that must perceive and act in the world.

2.2.1 Neural Network

Lin [37] compared window-Q based on both the current sensation and the N most recent
sensations and actions with recurrent-Q based on a recurrent network, and he showed
the latter is superior to the former because a recurrent network can cope with historical

2.3. FROM A VIEWPOINT OF THE ROLE OF OTHER AGENTS 19

features. However, it is still difficult to determine the number of neurons and the structures
of network in advance. Furthermore, the number of context unit is originally fixed.

Rao and Fuentes [55] described a framework which would consist of two components for
perception-based navigational behaviors in autonomous mobile robot. One is a stochas-
tic hill-climbing method which copes with reactive behavior acquisition such as obstacle
avoidance. The other is the Predictive Sparse Distributed Memory (hereafter Predictive
SDM) based on Kanerva’s model [28]. However, the Predictive SDM is a kind of supervised
learning.

2.2.2 Tree Representation

McCallum [44] has developed the memory-based reinforcement learning based on the tree
representation. His approach partitions the state space from sensory experiences, and
uses memory of features to augment the agent’s perceptual inputs.

Michaud and Mataric [45] proposed the method which introduce the use of the stored
history within the subsumption framework. They checked a history of selected actions
which is determined by a subsumption architecture, and modeled the interactions using
tree representation. However, fundamental behaviors have been embedded as a form
of subsumption architecture. Consequently, the agents can move around without their
proposed method.

The interactions between multiagents in this way is said to be in extensive form.

2.3 From a Viewpoint of the Role of Other Agents

2.3.1 Learning by Teaching (Demonstration)

There might be several ways to categories a methodology of learning from other agents
depending on who are other agents. Colleagues, opponents, teachers, critics, or gods. The
most popular method of learning from other agents is learning by demonstration [35] in
which other agents are kind and suggestive human operators.

Learning by teaching is often used in order to accelerate the learning speed. In classical
teaching method, the designer has to prepare the optimal input-output data in advance.
Recently, the method to evaluate the answer from the teacher was proposed by Dorigo
and Colombetti [17]. In this case, the teacher can be regarded as other agent from a
viewpoint of the learner. That is, learning by teaching is a kind of multiagent systems.

Learning from external critic proposed by Whitehead [74] is also categorized into this
class although an critic (other agent) has not shown any demonstrations but gives an
advice each time an agent takes an action. In these cases, other agents are cooperative
but not involved in the environment in which an agent learns to accomplish the given
tasks.

20 CHAPTER 2. RELATED WORKS

2.3.2 Imitation

Imitative learning is a term taken from ethology, and is also utilized to accelerate learning.
There is a slight difference on the method to evaluate between imitation and teaching.

Yamaguchi et al. [76] proposed the idea of selective mimetism, which can let the agent
to select whether learning or imitation by itself adaptively. This method assume that the
learning agent can observe not only the internal information of other agents but also the
action itself explicitly.

Demiris and Hayes [16] realized the imitation of translating movements between the
teacher and the imitators in 2D space. In this method, the relationship between the
teacher’s and the imitator’s posture was calculated.

Steels and Vogt [60, 61] proposed adaptive language games in order to communicate
between agents through interactions. However, their method does not take the action of
the learner into account. We suppose that the action as well as the sensory information
are important to understand behaviors of other agents.

Kuniyoshi [34] proposed a framework called Cooperation by Observation and realize
several patterns such as Posing (the observer is always orient toward the target robot),
Unblocking (the observer get rid of obstacle that stand on the way), Passing (the observer
take over the other robot’s job of bucket brigading) in the real environment. These co-
operative behaviors are accomplished by visual information. However, these architecture
are designed by a programmer and the problem of the integrated architecture is the same
as the case of the subsumption architecture.

Chapter 3

Local Prediction Model for
Cooperative Behavior Acquisition

3.1 Introduction

In a multiagent environment, the standard reinforcement learning algorithm does not
seem applicable because the environment including the other learning agents seems to
change randomly from a viewpoint of the learning agent. There are two major reasons
why the learning would be difficult in a multiagent environment:

A The other agents may use a stochastic action selector which might take a different
action even if the same sensation occurs to it, and

B The other agents may have perception (sensation) different from the learning agent’s.
This means that the learning agent would not be able to discriminate different
situations which the other agent can do, and vice versa.

As described above, the learning agents in multiagent environments need appropriate
state representation in order for learning algorithms to converge safely. However, it is
difficult to obtain a reasonable analytical model in advance. Although the uncertainties
of sensor and actuator outputs are considered by a stochastic transition model in the state
space, such a model cannot account for the accumulation of sensor errors in estimating the
robot position. Further, from the viewpoint of real robot applications, the learning real
robot should construct the state space so that it can reflect the outputs of the physical
sensors which are currently available. Therefore, the modeling architecture based on its
own experiences, that is, the sequences of observation and action are required to make the
learning algorithms such as reinforcement learning and memory-based learning applicable.

In this chapter, we propose a concept of a Local Prediction Model (hereafter, LPM),
which is a basic architecture for learning agents in multiagent environment. Each LPM
estimates the relationships between a learner’s behaviors and other robots through inter-
actions (observation and action) based on the method of system identification. The basic,

21

22 CHAPTER 3. LOCAL PREDICTION MODEL

Reinforcement Learning

LPM LPM
LPM

Fig.3.1 A basic idea of our approach: integration of multiple LPMs and the reinforcement
learning

3.2. CONSTRUCTION OF INTERNAL MODEL 23

important idea is that the complexity of interaction can be regarded as the order of the
state vector in the context of control theory. The problem that we face is how the agent can
determine the order of the state vector and estimate the state vector from its experiences.
In order for each LPM to construct the state vectors of other objects in an environment,
we use Canonical Variate Analysis (CVA) [36] as a internal observer. Furthermore, we
adopt Akaike’s Information Criterion(AIC) [1] to determine the order of the estimated
state vector. The model estimation process (construction of the state vectors) and the
reinforcement learning can be regarded as identifying the lower environment dynamics
of each object and obtaining the higher and non-linear interactions among the multiple
LPMs and the given tasks. Fig.3.1 shows a basic idea of our approach.

Next, we propose an efficient learning schedule which makes the learning processes
stable and accelerates the learning in the early stage of learning. The only thing we do is
to select the agent to be learned. Based on this scheduling method. The schedule specifies
which agent should learn and and when to change its turn to another agent.

We apply the proposed method to a simplified soccer game. The task of the robot
is to shoot a ball which is passed back from the other robot. Because the environment
consists of the stationary agents (the goal), a passive agent (the ball) and an active agent
(the other robot), the learner has to construct the appropriate state vectors for all of these
agents separately. After the learning robot estimates the state vectors, the reinforcement
learning is applied in order to acquire purposive behaviors. We show simulation results
and real experiments and give a discussion.

3.2 Construction of Internal Model based on Obser-
vation and Action

3.2.1 Architecture for Each Learning Robot

As described above, the learning agent needs appropriate state vectors which can predict
the future observation so as to make the learning processes stable. However, due to severe
problems such as the limitation of sensing capabilities, the uncertainties of motion and
unknown policies of other learning agent, the learning agent can not prepare the perfect
state vectors in advance. Therefore, what the learning agent can do is an acquisition of
state representation taking account of a trade-off between the number of parameters and
the prediction error from the sequences of observation and learner’s action.

Fig.3.2 shows a whole learning system for each agent to acquire purposive behaviors
based on our basic idea. Suppose that there are N objects in the environment which can
be discriminated by the learning agent. In the beginning, the learning agent estimates the
interactions between the learning agent itself and one of N objects separately. Each LPM i

(i = 1, · · · , N) outputs the state vector xi from the sequences of observation and action
{yi, u}. Based on the concepts of the LPM, a complexity of interaction is regarded as the
dimension of the state vector. Furthermore, the learner has one reinforcement learning

24 CHAPTER 3. LOCAL PREDICTION MODEL

reinforcement
learning module

y 1

xN

u

r
1x

y N

LPM1

LPMN

Fig.3.2 A whole system of our proposed method

module which estimate the action value function based on the set of N state (i = 1, · · · , N)
vectors xi estimated by the LPM i and a reward r from the environment.

Strictly speaking, all the robots do in fact interact with each other. Therefore, the
learning robots should construct the state vectors taking these interactions into account.
However, there are three problems:

1. It is intractable to collect the adequate input-output sequences and estimate the
proper model because the dimension of state vector increases drastically,

2. The learner can not obtain the complete information to estimate them because of
the partial observation due to the limitation of its sensing capability, and

3. There are several complexities of interactions between the learner and the other
objects. The learning agent should have the different representations with respect
to the complexity of interaction.

Therefore, the learning (observing) agent first estimates the state vector by the LPM
to individual (observed) other agents or objects in an environment separately and then
obtains the higher interactions among robots through the post reinforcement learning
process.

3.2.2 State Representation in the LPM

The LPM has to cope with a MIMO (multiple input (action) and multiple output (obser-
vation)) system. A number of algorithms to identify MIMO combined deterministic-
stochastic systems have been proposed in the field of system identification. In contrast
to ‘classical’ algorithms such as PEM (Prediction Error Method), the subspace system
identification algorithms [71] do not suffer from the problems caused by a priori parame-
terizations. Therefore, we utilize Larimore’s Canonical Variate Analysis (CVA) [36] which

3.2. CONSTRUCTION OF INTERNAL MODEL 25

is one of the subspace state space identification methods. CVA is one of such algorithms,
which uses canonical correlation analysis to construct a state vector. Here, we give a brief
explanation of CVA method.

CVA uses a discrete time, linear, state space model as follows: Let be the input and
output generated by the unknown system

xi
t+1 = Aixi

t + Biut,

yi
t = Cixi

t + Diut,
(3.1)

where xi ∈ <ni
, u ∈ <m and yi ∈ <qi

denote state vector, action code vector, and
observation vector, respectively. Further, Ai ∈ <ni×ni

, Bi ∈ <ni×m, Ci ∈ <qi×ni
, and

Di ∈ <qi×m represent parameter matrices.

Now, we construct new vectors as follows:

pi
t =

ut−1
...

ut−l

yi
t−1
...

yi
t−li

, f i
t =

yi
t

yi
t+1
...

yi
t+li−1

. (3.2)

where li is a historical length to be considered about the i-th object. Subspace state
space identification can estimate the state vector directly from the relationship between
two subspaces P i and F i constructed by two vectors pi and f i, respectively [72]. In
more detail, the state vector xi is represented as a linear combination of the previous
observation and action sequences

xi
t = [Ini]M ipi

t, (3.3)

where M i ∈ <li(m+qi)×li(mi+q), ni and Ini denote the memory function calculated by
CVA, the dimension of the state vector and the identity matrix (ni × ni), respectively.
Each element estimated by each LPM has a contribution-value µ with respect to future
prediction,

xi
t =

xi
t,1

xi
t,2
...

xi
t,ni

· · · µi
1

· · · µi
2
...

· · · µi
ni

(3.4)

where µi (i = 1, · · · , ni) are between 0 and 1.

All together, the problem which the LPM has to solve is summarized as follows:

26 CHAPTER 3. LOCAL PREDICTION MODEL

¶ ³
From the sequences of the observation and action {yi,u}, the learner has
to determine the historical length li and the dimension ni and to estimate
state vector xi. In addition, four parameter matrices Ai, Bi, Ci, Di

should be calculated.
µ ´

If ni and li is given, this problem can be formulated as a generalized singular value
decomposition. We show the detailed calculation of the matrix M i in Appendix A, where
we follow the explanation by Larimore [36] and van Overschee and De Moor [72].

3.2.3 Determination of the Parameters in the LPM

It is important to decide the dimension ni of the state vector xi and lag operator li that
tells how long the historical information is related to size determination of the size of the
state vector when we apply CVA to the classification of agents. Although the estimation is
improved if li is larger and larger, much more historical information is necessary. However,
it is desirable that li is as small as possible with respect to the memory size. In addition,
the dimension ni is also as small as possible because the expected learning time for the
reinforcement learning algorithms such as Q learning is exponential in the size of the state
space [74]. Therefore, we have to take a trade-off between the prediction error and the
memory.

It is necessary for the learner to estimate the state vector which satisfies Markovian
assumptions. Therefore the estimated state vector should guarantee minimum precision of
prediction for behavior acquisition at the sacrifice of the memory consumption. Then, we
determine the historical length li based on the norm of the covariance matrix of error Ri.
Next, we apply Akaike’s Information Criterion (AIC) [1] which is widely used in the filed
of time series analysis in order to determine ni. AIC is a method for balancing precision
and computation (the number of parameters). Let the error vector of observation vector
yi be εi and covariance matrix of error be

R̂
i
=

1

Nall − 2li + 1

Nall−li+1∑

t=li+1

εi
tε

i
t

T
, (3.5)

where Nall is the number of pairs (observation and action) to be considered to estimate
the state vectors. Then AIC(ni) is calculated by

AIC(ni) = (Nall − 2li + 1) log |R̂i|+ 2λ(ni), (3.6)

where λ(ni) is the number of the parameters used in Eq.(3.1) when the dimension of the
state vector is ni. The number of parameters If we use ni order state vector, the number
of free parameters including in Eq.(3.1) is calculated by

λ(ni) = ni(ni + m + qi) + mqi. (3.7)

3.2. CONSTRUCTION OF INTERNAL MODEL 27

reinforcement learning module

state vector x i

<R threshold

l = 1, 2, ...i { }y , uisequences of

state space with full dimension M p ii

no

yes

n =1, 2, ...i

AIC(n)i
minimum?

yes

no

Fig.3.3 Flowchart of the LPM to determine the historical length and the dimension of
the state vector

28 CHAPTER 3. LOCAL PREDICTION MODEL

We regard the optimal dimension ni∗ as the dimension which minimize AIC(ni). Fig.3.3
illustrates a flowchart of processing data in the LPM. For the sequences of observation
and action {yi, u}, each LPMs determines the historical length li and the dimension of
the state vector ni as follows:¶ ³

1. Initialize li = 1 and ni = 1.

2. For li, repeat until li and ni are determined.

(a) Construct the subspaces, and calculate the memory matrix M i by Eq.(A.9)
from the sequences {yi, u}.

(b) For the current li and ni (ni = 1, · · · qili), calculate the covariance matrix
of error Ri by Eq.(3.5).

(c) If ||Ri|| > threshold, increment li (li ← li + 1), and return to step (a).
Otherwise, go to step (d).

(d) Determine the optimal dimension ni∗ by

ni∗ = arg min
ni

AIC(ni), ni = 1, · · · qili

then the procedure is finished.
µ ´

We can regard the roles of two parameters li and ni as follows. The parameter li copes
with the lack of the current sensor outputs for prediction while the order estimation (ni)
eliminates the redundant representation.

3.3 Integration of the LPMs and Reinforcement
Learning

3.3.1 State Space Construction for Reinforcement Learning

Reinforcement learning algorithms improve their performance on tasks from delayed
rewards and punishments given by the environment. They are distinguished from super-
vised learning in that they have no teacher that tells the agent the correct answer to a
situation. A reinforcement learning module receives the estimated state vectors from the
LPMs as described in Section 3.2, and learns the relationships among them. Reinforce-
ment learning algorithms such as Q learning find a policy that maximize discounted sum
of the reward received over time,

v(xt) = E

{ ∞∑

n=0

γnrt+n

∣∣∣∣xt = x

}
, (3.8)

where rt is the reward received at step t given that the agent started in state x and executed
policy f . γ (0 ≤ γ ≤ 1) is the discounting factor. An action value function Q(x,u) is

3.3. INTEGRATION OF THE LPMS AND REINFORCEMENT LEARNING 29

defined in terms of the state x ∈ X and action u ∈ U , and updated incrementally based
on the reward rt from the environment.

In general, the reinforcement learning represents the action value function by

1. Look-up table :
The action value function is represented by a look-up table, where continuous state
and action spaces have to be quantized appropriately. In this representation, Q
learning has been shown to converge with probability 1 to optimal solution under
the Markovian decision processes. However, there is a severe problem. That is, this
representation needs not only the large memory for tables but also the time and
data to fill them precisely. This is so called the “curse of dimensionality.”

2. Function approximator :
A straightforward approach to the curse of dimensionality is to replace the lookup
table with a generalizing function approximator. For example, the action value func-
tion is approximated by CMAC [65], neural network [37] and other approximation
method [10]. In this representations, reinforcement learning can be applied to larger
problems with higher dimensional and continuous state spaces, and we may expect
some generalization for unknown states. However, this representation sometimes
leads to local minimum.

In this chapter, we choose look-up table representation because we can check the
results easily. Then we show how the continuous state vector is quantized. Because the
covariance matrix of the state vector xi ∈ <ni

estimated by Eq.(3.3) is a unit matrix,
that is, Σxx = Ini , we segment the each element xi,j (j = 1, · · ·n) of the estimated state
vector xi to 3 sub-states as follows:

xi
j < −1, −1 ≤ xi

j < 1, 1 ≤ xi
j. (3.9)

Furthermore, the learner has to consider the case where the target object can not been
observed. As a result, the total number of discrete states is 3ni + 1 taking an invisible
situation into account when the state vector xi ∈ <ni

estimated by the LPM i is quantized.
Hereafter, we describe the combined and quantized state vector dx ∈ <N as

dx = [dx1, · · · , dxN]T ,

where dxi denote the discrete state about the i-th object.
Since we segment the state space in a systematic manner mentioned above (Eq.3.9),

one action does not always corresponds to one state transition. This problem is called
“state action deviation problem” by Asada et al. [5]. Because of this problem, the
robot frequently returns to the same state. which prevents the learning from converging
correctly. Therefore, the robot continues to take one action primitive until the current
state changes [5]. This sequence of the action primitive is called “an action.” Once the
state has changed, we update the action value function. Based on the dx, we utilize
the modified reinforcement learning method [70] which can coordinate multiple behaviors
taking account of a trade-off between the learning time and the performance (see Appendix
B.2).

30 CHAPTER 3. LOCAL PREDICTION MODEL

3.3.2 Modification of the Action Value Function according to
the Change of the LPMs

After the agent moves around for a while, the LPM i calculates the memory matrix M i

again and updates the dimension of the state vector. Therefore, the learning robot has
to modify the action value function according to the change of the LPMs. In general, it
seems difficult to acquire a function which maps the action value function to another one
based on different state representation. However, it is not efficient to learn the behavior
from the beginning while the previous learning results are cast off. Then, we reuse the
learned policy as initial knowledge to reduce the learning time.

Let dxk, fk, Qk be the estimated state vector, the optimal policy and the action value
function at the k-th phase. We define the optimal mixture policy at the k-th phase taking
account of a trade-off between the current action value function and the previous one by

f ′k(
dxk) =

{
fk−1(

dxk−1) with probability (1− β),
fk(

dxk) with probability β,
(3.10)

where β (0 ≤ β ≤ 1) is a balancing probability. and fk(
dxk) is a pure optimal policy

function calculated by
fk(

dxk) = arg max
u′∈U

Qk(
dxk,u

′), (3.11)

Eq.(3.11) is the definition of the optimal policy in the standard Q learning algorithm.
Because we have to vary β from 0 to 1 gradually, β can be increased like

β =
trial− 1

Nall − 1
, trial = 1, · · ·Nall.

In fact, the learning robot has to select several actions to explore the unknown situations,
we use ε-greedy policy [66], meaning that most of the time the learning robot chooses an
action that has maximal estimated action value by Eq.(3.10), but with probability ε it
instead selects an action at random.

3.4 Learning Schedule for a Multiagent Environ-
ment

The actual learning process can be categorized into three ways.

1. Learning the policy in a real environment [40, 68]:
Except an easy task in a simple environment, it seems difficult to implement. One
alternative is teaching which can reduce the search space.

2. Learning the policy in computer simulation and transferring the policy to a real
environment [5]:
Since there is still a gap between the simulation environment and the real one, we
need some modification in the real experiment.

3.4. LEARNING SCHEDULE FOR A MULTIAGENT ENVIRONMENT 31

3. Combination of computer simulation and real experiments [46]:
Based on the simulation results, learning in a real environment is scheduled. This
corresponds to the case that the teacher is not a human designer but a simulated
learning agent. It become important to find differences between the computer sim-
ulation and real experiments to fill the gap.

We adopt the third one. However, in multiagent environments, there are uncertainties of
state transition due to unknown policies of other learning agent. If the multiple robots
learn the behaviors simultaneously, the learning process may be unstable, especially in
the early stage of learning. Therefore, we need a method which can stabilize the learning
processes especially in the early stage of learning. Fig.3.4 shows a basic idea of the
proposed learning schedule. At first, the designer selects one learning agent at random
from multiple learning agents. Unselected agents do not update its own action value
function and move around based on the policy which is previously acquired (the learner-i
is selected in Fig.3.4). Therefore, the selected agent is the only agent that can choose an
action freely in the environment at that time. After the selected agent has finished its
learning, the designer changes the next agent to be learned. We repeat this for robots to
acquire the purposive behaviors.

learning-phase
jlearner-

and act
fix action value,

observed-phase

function

learning-phase
update action value

function

observed-phase

learner-i
designer

learning-phase

and act
fix action value,

observed-phase

function

learner-k

Fig.3.4 Schedule for efficient learning in multiagent environments

32 CHAPTER 3. LOCAL PREDICTION MODEL

3.5 Task and Assumptions

3.5.1 Environment and Robots

We apply the proposed method to a simplified soccer game shown in Fig.3.5 in the
environment including two learning mobile robots (passer and shooter). The environment
consists of a ball and a goal, and a wall is placed around the field except the goal. The
sizes of the ball, the goals and the field are the same as those of the middle-size real robot
league in the RoboCup Initiative [21].

Each robot has a single color TV camera and does not know the locations, the sizes
and the weights of the ball and the other agent, any camera parameters such as focal
length and tilt angle, or kinematics/dynamics of itself. The task for the shooter is to
shoot a ball into the goal while the task for the passer is to pass a ball to the shooter.
Furthermore, both robots have to avoid collisions with each other as possible.

3.5.2 Observation and Action Spaces

The effects of an action against the environment can be informed to the agent only
through the visual information. The output (observation) vectors are shown in Fig.3.6.
The appropriate state vectors can not be constructed if the set of selected image features
is poor. Therefore, we utilize the fundamental image features as many as possible for
observation vectors. In more detail, we select following image features:

• ball : the center position (x, y), the radius, and the area in the image plane,

• goal : the center position (x, y), the positions of four corners (xi, yi) (i = 1, · · · , 4)
and the area, and

• other robot : the center position (x, y)，the width w, the height h and the area.

As a result, the dimensions of the observed vector about the ball, the goal, and the other
robot are 4, 11, and 5, respectively. Due to the limitation of our image processing unit,
the size of an image is reduced to 64 × 60 pixels and the resolution in our simulator is
adjusted.

Our mobile robots move around using a 4-wheel steering system shown in Fig.3.5. As
motor commands, each mobile robot has a two degree of freedoms. The input u is defined
as the 2 dimensional vector:

u =

[
v
φ

]
, v, φ ∈ {−1, 0, 1}, (3.12)

where v and φ are the velocity of motor and the angle of steering, respectively and both
of which are quantized. Since two pairs of (v, φ) = (0,±1) are no physical meaning, we
eliminate them. All together, the robot can select seven actions.

3.5. TASK AND ASSUMPTIONS 33

Fig.3.5 Two robots and the environment

robot
goal

ball

r

area

(,)y4x 4

x(,)y

1x y1(,)

2x y 2(,)

3yx 3(,)

w

h

x(,)y
x(,)y

area
area

Fig.3.6 Image features of the ball, goal, and other robot

34 CHAPTER 3. LOCAL PREDICTION MODEL

Due to the peculiarity of visual information, that is, a small change near the observer
results in a large change in the image, one action does not always correspond to one state
transition, that is, “state-action deviation problem” [5] occurs as described in Section
3.3.1. To avoid this problem, we reconstruct the action space as follows. Each action
defined above is regarded as an action primitive. The robot continues to take one action
primitive at a time until the current state changes. This sequence of the action primitive
is called “an action.”

3.5.3 Experimental Setup

Fig.3.7 shows a configuration of the real mobile robot system. The image taken by a
TV camera mounted on the robot is transmitted to a UHF receiver and processed by
Datacube MaxVideo 200, a real-time pipeline video image processor. In order to simplify
and speed up the image processing time, we painted the ball, the goal, and the opponent
red, blue, and yellow, respectively. The input NTSC color video signal is first converted
into HSV color components in order to make the extraction of the objects easy. The image
processing and the vehicle control system are operated by VxWorks OS on MC68040 CPU
which are connected with host Sun workstations via Ether net. The tilt angle is about
−26 [deg] so that robot can see the environment effectively. The horizontal and vertical
visual angle are about 67 [deg] and 60 [deg], respectively.

At first, each learning robot constructs the state vectors by the LPMs and starts to
learn purposive behaviors in computer simulation. One trial is terminated if (1) one of the
robots shoots a ball into the goal, (2) two robots make a collision, (3) one of the robots
or the ball goes out of the field, or (4) the pre-specified time interval expires. When a
pass behavior is achieved1, the trial still continues. We assign a reward value 1 when
the shooter shoots a ball into the goal and the passer passes the ball toward the shooter.
Further, a negative reward value −0.3 is given to the robots when a collision between
two robots is happened. We set the probability ε as 20%, which means that the random
action is selected with probability 20 %.

We set up the learning schedule as follows:
Computer simulation:

• period A (trial number 0 ∼ 250× 102) : The passer is selected. At first the passer
constructs three state vectors (of the goal, the ball, and the shooter), and then
improve its behavior. The shooter is stationary because it has no learned policies.
As a result, the shooter does not store data for construction of the state vectors and
improve the action value function.

• period B (trial number 250 × 102 ∼ 500 × 102) : The shooter starts to learn the
shooting behaviors while the passer acts based on the acquired behaviors during the

1In this chapter, in case one of the robots pushes the ball which rolls back from the other robot in a
short time, we judge that a pass behavior is achieved.

3.5. TASK AND ASSUMPTIONS 35

period A. In this period, the passer store the latest Nall sequences of observation
and action.

• period C (trial number 500 × 102 ∼ 750 × 102) : The passer modifies the LPMs
based on the collection data in the period B, and then update the action value
function again. The shooter behaves based on the result of period B.

• period D (trial number 750 × 102 ∼ 1000 × 102) : From the end of the period C,
the shooter learns in the same way.

Real experiment:

• period E (trial number 0 ∼ 100): We transfer the results of computer simulation
to the real environment. During this period, both of the shooter and the passer

1. update the LPMs based on the result of the period E,

2. collect the latest Nall sequences of observation and action, and

3. improve the action value functions2 based on the obtained real data.

• period F (trial number 100 ∼ 150) : Both robots update the LPMs based on the
data collected during period E. Both robots perform behavior learning.

After all, the learning schedule can be summarized in Table 3.1. In the computer simu-
lation, first four period (from period A to D) are regarded as one set of experiments. We
perform 10 sets of experiments. Then, we transfer the best results among 10 sets in the
computer simulation to real experiments.

Table 3.1 Learning schedule in this experiment
passer shooter

phase
the LPM action value the LPM action value

A store and update update do nothing fixed
B store fix store and update update
C update update store fix
D store fix update update
E update and store update update and store update
F update and store update update and store update

2In the real experiments, the action value function can not be updated at on-line fashion due to the
limitation of the experimental system. Therefore, we update the action value function after one trials
ends.

36 CHAPTER 3. LOCAL PREDICTION MODEL

Sun WS
SPARC station 20

Monitor

UPP

R/C
transmiter

UHF antenna

VME BOX

MC68040
MaxVideo
DigiColor
paralell I/O

TV Camera

Soccer Robot

tuner

transmiter
UHF

Fig.3.7 A configuration of the real system.

3.6. EXPERIMENTAL RESULTS 37

3.6 Experimental Results

3.6.1 Estimated Dimensions and Historical Length

We show the result of the estimated dimension n of the state vector and historical length l
in computer simulation and real experiments in Table 3.2 where we represent the results
in the order of the experiments (simulation → simulation → real experiments). Figs.3.8
(a), (b) and (c) show the sequences of prediction error (of center position y) of the ball,
the goal and the passer from the viewpoint of the shooter during the period F. From Table
3.2 and Fig.3.8, we can conclude the following things.

• goal : Because the goal is stationary object, the learner (shooter) can estimate the
interaction easily. As a result, the prediction error is the smallest among the objects.
The dimension of the estimated state vector of the goal is smaller than that of the
image feature vector. The prediction error become large at 15 sec because the goal
is almost occluded by the ball (for example, see Fig.3.12 (4)).

• ball : Because the ball does not move by itself, the interaction with the learner is
slightly simple. In addition, the ball is seldom occluded by other objects.

• passer : The interaction is the most complicated for the shooter in this experiment
because the passer can move by itself. The reasons why the prediction error is large
are that (1) the observation vector is not sufficient, (2) the LPM cannot represent
the relationship between two or more objects in the environment, and (3) the passer
is often occluded by the ball.

Next, we show the contributions of each element of the estimated state vectors for
prediction in Fig.3.9 by which we may conclude:

• goal : The image features of the goal directly correlate with learner’s action because
the goal is stationary. In this case, the order reduction procedure by AIC (Eq.(3.6))
is effectively performed.

• ball : In the selected four elements of the state vector, first two elements are dom-
inant to predict the movement of the ball. The remainder has a influence at the
ratio of about 60 or 70 percent as compared with the first two elements.

• other robot : As compared with the goal and the ball, the values are decreased
gradually. The prepared image features of the other robot is not sufficient although
the other robot can move actively.

We suppose the reasons why the estimated orders of state vectors and historical length
are different between computer simulation and real experiments as follows:

38 CHAPTER 3. LOCAL PREDICTION MODEL

1. Because there are the noise of sensor and the uncertainties in actuator outputs, the
prediction error of real experiments is much larger than that of computer simulation.
As a result, precision does not improve in spite of the increase of the order of the
estimated state vector.

2. In order to collect the sequences of observation and action, the robots do not select
the random action but move based on the result of computer simulation. Therefore,
the experiences of passer and shooter are biased.

As a result, the historical length of the real experiments tends to become larger than that
of the computer simulation. On the other hand, the estimated order of state vector for
the other robot of real experiments is smaller than that of computer simulation since the
components for higher and more complicated interactions can not be discriminated from
noise in the real environments.

Table 3.2 Differences of the estimated dimension (simulation→ simulation→ real exper-
iments)
† : The passer does not observe the goal after the pass behavior is acquired in this
experiment. As a result, the LPM does not updated except for the first period A.

observer target estimated dimension (order) historical length
goal 2 → 2 → 3 1 → 1 → 1

shooter ball 4 → 4 → 4 2 → 2 → 4
passer 6 → 6 → 4 3 → 3 → 5

goal† 3 2
passer ball 4 → 4 → 4 2 → 2 → 4

shooter 5 → 5 → 4 3 → 3 → 5

3.6. EXPERIMENTAL RESULTS 39

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18

pr
ed

ic
tio

n
er

ro
r

[p
ix

el
]

time [sec]

y position

(a) y position of the goal image

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18

pr
ed

ic
tio

n
er

ro
r

[p
ix

el
]

time [sec]

y position

(b) y position of the ball image

Fig.3.8 Prediction error in the real environment

40 CHAPTER 3. LOCAL PREDICTION MODEL

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18

pr
ed

ic
tio

n
er

ro
r

[p
ix

el
]

time [sec]

y position

(c) y position of the other robot image

Fig.3.8 (continued) Prediction error in the real environment

3.6. EXPERIMENTAL RESULTS 41

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

si
ng

ul
ar

 v
al

ue
 µ

element of the state vector

(a) shooter’s result (goal)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

si
ng

ul
ar

 v
al

ue
 µ

element of the state vector

(b) passer’s result (goal)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

si
ng

ul
ar

 v
al

ue
 µ

element of the state vector

(c) shooter’s result (ball)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

si
ng

ul
ar

 v
al

ue
 µ

element of the state vector

(d) passer’s result (ball)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

si
ng

ul
ar

 v
al

ue
 µ

element of the state vector

(e) shooter’s result (passer)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

si
ng

ul
ar

 v
al

ue
 µ

element of the state vector

(f) passer’s result (shooter)

Fig.3.9 Acquired singular values in the real environment. the number of elements is liqi.

42 CHAPTER 3. LOCAL PREDICTION MODEL

3.6.2 Obtained Performance

Next, we discuss the success rates of the acquired shooting and passing behaviors in
computer simulation and real experiments. Success rate of each behavior is calculated by

success rate =
number of achievement

number of trials
. (3.13)

We show the transition of the success rates of the proposed method and the previous
method (state space is constructed by only sensor information) [70] in Figs.3.10 (a) and
(b).

• period A : During this period, the passer is the only agent that can act in an
environment. In this situation, the task for the passer is to kick the ball to the
stationary shooter. As a result, the main difference between the proposed method
and the previous one is the representation about the ball. As you can see from
Fig.3.10, the proposed method acquired better behaviors than the previous method.
The reason is that the received reward is distributed over the large area of the state
space.

• period B : The important differences between the period A and B is the existence
of the other robot that can make a state transition. Both of the methods decrease
their success rates. The shooter using the proposed method acquires the appropriate
representation about the passer while the one using the previous method shoots the
ball into the goal regardless the passer behaviors. As a result the performances of
the passer are quite different.

• period C : The passer starts to learn behaviors again. Great differences between
two methods are revealed after the passer moves in order to learn passing behaviors
in the period C. Both of the success rates become stable. However, the passer
improves its behaviors while the success rate of shooting behavior decreases again
based on the previous method.

• period D : Again, the performances based on the previous method oscillate while
the success rates of the proposed method are improved gradually.

Therefore, we can conclude that the LPM is an effective tools to acquire cooperative
behaviors based on the reinforcement learning in a multiagent environment.

Table 3.3 shows the result in the real environment. The performances are improved as
compared with the simple transfer of the results of computer simulation. We suppose that
the reason why two robots successfully learn behaviors simultaneously in the real experi-
ments as follows. Each robot has behaviors of computer simulation with high performance
and selects optimal action with probability 80 %, it can concentrate on modification of
the LPMs and the action value function.

We checked what happened if we replace the LPMs between the passer and the shooter.
Eventually, large prediction errors of both sides were observed. The reason why they

3.6. EXPERIMENTAL RESULTS 43

acquire the different representation of the same objects is that there are differences in
several factors such as tilt angle, the angle of the steering and so on. Furthermore, their
experience are quite different because they have different tasks, respectively. Therefore,
the LPMs can not be replaced directly between physical agents even if they have the same
body (homogeneous agents). This causes the following new research issues:

1. How the agent share their internal representation to cooperate?

2. How to cooperate between heterogeneous agents?

Finally, we show the acquired behaviors by the proposed method. Fig.3.11 and
Fig.3.12 show a sequences of the cooperative behaviors in computer simulation and real
experiments. At the beginning, the passer kicked the ball toward the shooter, which shot
it into the goal. After the passer kicked the ball, it went backward so as to avoid collisions
with the shooter in Fig3.12 (a).

44 CHAPTER 3. LOCAL PREDICTION MODEL

0

20

40

60

80

100

0 200 400 600 800 1000

su
cc

es
s

ra
te

 [
%

]

trials (×100)

period C period D

period A period B
proposed_method
previous_method

(a) passing behavior

0

20

40

60

80

100

0 200 400 600 800 1000

su
cc

es
s

ra
te

 [
%

]

trials (×100)

period C period Dperiod A period B

proposed_method
previous_method

(b) shooting behavior

Fig.3.10 Success rates in computer simulation with the proposed scheduling method

3.6. EXPERIMENTAL RESULTS 45

Table 3.3 Performance results in real experiments
period E period F

success rate of shooting 57/100 32/50
success rate of passing 30/100 22/50
number of collisions 25/100 6/50

(1) (2) (3) (4)

(5) (6) (7) (8)

shooter

ball

passer

goal

Fig.3.11 Acquired cooperative behavior in computer simulation

46 CHAPTER 3. LOCAL PREDICTION MODEL

43

21

passer

goal

ball

shooter

(a) top view

1 2

3 4

(b) obtained images (left: shooter, right: passer)

Fig.3.12 Acquired cooperative behavior in the real environment

3.7. DISCUSSION AND FUTURE WORKS 47

3.7 Discussion and Future Works

This chapter shows how the LPM has an important role to acquire the cooperative behav-
iors based on the reinforcement learning in the multiagent environments. The LPM
estimates the local interactions between the learner and the other objects through the
sequences of observation and action while the reinforcement learning module copes with
the global interactions among the LPMs and the given tasks. The LPM can reduce the
ambiguity of the behaviors of other robots successfully. Our method takes account of the
tradeoff among the precision of prediction, the dimension of state vector, and the length
of steps to predict. We apply the proposed method to a simplified soccer game including
two mobile robots, and demonstrate that two robots realize cooperative behaviors such
as passing behavior, shooting behavior, and avoiding behavior even if the ball is rolling
well.

Spatial quantization of the image into objects has been easily solved by painting objects
in single color different from each other. Rather, the organization of the image features
and their temporal segmentation for the purpose of task accomplishment have been done
simultaneously by the proposed method. Each agent does not have explicit procedures
how to cooperate, but only has a look up table to behave that has been obtained through
the learning process. Therefore, the framework of behavior understanding of other robots
through observation and action is needed. Observation and action correspond to message
receiving and sending, that is, no explicit communication but the resultant behavior can
be regarded as cooperation from a viewpoint of the spectators.

There are three main issues to be considered.

Segmentation Problem

In this chapter, we do not cope with segmentation problem. Constructed state space is
quantized by Eq.(3.9) in order to apply the Q learning algorithm. However, there is no
guarantee that such a state space is always appropriate for the learning agent. So long as
the learning agent utilizes a tabular action value function, the learning agent are haunted
by the segmentation problem of the state and action spaces. To overcome this problem,
several quantization methods such as Parti game algorithm [48] and Asada’s method [5]
might be promising.

Exploration and Exploitation

In this experiments, we choose simple ε-greedy strategy as action selection. From a view
point of the construction of the LPMs which represents the model of the dynamics of
a certain phenomenon, the strategy of the robot needs to cover the whole space homo-
geneously. In other words, the inputs vector (motor command) applied to the system
(environment) should be persistently exciting. However, it is almost impossible to sample
the data because the time is limited and undesired inputs causes the destruction of the
robots. This problem is the same one discussed as the trade-off between exploration and

48 CHAPTER 3. LOCAL PREDICTION MODEL

exploitation in the field of the reinforcement learning. If the sampled data are biased, the
matrices A, B, C and D of the Eq.(3.1) changes. For example, the robot seldom kicks
the ball, the model of the ball will be regarded as a stationary one.

Generally, for the less biased data, the more data and longer time are necessary. An
effective method for data sampling should be developed, but there is a trade-off between
the effectiveness and a priori knowledge on the environment and the robot.

Non-Linear Problem

The LPM utilizes a discrete time, linear, state space model as a representation of inter-
actions. For example, suppose that the agent with omni-directional vision [67] uses the
LPM.

In order to cope with non-linear problems, two measures are promising. The non-
linearity is dealt with by identifying a time-varying system using recursive updating of
the model. This corresponds to a local linearization of the nonlinear system. A second
possibility is provided by the observation that (mild) nonlinearities do not matter as they
can be incorporated in the control design.

In the current system, we consider just two robots, and regard that the current system
can cope with global interactions. However, more robots in the field we have, more
complicated and higher interactions occur. As future works, we challenge to extend our
method when more than two robots learn cooperative and competitive behaviors.

Chapter 4

Environmental Complexity Control
to Accelerate Reinforcement
Learning

4.1 Introduction

Realization of autonomous agents that organize their own internal structure towards
achieving their goals through interactions with dynamically changing environments is
the ultimate goal of AI, Robotics, and A-Life. From a viewpoint of designing robots,
there are two main issues to be considered:

• the design of the agent architecture by which a robot develop through interactions
with its environment to obtain the desired behaviors.

• the policy how to provide the agent with tasks, situations, and environments so
as to develop the robot. When the given tasks are too difficult for the learner to
accomplish them, the reward is seldom given to the learner.

The former has revealed the importance of “having bodies” and eventually also a view of
the internal observer [69]. These are summarized as follows:

1. Sensing and acting are tightly coupled and not separable [22, 23].

2. In order to achieve the goal, the sensor and actuator spaces should be abstracted
under the resource bounded conditions (memory, processing power, controller etc.).

3. The abstraction depends on both the fundamental embodiments inside the agents
and the experiences (interactions with their environments). The consequences of
the abstraction are the agent-based subjective representation of the environment,
and its evaluation can be done by the consequences of behaviors [6].

49

50 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

Asada [4] discussed how the physical agent can develop through interactions with its
environment according to the increase of the complexity of its environment in the context
of a vision-based mobile robot. In this chapter, we put more emphasis on the second
issue, that is, how to control the environmental complexity so that the mobile robot can
efficiently improve its behaviors.

“Shaping by successive approximation” is a well-known technique in psychology of
animal behavior [56]. A simple and straightforward analogy to this situation is to design
a reward function to accelerate the reinforcement learning. However, this often requires a
priori precise knowledge about the details of the relationship between the given task and
the environment. Instead of providing such knowledge, an alternative called “Leaning
from Easy Missions” (LEM) paradigm was proposed [5] in which the learning time of the
exponential order in the size of the state space can be reduced to the linear order according
to the precision of the knowledge about the order of easy missions by setting up initial
configurations scheduled by the changes of the action values. Based on the concepts of
LEM, Asada et al. [7] reported that a learner can shoot a ball into the goal avoiding
collisions with other robots if the strategy of the other competitive robot is changed from
a simple behavior to complicated one gradually. However, the state space is fixed in the
methods [5, 7]. Yang and Asada [77] proposed Progressive Learning which learns a motion
to be learned from slow to fast and apply it to a peg insertion task. Omata [52] applied
Genetic Algorithm [20] to acquire the neural network controller which can drive a bicycle.
The designer give an initial velocity to the bicycle so as to control the bicycle easily. After
the generation proceeds, the assist is slightly decreased. This technique makes it easier
for the GA to locate the general area where the global optimum lies, at the early stages
of the search.

The basic idea of LEM paradigm can be extended to more complicated tasks, but
more fundamental issues to be considered are how to define complexity of the task and
the environment, and how to increase the complexity to develop robots. Since these issues
are too difficult to deal with as general ones, a case study on a vision-based mobile robot
is given in this chapter where the environmental complexity is defined in the context of
robot soccer playing and a method to control the environmental complexity is proposed
in which some periods are found and used to decide when to increase the complexity and
how much. In biology, for example, some song-birds such as chaff-inches and canaries
can be said that baby birds can not sing unless they listen their parents singing during
a certain period [50] called “critical period.” Since the living animals are developing any
time as both hardware and software systems from a viewpoint of physical robot design,
this period would be more critical than physical robot of which hardware system cannot
develop (be improved) so rapidly as the living animals. However, there seems be a kind
of “critical period” for robots to develop. Here, we call this “weak critical period.” In
our example, “weak critical period” is found as a period when the robot cannot to cope
with changing situations any more with the current state space and attempts at finding
new axis in the state space to cope with the new situations.

4.2. DEFINITION OF THE INTERACTION COMPLEXITY 51

The rest of this chapter is organized as follows: first we give an example of the complex-
ity definition in this chapter. Next, a method for efficient learning and development coping
with the increase of the task environment complexity is proposed. Then, an example task
of shooting with avoiding a defender is introduced. The proposed method is applied to
scheduling the speed of the defender for the efficient development of the learner that
attempting at coping with new situations by adding a new axis in its state space. Finally,
the preliminary experiments are shown, and other issues for the complexity control are
discussed.

4.2 Definition of the Interaction Complexity

Since each animal species can be regarded to have its own kind of intelligence, difference
of intelligence seems to depend on the kind of agent (capabilities in sensing, acting, and
cognition), the kind of environment, and the relationship between them. If agents have the
same bodies, differences or levels in intelligence can occur in the complexity of interactions
with their environments. In case of multiagent environment, the complexity of interactions
may change because of the presence of other agents in the environment. In the following,
we present our view regarding the levels of complexity of interactions, especially from a
viewpoint that takes account of the existence of other agents. To simplify the discussion,
we assume that the learning agent has a kind of external sensor such as vision, sonar, and
so on, which can observe the consequences of its own actions.

Self definition (boundary of the body) and static agents (environments):

The area in which an agent capable of action can directly correlate between motor com-
mands and sensor information. By direct correlation between motor commands the agent
sent and the sensor information observed during the motor command executions, the
agent can discriminate the static environment from others. Theoretically, discrimination
between “self body” and “static environment” is a difficult problem because the definition
of “static” is relative and depends on the selection of the reference (the base coordinate
system) which also depends on the context of the given task.

Nakamura and Asada [49] proposed motion sketch as an internal representation by
optical flow. In their early stage, the action space is categorized by the direct correlation
between motor commands and optical flows against the static environment. Hosoda and
Asada [24] proposed an adaptive visual servoing method which performs an on-line esti-
mation of image Jacobian by tracking a visual target and a feed forward control of the
robot arm to accomplish a given task (trajectory tracking) without any a priori knowl-
edge. This means that the parts which has a direct correlation with motor commands
such as the self body or the static environment can be found in a sense of that the robot
can estimate the image Jacobian on it.

52 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

Passive agents:

As a result of actions of the self or other agents, passive agents are moving or still. In
[5], the ball is a passive agent. In their work of autonomous sensor space segmentation
[6], the ball and the goal (a part of the static environment) are included, therefore the
complexity of the environment can be regarded higher than a task of goal achieving in a
static environment. Takahashi et al. [68] proposed a method of incremental sensor space
separation by which a real robot could learn to shoot a ball into a goal. In their method, a
ball is modeled as a static environment until the robot reaches it, then the ball is modeled
as a part of self body because its shape and size are constant.

Other active agents:

Active agents do not have a simple and straightforward relationship with self motions.
In the early stage, they are treated as noise or disturbance because of not having direct
visual correlation with self motor commands. Later, they can be found from more com-
plicated and higher correlations (coordination, competition, and others). The complexity
is drastically increased.

As described in Chapter 3, we introduce the idea of the LPM to represent the inter-
action between the learner and the other objects in the environment. In the LPM, The
complexity of the interaction with environment seems to develop the internal structure
inside the physical agent, and as a result, robot may emerge a variety of behaviors. In
order to realize such interactions, the robot needs the minimum mechanism to estimate
the increase of the environmental complexity.

4.3 Learning from Easy Mission in Multiagent Envi-
ronment

4.3.1 Basic Idea

In order for the agent to develop efficiently according to the increase of the environmental
complexity, it needs a mechanism to measure the complexity based on its experience. As
such a mechanism, a Local Prediction Model (hereafter, LPM) is used which estimates
the relations between the learner’s behaviors and the environment through interactions
(observation and action) using the method of system identification. As describe in Section
3.2.2, each element estimated by each LPM has a contribution-value µ with respect to
future prediction. That is, by approximating the relation between inputs (learner’s action)
and outputs (observation), each LPM gives the learning agent not only the successive state

4.3. LEARNING FROM EASY MISSION IN MULTIAGENT ENVIRONMENT 53

of the agent but also the priority of state vector as follows:

xi
t =

xi
t,1

xi
t,2
...

xi
t,ni

· · · µi
1

· · · µi
2
...

· · · µi
ni ,

(4.1)

1 ≥ µi
1 ≥ µi

2 ≥ · · · ≥ µi
ni ≥ 0, (4.2)

where µi (i = 1, · · · , ni) are the singular values calculated by Eq.A.8 and these µi cor-
respond to the cosines of the principal angles between the subspace P and F . Fig.4.1
shows an graphical interpretation of principal angles between two subspaces P and F .
Therefore, µi is between 0 and 1. Here, we focus on how to accelerate the reinforcement
learning by appropriately increasing the environmental complexity based on the value µi.

One can use all the state vectors to make the agent learn, but it would take enormously
long time due to the large size of the state space. Instead of using the all vectors, one can
start with a small size of the state vector set first and then increase the dimension of the
state space in the following stages. The action value function in the previous stage works
as a priori knowledge so as to accelerate the learning. In order to transfer the knowledge
smoothly, the state spaces in both the previous and current stages should be consistent
with each other. Therefore, the learning agent should have a full list of the state vectors
available in advance, and selects one among them at the periods when the robot no longer
can cope with the changing environment with the current state vector set.

AIC(n)

cosθ
1cos θ2f

2
p

1 0=θ
1 1= pf

P
F

x1 2x

θ

Fig.4.1 Interpretation of principal angles

54 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

Q(,)x1
d u

u xd
1

2xd
initial value 2xd

u xd
1

Fig.4.2 Transfer of the new action value function according to the environmental com-
plexity

4.3.2 Algorithm for Efficient Reinforcement Learning

As described above, the learning agent obtain the rough ordering of easy situation. In
general, it seems difficult to acquire a function which maps the action value function to
another one based on different state representation. However, it is not efficient to learn
the behavior from the beginning while the previous learning results are cast off. In order
to reduce the expected learning time, there are two methods as follows.

• The learned policy is used as an initial controller in developing process. We adopt
this method in Chapter 3 because the state representation is quite different.

• The learned action values are copied to the new action value function as initial
knowledge in developing process.

In this chapter, we adopt the latter. Now, suppose that the learning agent adds the new
axis dxj into the current state representation (dx1,

dx2, · · · , dxi). The size of the state
space before extension is 3i when we utilize the same segmentation by Eq.(3.9). The new
action value function Q(dx1,

dx2, · · · , dxi,
dxj) is generated by

Q(dx1,
dx2, · · · , dxi,

dxj) = original value of Q(dx1,
dx2, · · · , dxi). for all dxj, (4.3)

Fig.4.2 illustrates the procedure when we transfer of the action value from Q(dx1, u) to
Q(dx1,

dx2, u).
The learning agent has to observe the following two criteria: one is the convergence

criterion, and the other is its own performance criterion. When the learning has converged

4.3. LEARNING FROM EASY MISSION IN MULTIAGENT ENVIRONMENT 55

sufficiently, the following difference must be small,

∆Qt(X) =
∑

dx∈X

∣∣∣∣ max
u′∈U

Qt(
dx,u′)− max

u′∈U
Qt−1(

dx,u′)
∣∣∣∣. (4.4)

Then, ∆Qt(X) < threshold, the agent regards the learning process as the end. Further-
more, we utilize the following equation

success rate =
number of achievement

number of trials
, (4.5)

as a performance criterion which is the same criterion in Chapter 3 (Eq.(3.13)). The
learning agent reports the end of the learning detected by Eq.(4.4) to the human designer
in order to increase the interaction complexity while the learning agent adds the new axis
from the state vector list according to the drop of the performance based on Eq.(4.5).

An algorithm to control the increase of the environmental complexity is given in
Fig.4.3.¶ ³

1. Construct the LPMs in the most complex task environment.

2. Set up the desired performance criterion to accomplish (for example, success
rate of 80%).

3. Start with the minimum state vector set, say one or two dimensions for the
lowest complexity of the task environment.

4. Keep the complexity until the agent learns the desired behavior (reach the per-
formance criterion).

5. If the agent achieve the goal, increase the complexity slightly and return Step
4. Else, increase the dimension of the state space (find a new axis) and return
Step 4. The time period of the latter case is called “weak critical period.”

µ ´

56 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

desired behavior?

start learning with the
minimal state vector set

for a while

behavior learning using
reinforcement learning

yes increase the
dimension

no

performance
criterion

start

increase the
complexity

Fig.4.3 A flowchart of environmental complexity control method

4.4 Task and Assumptions

4.4.1 Environment and Robots

We apply the proposed scheduling method to a simplified soccer game shown in Fig.4.4
(a) in which two mobile robots are included. The environment consists of a ball and a
goal, and a wall is placed around the field except the goal. The sizes of the ball, the goals
and the field are the same as those of the middle-size real robot league in the RoboCup
Initiative [21].

Each agent has a single color TV camera and observes output vectors shown in
Fig.4.4(b), which are the same observation vectors as described in Chapter 3. The dimen-
sions of the observed vector about the ball, the goal, and the other robot are 4, 11, and
5, respectively. Our mobile robots move around using a 4-wheel steering system, which is
also the same body in Chapter 3. The effects of an action against the environment can
be informed to the agent only through the visual information. Furthermore, the agents
receive two kinds of top down information. One is the reward that is given by the envi-
ronment, and the other is the timing to alter the internal representation based on the
proposed scheduling method.

As motor commands, each agent has seven actions such as go straight, turn right, turn
left, stop, and go backward. Then, the input u is defined as the two dimensional vector
as

u =

[
v
φ

]
,

v ∈ {−V, 0, V },
φ ∈ {−φmax, 0, φmax}, (4.6)

4.4. TASK AND ASSUMPTIONS 57

where v and φ are the velocity of motor and the angle of steering, respectively and both
of which are quantized into three levels. Since two pairs of (v, φ) = (0,±φmax) are no
physical meaning, we eliminate them. All together, the robot can choose one of seven
actions. φmax is the maximum angle of steering, which is fixed through the learning
processes. On the other hand, V is the actual velocity of the mobile robot, which can be
controlled as the complexity parameter. That is, V is changed by

V =
k

Kmax

vmax, (4.7)

where k and Kmax are the index and the maximum one, respectively. The agent increases
k from zero or one to Kmax in order to alter the interaction complexity gradually. We set
Kmax = 10.

4.4.2 Experimental Setup

We perform two experiments to verify the proposed scheduling method to a simplified
soccer task.

1. Speed control of the shooter
There is one agent that can move actively in the environment. The task for the
learner is to shoot the ball into the goal. As a control parameter of interaction, the
speed of the learner is selected. In this experiment, the shooter vary the speed from
slow to fast (k = 1 → 10). We assign a reward value 1 when the ball is kicked into
the goal or 0 otherwise.

2. Speed control of the defender
In this experiments, there are two agents in the environment. One is a shooter
which learns to shoot a ball into a goal, and the other is a defender of which speed
is a control parameter in the environment complexity. We assume that the defender
has a basic behavior of moving to the ball, but its speed can be controlled as
the complexity parameter. The defender vary the speed from slow to fast (k =
0(stationary) → 11) while the shooter uses the maximum speed (k = 10). We
assign a reward value 1 when the ball is kicked into the goal or 0 otherwise. On the
other hand, a reward value −0.3 is given when the shooter hits the defender.

Table 4.1 shows the outline of the experiments.
To speed up the learning time, we select actions using the ε-greedy policy [66]. In this

method, the learning agent executes random actions with a fixed probability ε. We set
the probability of selecting a random action at ε = 10%.

58 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

shooter

ball

goal defender

(a) Two mobile robots (the shooter and the defender)

robot

area

w

h

x(,)y

goal

(,)y4x 4

1x y1(,)

2x y 2(,)

3yx 3(,)
x(,)y

area

ball

r

x(,)y

area

(b) Image features of the ball, goal, and other robot

Fig.4.4 Two real robots and the environment

4.5. EXPERIMENTAL RESULTS 59

Table 4.1 The outline of the experiments
XXXXXXXXXXXXitem

task
shooting shooting and avoiding

k = 1, · · · , 10 k = 0, · · · , 10
k

(10 levels) (11 levels)
selected LPM ball defender (other robot)

reward 1 or 0 1, −0.3 or 0
50 % (shooting)

pre-specified success rate 70 %
10 % (avoiding)

4.5 Experimental Results

4.5.1 Speed Control of the Shooter

At first, we show the experiments to control the complexity of the interactions in case of
the fixed dimension of the estimated state vector about the ball. We utilize a standard
tabular Q learning explained in Appendix B.1.2.

The shooter collects sequences of observation and action with the several speed (k =
1, · · · , 10), and estimate the state vectors based on the LPMs. As a result, the shooter
obtained the lists of the state vectors for the ball and the goal, respectively. The dimension
of the estimated state vector of the ball and the goal is 4 and 2, respectively (See Table
4.2). We choose the LPM about the ball (other vectors are remained unchanged) to cope
with the change of the complexity of the interaction.

Fixed Dimension regardless of the Change of the Shooter’s Speed

Fig.4.5 shows the graphs of the success rate of shooting behavior with fixed dimension
of the state vector for the ball (from 1 to 4). The speed is increased when the shooter
achieves the pre-specified success rate (70%) or no improvement can be seen. The arrows
indicate the time when the speed of the learner is accelerated (k = 1, · · · , 10).

The best success rate of the shooting behavior is about 80 % except the case of n = 1.

• (a) the case of n = 1
Because the size of the state space is the smallest, the expected learning time is
the shortest in these experiments. At the beginning (k ≤ 2), the shooter keeps the
success rate of shooting behavior at about 50 %. However, the performance get
worse drastically later.

• (b) the case of n = 2
At k = 1 and 2, the shooter succeeds in shooting the ball into the goal with prob-
ability 80 %. We suppose that the ball can be regarded as the static environment

60 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

because the learner moves slowly. Therefore, the shooter fails according to the
increase of the speed of its own. The performance get worse suddenly at k = 3 and
7.

• (c) the case of n = 3
From a viewpoint of the performance, we may classify the learning process into
three phase as follows: (1) k < 4, (2) 4 ≤ k ≤ 6, and (3) k ≥ 7. This case can be
regarded as the same phenomenon of the case of (b) n = 2.

• (d) the case of n = 4
Because the size of the state space is the largest, the expected learning time is the
longest. At the first step (k = 1), it takes about 52×102 trials to learn the behaviors.
After that, the learner regularly increases the speed of its own every about 20× 102

trials. In contrast to the other experiments, the success rate remains constant at
k = 3, 4. Although the success rate decreases at k = 7, it is maintained in spite of
the increase of the speed of the defender.

Consequently, it is sufficient to cope with this task by the case of n = 2, if the shooter
moves slowly so that the movement of the ball may be ignored. However, it is necessary
to represent the LPM of the ball by four dimensional state vector when the ball rolls well.

Table 4.2 The estimated dimension and the historical length in shooting task

target estimated dimension (order) historical length
ball 4 3
goal 2 2

4.5. EXPERIMENTAL RESULTS 61

0

20

40

60

80

100

0 5 10 15 20 25 30

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

k=3

k=6

(a) n = 1 (minimum situation)

0

20

40

60

80

100

0 10 20 30 40 50 60 70

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

k=3

k=7

k=3

k=7

(b) n = 2

Fig.4.5 The success rate with the fixed dimension

62 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

0

20

40

60

80

100

0 20 40 60 80 100 120 140

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

k=4

k=7

(c) n = 3

0

20

40

60

80

100

0 50 100 150 200 250

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

k=3 k=7

(d) n = 4 (maximum dimension)

Fig.4.5 (continued) The success rate with the fixed dimension

4.5. EXPERIMENTAL RESULTS 63

Variable Dimension according to the Change of the Shooter’s Speed

Fig.4.6 shows the result of the speed control of the shooter for the efficient learning.
Short and long arrows indicate the times to increase the speed of the learner (shooter)
and the dimension of the state vector, respectively. We set up 70 % performance criterion
by which the timing of the speed increase of the shooter is decided.

Our proposed scheduling method can achieve the almost same performance faster than
the case of learning by the maximum dimension of the state vector from the beginning. In
the same way as Fig.4.5(a), the desired performance can not be accomplished by the case
of n = 1. For this reason the shooter extends the state space from n = 1 to n = 2. After
the speed of the learner is changed to k = 3, the success rate decreases (See Fig.4.5(b)).
As a result, the shooter adds the new axis to the state space in succession (n = 3, 4).
Compared with Fig.4.5(d), the proposed scheduling method reduce the learning time by
about 60 %. It follows from this that our method is useful to acquire the purposive
behaviors efficiently.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

Fig.4.6 Success rate of shooting behavior with the variable dimension

64 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

4.5.2 Speed Control of the Defender

Next, we demonstrate the experiments to control the complexity of the interactions in case
of the fixed dimension of the estimated state vector about the defender. As a learning
method, we use modified reinforcement learning [70] described in Appendix B.2. This
method can coordinate multiple behaviors (shooting behavior and avoiding one) taking
account of a trade-off between the learning time and the performance.

At the beginning, the shooter collects sequences of observation and action with the
maximum speed vmax of the defender (the speed of the shooter is fixed), and estimate the
state vectors using the LPMs. Then, we obtain the list of the state vector for the defender
and others. The dimension of the estimated state vector of the defender, the ball and the
goal is 4, 4 and 2, respectively. We choose the dimension of the state vector only about
the defender (other vectors are remained unchanged) which is estimated by the LPM to
cope with the change of the complexity of the interaction.

Fixed Dimension regardless of the Change of the Defender’s Speed

Fig.4.7 shows the graphs of the performance data (the probability of the success rate of
shooting and making collisions) in terms of the speed of the defender with fixed dimension
of the state vector for the defender (from 1 to 4). The speed is increased when the shooter
achieves the pre-specified success rate (50%) or no improvement can be seen. The arrows
show the time when the speed of the defender is accelerated (10 % speed increase of the
maximum motion speed vmax from 0 (stationary)).

In spite of the number of dimensions, the best success rate of shooting is about 80 %.
However it takes much time for learning agent to acquire the best performance when the
dimension of the state space for the defender increases. In Fig.4.8 (d), the performance
data until the speed of 0.4vmax (k = 4) is shown because of the space limit. For all the
cases, there is a sudden drop of the performance when the defender changes the speed to
0.2vmax (k = 2).

• (a) the case of n = 1
Although the expected learning time is the shortest in these experiments because of
the smallest size of the state space, the performance of the learner go from bad to
worse drastically according to the increase of k. At k = 3, the probability to make
collisions is higher than the success rate of the shooting behaviors.

• (b) the case of n = 2
The success rate of shooting falls gradually, and the shooter tends to make collisions
with the defender. This trend is similar to the case of n = 1. However it takes much
time to acquire the behaviors although it leads to the almost same performance.

• (c) the case of n = 3
There is slight improvement of the success rate of shooting behaviors at k = 3, it

4.5. EXPERIMENTAL RESULTS 65

can not evade the falloff of the performance. The probability to make collisions
tends to go up.

• (d) the case of n = 4
Because the size of the state space is the largest, it takes the longest time to learn the
behaviors. Note that the probability to make collisions remains low. As compared
with the case of n = 1, 2, 3, the shooter keeps the probability in this experiment.
The probabilities of the shooting and collisions are 38.5 % and 14.7 %, respectively.

The reason why the learner fails to shoot the ball is that the action selection strat-
egy that we utilize in this experiment. The ε-greedy strategy selects the random action
with probability ε. Furthermore, the learning agent has to take account of the trade
off between shooting behavior and avoiding behavior while the defender only pushes the
ball. Therefore, the learning agent might not accomplish the shooting task if the defender
moves quickly.

Table 4.3 The estimated dimension and the historical length in shooting and avoiding
tasks

target estimated dimension (order) historical length
ball 4 3
goal 2 2

defender 4 4

66 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

0

20

40

60

80

100

0 20 40 60 80 100

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

shoot
collision

(a) n = 1 (minimum dimension)

0

20

40

60

80

100

0 50 100 150 200 250

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

shoot
collision

(b) n = 2

Fig.4.7 The success rate with the fixed dimension

4.5. EXPERIMENTAL RESULTS 67

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

shoot
collision

(c) n = 3

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

shoot
collision

(d) n = 4 (maximum dimension)

Fig.4.8 (continued) The success rate with the fixed dimension

68 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

Variable Dimension according to the Change of the Defender’s Speed

Fig.4.9 shows the result of the speed control of the defender for the efficient learn-
ing. Short and long arrows indicate the times to increase the speed of the defender and
the dimension of the state vector, respectively. The long arrows indicate “weak critical
periods.” We set up 50 % performance criterion by which the timing of the speed increase
of the defender is decided.

Compared with Fig.4.7, we may conclude that the fewer dimensions of the state space
contribute to the reduction of the learning time but less performance and vice versa. For
example, one dimensional state vector cannot cope with k = 2 while two dimensional
state vector can not represent the situation with k = 3 for the learner to learn shooting
behaviors. If we start with one dimension case and step up the dimension, we also give
up k = 4 but with four dimensions the collision rate is much less than the success rate
within 150× 102 trials.

Our proposed scheduling method can achieve the almost the same performance faster
than the case of learning by the maximum dimension of the state vector from the begin-
ning. We suppose that the reasons why our method can achieve the task faster are as
follows. First, the time needed to acquire an optimal behaviors mainly depends on the size
of the state space, which are determined by the dimension of the state vector estimated
by the LPM. Our method assigns the appropriate dimension of the state vector according
to the complexity while the full dimension of the state space (Fig.4.8(d)) is redundant in
the early state of learning. Second, since our proposed method utilizes the action value
function which is previously acquired as the initial value, it can reduce the learning time.
In other words, our method consider not only the size of the state space according to
the complexity but also the initial values of the action value function which is usually
initialized zeros.

Finally, we show the example of an acquired behavior in Fig.4.10. The two lines
emerged from each robot show its visual angle.

4.5. EXPERIMENTAL RESULTS 69

0

20

40

60

80

100

0 50 100 150 200 250

pr
ob

ab
ili

ty
 [%

]

trial (× 100)

shoot
collision

Fig.4.9 Success rate of shooting and avoiding behaviors with the variable dimension

(5) (6) (7) (8)

(1) (2) (3) (4)

shooter

ball

defender

goal

shooter

defender

Fig.4.10 The shooter shoots the ball into the goal avoiding collisions with the defender

70 CHAPTER 4. ENVIRONMENTAL COMPLEXITY CONTROL

4.6 Discussion and Future Works

In this chapter, we show the method of controlling the environmental complexity based on
the LPM proposed in Chapter 3. Generally, it seems difficult to know which situation is
easier than others to accomplish the task in advance, unless a priori knowledge on ease of
achieving the task is given. The proposed scheduling method substitute the state vector
list (Eq.(4.1)) estimate by the LPM for the exact ordering of easier situation. We demon-
strate two experiments along with a simplified soccer task including two mobile robots.
In the experiment using two agents, although the relation between them is competitive,
the defender should behave so that the learner can efficiently improve its behavior. In
other word, the defender is a kind of teachers for the shooter. This can be considered as a
problem of learning from other competitive agent. The large difference from the existing
schemes such as learning by Watching [35] and social learning [42] is that the other agents
is not always friendly nor suggestive to help the agent learn. Rather, the other agents
are involved in the task which the agent has to accomplish. The issue of the change of
difficulties according to the behavior of others is not irrelevant to the issue of mutual skill
development which we will explain in Chapter 6.

Strictly speaking, the order acquired by the LPM is the contribution-value with respect
to future prediction. Therefore, this ordering does not guarantee the optimal ordering with
respect to the easier situation. Nevertheless, the prediction learning has an advantage of
the learning speed as compared with behavior learning. There are two main issues to be
considered.

Selection of the Control Parameters

First, the number of control parameters is one in each experiment, but generally multiple,
each of which is related to each other. Even in the example task, the speed of the
learner, the dimensions of the state space, the resolution of the each dimension (fixed
(3 partitions) in the experiments) and the initial configurations of the ball, the goal, the
learner, and the defender should be considered together with the speed of the defender. In
such a case, since designer cannot completely understand the relationships among them,
it seems difficult to decide how to control the complexity completely.

Online Estimation

Then, the second issue is revealed. To cope with unknown complexity, the learning
agent should estimate the state vectors anytime when the task performance becomes
worse. However, this causes inconsistency in state vector sets between the current and
next learning stages. Therefore, the knowledge transfer is limited to the initial controller
(action selection) and the agent needs much more memory and the learning time. Since
this is against resource bounded condition, we should develop a new method which can
take account of this trade-off.

Chapter 5

Vector-Valued Reward Function for
Cooperative Behavior Acquisition

5.1 Introduction

Design of the reward function is one of the most difficult aspects in applying reinforcement
learning systems, especially in a multiagent environment. Since our system does not
facilitate the explicit communication among agents, the total performance may get worse
if each agent attempt to maximizes its own utility. One of the reasons is that the relation
among the reward functions is compromise or conflict. Zlotkin and Rosenschein [78]
classified the interaction of agents from a viewpoint of the reward function into three
categories: (1) cooperative, (2) compromise, and (3) conflict situation. In Chapter 3, each
agent does not have explicit procedures how to cooperate, but only has a look up table to
behave that has been obtained through the learning process. But the resultant behaviors
seem cooperative ones. This is owing to the careful design of the reward function.

If we can prepare the reward function that satisfy the (1) cooperative one in advance, it
is easy for the learning agents to cooperate because the purpose is consistent between the
individual and social (global). However, it seems very difficult to generate the appropriate
reward by itself since there are no criteria without explicit communication1, rewards
and/or penalties. Alternative is to consider not only the individual reward functions but
also whole ones including cooperative factors. The problem is how the agents should cope
with the multiple rewards because there is usually tradeoff between individual and team
utilities.

Mataric [42, 43] designed the several reward function from a viewpoint of animal inter-
actions and implemented the behavior learning based on the weighted sum of multiple
rewards. In her case, fundamental behaviors have been embedded as a form of sub-
sumption architecture, which makes learning itself simple. However, the methods of the
weighted sum of reward functions are faced with the essential problem of weighting which

1If the agents can communicate each other, compromise situation may be realized by negotiation [78].

71

72 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

we will explain later.

In this chapter, we propose a vector-valued reward function to cope with multiple
tasks. We implement an architecture of an actor-critic type as a learning mechanism.
The critic is a state value function. After each action selection, the critic evaluates the
new state to determine whether it has become better or worse than expected.

The rest of this chapter is organized as follows. First, we extend the scalar reward
function to a vector-valued one. Then, we describe our algorithm for behavior learning
based on the extended reward function by actor-critic method. We apply the proposed
method to a series of simplified soccer tasks. Finally, we show the results of computer
simulation, and a discussion is given.

5.2 Vector-valued Reward Function

5.2.1 Temporal Difference

Before explanation of the proposed method, we show a learning algorithm of Temporal
Difference (hereafter TD) method and the state value function briefly for the reader’s
understanding. We consider the state-outcome sequences of the form xt, xt+1, · · ·, xt+n,
r, where each xt is a state vector at time t in the sequence, and r is the outcome of the
sequence. Many such sequences will be normally obtained (See Fig.5.1).

The given task is to predict the future reward to receive at each state. TD(λ)2 [66]
maximizes (or minimizes) scalar cumulative discounted sum

vt(xt) =
∞∑

n=0

γnrt+n, (5.1)

where γ is a discount factor between 0 and 1.

Suppose that the environment makes a state transition from the current state xt to
the next state xt+1 and generates the reward rt. If the predictions are accurate (v is
optimal), we can obtain

v(xt) = rt + γv(xt+1),

from Eq.(5.1). The mismatch called “TD error” is the difference between two sides of this
equation. Therefore, vt is updated by

vt+1(xt) = vt(xt) + α[rt + γvt(xt+1)− vt(xt)], (5.2)

where α (0 ≤ α ≤ 1) is a learning parameter. Q learning [73] incorporates the “action”
into the idea of TD learning.

2λ is an exponential weighting parameter with recency [66]. For the sake of reader’s understanding,
we cope with the parameter λ = 0.

5.2. VECTOR-VALUED REWARD FUNCTION 73

r
v()x t

t+nxt+1xx t t+(n-1)x

t+1xv()

n -steps

Fig.5.1 TD error (λ = 0)

5.2.2 Evaluation Function for Vector-Valued Rewards

As described above, in case of realizing cooperative behaviors in a multiagent environment,
the learning agent has to consider the tradeoff between the individual and the team
purposes as possible. Suppose that the learner has N tasks to accomplish. The multiple
rewards from the environment are given to the agent as follows:

r =

r1

r2

...
rN

· · · the reward for the first task,
· · · the second task,

...
· · · the N -th task.

(5.3)

In order to cope with multiple rewards, one of the simplest implementation of them is
a weighted combination of the rewards like

r =
N∑

i=1

wiri, (5.4)

where wi is a weight for the reward ri, e.g, the objective is to maximize (or minimize) the
weighted sum

∞∑

n=0

γn(w1r1 + · · ·+ wNrN).

This reduces the problem to the case of scalar-valued reinforcement values. However, this
combination has the following deficits.

74 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

• The discounted factor γ is common to the all tasks.

• The estimated value function is unstable when we give both the positive and negative
rewards.

Since γ controls to what degree rewards in the distant future affect the total value of
a policy, we want to set the appropriate value for the corresponding tasks. A typical
example is “collision avoidance” which has different property (negative) from that of goal
directed behaviors (positive). That is, any action can be allowed to be taken unless it
causes collisions with other objects. In order to learn such a behavior, γ should be much
smaller so that the utility for the distant future cannot be affected.

Considering the above mentioned issue, we extend Eq.(5.1) to the vector-valued eval-
uation function. The discounted sum of the vector-valued reward can be expressed by

vt(xt) =
∞∑

n=0

Γ nrt+n, (5.5)

where Γ is N ×N matrix. We call Γ discounted matrix. If the eigen value of the matrix
Γ exists within the unit circle, the value expressed by Eq.(5.5) converges. Taking into
account the original meaning of the discounted factor, Γ should be a diagonal matrix

Γ =

γ1 0γ2

. . .

0 γN

. (5.6)

A vector-valued TD error can be calculated by

δt = rt + Γvt(xt+1)− vt(xt), (5.7)

As a result, the state value function in tabular representation is updated by

vt+1(x) = vt(x) + αδt, (5.8)

where α is a learning parameter between 0 and 1.¶ ³
1. Initialize the value function v(x) to 0s for all states.

2. Perceive the current state x.

3. Execute an action. As a result, the environment makes a state transition to the
next state x′ and generates the reward r.

4. Update the state value function from x, x′, and r by Eq.(5.8).

5. Return to 2.
µ ´

5.3. BEHAVIOR LEARNING 75

5.3 Behavior Learning based on the Vector-Valued
Reward Function

5.3.1 Estimation of the Policy

Actor-critic methods are TD methods that have a separate memory structure explicitly,
and represent the policy independent of the value function. The policy structure is known
as the actor, because it is used to select actions, and the estimated value function is known
as the critic, because it criticizes the actions made by the actor.

Although convergence proofs for the actor-critic algorithms are less than value itera-
tion based algorithms such as Q learning, the actor-critic algorithms have the following
practical advantages [30].

• It is possible to implement multidimensional continuous action, that is often mixed
with discrete action.

• It is easy to incorporate an expert’s knowledge into the learning system by applying
conventional supervised learning techniques to the actor [13].

The TD error can be used to evaluate the action u taken in the state x. If the TD error
is positive, it suggests that the tendency to select the action u should be strengthened
for the future. On the other hand, if the TD error is negative, it suggests the tendency
should be weakened. Let pt(x,u) be the vector at time t for the modifiable policy. Then
the strengthening or weakening described above can be implemented by increasing or
decreasing the value pt(x,u) by

pt+1(x,u) = pt(x,u) + Bδt, (5.9)

where B is a positive step-size parameter. To simplify the learning rule, we set B = βI,
where I ∈ <N×N is the identity matrix.

5.3.2 Pareto based Action Selection

For a pair of (x, u), the learning agent has a following objective function 3,

max
u∈U

[p1(x, u), · · · , pN(x,u)]. (5.10)

The natural choice is Pareto optimality, where an action u is a Pareto optimal action in
the state x if there are no no action u′ which satisfies pi(x,u′) ≥ pi(x,u) (i = 1, · · · , N).

The learning agent has to select several actions to explore the unknown situations.
Then, we use ε-greedy strategy [66], meaning that most of time the agent chooses an opti-
mal action, but with probability ε it instead selects an action at random. We summarize
the action strategy as follows.

3For the reader’s understanding, we discuss the case that all the value function has to be maximized.
Actually, the some value function has to be minimized.

76 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

¶ ³
1. Execute the random action with probability ε, or goto step 2.

2. Initialize rank(u) = 0 for all u ∈ U . For i = 1, · · ·N ,

(a) Calculate the optimal action corresponding to each pi (pT = [p1, · · · , pN]),

u∗i = arg max
u∈U

pi(x,u). (5.11)

(b) Increment rank(u∗i) = rank(u∗i) + 1.

3. Select action,
u∗ = arg max

u∈U
rank(u). (5.12)

µ ´
After all, the all actions are ordered with respect to the Pareto optimality, the learning
agent select the action which satisfy the optimal action as possible.

Fig.5.2 shows the integration of the LPMs proposed in Chapter 3 and the actor-critic
learning architecture. At first, the agent perceive the situation of the environment by its
own sensors. Based on the sequences of observation and action, the agent constructs the
LPMs for all objects, independently, and estimates the order and the state vector. After
the sets of the state vectors are obtained, they are sent to the module of the value function
and the policy. The value function evaluates the current policy from the estimated state
vectors and the rewards from the environment. On the other hand, the policy selects
the action based on the TD error from the value function. After the agent executes the
selected action, the environment makes a state transition to the next situation. The agent
acquires the purposive behaviors through this interaction with the environment.

5.4. TASK AND ASSUMPTIONS 77

TD-error

Value Function

Environment

LPMs

reward

action

observation

state
Policy

Fig.5.2 The integration of the LPMs and the actor-critic architecture

5.4 Task and Assumptions

5.4.1 Environment and Robots

We apply the proposed method to a simplified soccer game in the environment including
three learning mobile robots. Because robotic soccer has been increasingly attracting as a
benchmark for distributed artificial intelligence and robotics, and so on, many researchers
around the world challenge this task [21]. The environment consists of a ball and a goal,
and a wall is placed around the field except the goal. The sizes of the ball, the goals
and the field are the same as those of the middle-size real robot league in the RoboCup
Initiative [21].

Each robot does not know the locations, the sizes and the weights of the ball and
the other agent, any camera parameters such as focal length and tilt angle, or kinemat-
ics/dynamics of itself. Each agent has a single color TV camera and observes output
vectors which are the same observation vectors as described in Fig.3.6. That is, we pre-
pare the same image feature vectors used in Chapter 3. The dimensions of the observed
vectors about the ball, the goal, and the other robot are 4, 11, and 5, respectively.

The robot moves based on a Power Wheeled Steering (PWS) system which is different
from 4WS used in Chapter 3 and 4. As motor commands, each mobile robot has a two

78 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

degree of freedoms. The input u is defined as a 2 dimensional vector:

u =

[
v
ω

]
v, ω ∈ {−1, 0, 1}, (5.13)

where v and ω are the velocities of translation and rotation of the robot, respectively. In
this experiment, v and ω are quantized into three levels, which are uniformly distributed.
Totally, the agent can select one from nine actions at each state.

5.4.2 Experimental Setup

We perform four experiments to verify the proposed learning algorithm using a simplified
soccer game shown in Fig.5.3.

(i) Shooting a ball into the goal (Fig.5.3 (a))
In the environment, there is one learning agent r0 which learns to shoot the ball
into the goal. The task is not only to shoot the ball into the goal but also to kick
the ball. The second task, that is, to kick the ball is not originally the primal
task for the robot. The purpose of this experiment is to compare the differences
between the proposed method and the method of weighted sum when we introduce
the sub-reward in order to accelerate the learning processes.

(ii) Shooting a ball into the goal without collisions with other robot (Fig.5.3(b))
In this experiment, there are two agents in the environment. One is a shooter r0
which learns to shoot a ball into a goal avoiding collisions with the other robot as
possible, and the other r2 is a defender to disturb the learning agent. That is, this
is the same situation described in Chapter 4. The defender moves based on the fixed
policy.

In these two experiments, only one agent learns the behavior. We discuss the differences
between the proposed method and the previous one (weighted sum by Eq.(5.4)) because
it is easy to focus our attention on the differences between the proposed method and the
previous one. Then, we perform the following third and fourth tasks. In order to make
the learning processes stable, we utilize the learning schedule which we have proposed in
Section 3.4.

(iii) Shooting and passing a ball without collisions with each other (Fig.5.3(c))
There are two learning agents (r0 and r1) in the environment. The setting of this
experiment is as the same as that of one described in Chapter 3 except that the
role of each agent has not been pre-specified. That is to say, the reward function is
common between two learning agents.

(iv) Simplified game among three robots (Fig.5.3(d))
At last, we perform a simplified soccer game by three learning agents. r0 and r1
are teammates while r2 is a competitor against them. The difference from the

5.4. TASK AND ASSUMPTIONS 79

experiments described above is involvement of competition. This experiment will
be examined in the next Chapter 6.

One trial is terminated if one of the robots shoots a ball into the goal or the pre-specified
time interval expires. The trial still continues even if a pass behavior is achieved, the
robots make collisions, or the robot pushes the ball. Table 5.1 shows the summary of
these experiments.

Table 5.1 The summary of a series of the experiments
task no. (i) (ii) (iii) (iv)

the number of agents 1 2 2 3
the number of tasks 2 3 4 6

ball

goal

r0

(a) Shooting behavior

ballr0
r2

(b) Shooting and avoiding behaviors

ball
r0

r1

(c) Shooting, passing and avoiding behav-
iors

ball
r0

r1

r2

(d) A simplified game

Fig.5.3 Three robots and the environment

80 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

5.5 Experimental Results

5.5.1 Shooting a Ball into the Goal

We give the learning agent two tasks in this experiment. One is to shoot a ball into the
goal, and the other is to kick the ball. Then, the rewards are two dimensional vector as

r =

rs

rk

· · · the positive reward for success of shooting

the ball into the goal,
· · · the positive reward for kicking the ball.

(5.14)

We set a reward rs = 1.0 for the success of shooting the ball into the goal while a reward
rk = 1.0 is given when the robot kick the ball. The discounted matrix Γ is selected,

Γ = diag
[

0.9 0.6
]
.

In addition, we compare the proposed method with the following linear weighting reward
function,

r = rs + wkrk,

where wk is a weight. We prepare three weights as (a) wk = 0.0, (b) wk = 1.0, and (c)
wk = 0.2. The discounted factor γ in order to estimate the scalar-valued reward function
is set to 0.9.

Fig.5.4 indicates the differences among the proposed method and the other method.
It follows from this that

• (a) wk = 0.0 : This is the same reward function that we utilized for acquisition of
shooting behaviors in Chapters 3 and 4. This can be the ordinary reward function
which is widely used to achieve the monolithic task [5].

• (b) wk = 1.0 : The learning agent based on this method achieved the lowest success
rate of shooting the ball in to the goal. The reason is that the weight is not appropri-
ate to coordinate these behaviors (shooting and kicking). The same reinforcement
signal is given to the agent, which cannot distinguish the event with respect to the
value function. As a result, this agent tends only to kick the ball from a viewpoint
of us.

• (c) wk = 0.2 : Because the value of wk is so appropriate that this agent realize the
higher performance than the case of (b). In this experiment, the value 0.2 is chosen
by trial and error, however, it seems difficult to give the good reward value in more
complicated tasks.

• The agent based on the proposed method acquire the almost same behavior a little
bit faster than the case of original learning method.

Finally, we show a sequence of shooting behavior by the proposed method in Fig.5.5.

5.5. EXPERIMENTAL RESULTS 81

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

th
e

av
er

ag
e

nu
m

be
r

of
 k

ic
ki

ng
 th

e
ba

ll

trials (×100)

proposed
wk=0

wk=1.0
wk=0.2

(a) the number of kicking the ball

0

20

40

60

80

100

0 5 10 15 20 25 30 35

th
e

su
cc

es
s

ra
te

 o
f s

ho
ot

in
g

be
ha

vi
or

 [%
]

trials (×100)

proposed
wk=0

wk=1.0
wk=0.2

(b) the success rate of shooting the ball into
the goal

Fig.5.4 Differences of the acquired performance in a case of shooting behavior

1

5 8

2 3 4

76

r0

r0

Fig.5.5 Acquired shooting behavior in computer simulation

82 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

5.5.2 Shooting a Ball into the Goal without Collisions

Next, we consider the coordination of shooting and avoiding behavior. The defender r2
has a fixed policy of chasing the ball, and its motion speed is a 30 % of the maximum
speed taking account of the result4 described in Section 4.5.2. In this task, one agent
learns the behavior while the other moves around based on the fixed policy. We add a
new reward to Eq.(5.14),

r =

rc

rs

rk

· · · the negative reward for collisions,
· · · the positive reward for success of shooting,
· · · the positive reward for kicking the ball,

(5.15)

for the learner. We set the same rewards rs = 1.0 and rk = 1.0 for the success of shooting
the ball into the goal and kicking the ball. On the other hand, we assign a negative reward
rc = −1.0 when the learner make collisions with the other robot. The discounted matrix
Γ is selected,

Γ = diag
[

0.3 0.9 0.6
]
.

In the same way of Section 5.5.1, we prepare the linear weighting reward function

r = rc + rs + wkrk, (5.16)

to compare the proposed method. We select two values: (a) wk = 0.0, (b) wk = 1.0. The
discounted factor γ in order to estimate the scalar-valued reward function is set to 0.9.

We show the experimental results about the frequencies of reception of the external
rewards in Fig.5.7. It follows from Fig.5.7(a), the agent with wk = 1.0 tends to push
the ball more frequently than other agents. Then, the success rate of shooting behavior
is worse than the case of the proposed method and no weight.

The reason is that the reward function expressed by Eq.(5.15) is a mixture of the
positive and negative value. Then, the value function based on Eq.(5.16) may not estimate
the value (utility) appropriately5. Also, the problem of the estimator based on Eq.(5.16)
is to use the same discounted factor among the given tasks. Suppose that the learning
agent make a collision with other agent. The learning agent receive rc more frequently
than rs, which lets the agent to acquire the avoiding behavior at the beginning. As a
result, the agent can not seek the feasible solutions for acquisition of shooting behavior.

Although the proposed method consume the much memory, the value function can
estimate the utility much easier because it can assign different value function correspond-
ing to the given tasks. We have already proposed the method which can coordinate
multiple behaviors [70] described in Appendix B.2.2. We utilized this learning algorithm
to acquire the purposive behaviors in Chapters 3 and 4. The demerits of this method are

• to modify the discounted factor γ appropriately, and

4It seems too difficult for the agent to shoot a ball without collisions with the defender which moves
with the maximum speed.

5The value function sometimes fluctuates when the negative reward is given to the agent.

5.5. EXPERIMENTAL RESULTS 83

• to store the expected physical number of steps to reach the goal.

Therefore, this method is said to be in extensive form. As compared with the such
methods, the proposed method might be promising for integration of multiple behaviors.

Fig.5.6 shows an example behavior, where r0 shoots the ball into the goal avoiding
collisions with r2 (defender). After r0 push the ball near r2 at (see 5), r0 does not
approach the ball in order to avoid collisions with r2 (see 6 and 7). Consequently, the
ball rolls towards the goal.

1

5 8

2 3 4

76

r0

r0

r2

r2

Fig.5.6 Acquired shooting and avoiding behavior in computer simulation

84 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500

th
e

av
er

ag
e

nu
m

be
r

of
 k

ic
ki

ng
 th

e
ba

ll

trials (×100)

proposed
wk=0

wk=1.0

(a) the number of kicking the ball

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

th
e

su
cc

es
s

ra
te

 o
f s

ho
ot

in
g

be
ha

vi
or

 [%
]

trials (×100)

proposed
wk=0

wk=1.0

(b) the success rate of shooting the ball into the goal

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500

th
e

av
er

ag
e

nu
m

be
r

of
 c

ol
lis

io
n

trials (×100)

proposed
wk=0

wk=1.0

(c) the number of collisions

Fig.5.7 Experimental results of the acquired performance in a case of shooting and avoid-
ing behaviors

5.5. EXPERIMENTAL RESULTS 85

5.5.3 Shooting and Passing a Ball without Collisions

In this experiment, there are two learners. The tasks for both learners are (i) to shoot a
ball into the goal, (ii) to avoid collisions, (iii) to kick the ball, and (iv) to pass the ball
to the teammate. The fourth reward function is a kind of cooperative one. Then, we test
the coordination of shooting, passing and avoiding behaviors. We use the reward function
common to them. That is, it is slight different from the case of Chapter 3. The reward
function is

r =

rc

rs

rp

rk

· · · the negative reward for collisions,
· · · the positive reward for success of shooting,
· · · the positive reward to pass the ball,
· · · the positive reward for kicking the ball.

(5.17)

We assign the positive reward rp(= 1.0) when the pass behavior is accomplished. The
definition of the pass behavior in this experiment is the same as that of Chapter 3, that
is, the agent A receives rp after the other agent touches the ball which is pushed by the
agent A in a short time. Other rewards rc, rk and rs are the same values as described
above, respectively. Further, we select the discounted matrix,

Γ = diag
[

0.3 0.9 0.9 0.6
]
.

In this experiment, since there are multiple agents that learn behaviors, simultaneous
learning may cause poor performance, especially in the early stage of learning. Then, we
apply the learning schedule proposed in Chapter 3. We set up the same learning schedule
described in Section 3.5.3, that is,

• period A (trial number 0 ∼ 250× 102) : r0 is a learner while r1 is stationary,

• period B (trial number 250 × 102 ∼ 500 × 102) : r1 is a learner while r0 moves
around based on the result and policy obtained during the period A,

• period C (trial number 500× 102 ∼ 750× 102) : r0 is selected as a learner again
while r1 moves around, and

• period D (trial number 750 × 102 ∼ 1000 × 102) : r1 construct the LPMs, and
learn the behaviors again.

Fig.5.8 shows the learning curves with respect to the frequencies of the reception of
the rewards rs and rp. We omit the learning curves of rc and rk since the curves seem
to be the almost same trend as the curves described in Section 5.5.2. As we can see
from Fig.5.8(a), the success rate of shooting behavior gradually increased through the
interactions. Until the end of the period A, only r0 shot the ball into the goal because
r1 did not move in this period.

It follows from Fig.5.8(b) that the frequencies of passing behaviors also increased. The
passing behaviors not only from r0 to r1 but also from r1 to r0 are reinforced in the

86 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

0

20

40

60

80

100

0 2 4 6 8 10 12

th
e

su
cc

es
s

ra
te

 o
f s

ho
ot

in
g

be
ha

vi
or

 [%
]

trials (×104)

r1

r0

r0
r1

(a) shooting behavior

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

th
e

su
cc

es
s

ra
te

 o
f p

as
si

ng

trials (×104)

r1→r0

r0→r1

r0
r1

(b) passing behavior

Fig.5.8 Experimental results of the acquired performance in a case of shooting and avoid-
ing behaviors

5.5. EXPERIMENTAL RESULTS 87

1

5 8

2 3 4

76

r0

r1

r0
r1

Fig.5.9 Acquired cooperative behavior (shooting and passing) in computer simulation

period A. Even though r1 was stationary, the ball was sometimes run into the r1 by
accident. Then, the rp was given to r1 after r0 pushed the ball.

We show an acquired behavior in Fig.5.9. As we can see from this figure, both robots
tend to push the ball. For instance, after r0 received the reward rp at Fig.5.9 (5), r0
follows r1 in order to shoot the ball into the goal. The reason is is that r0 does not know
the policy of r1 explicitly in the current algorithms, If r0 can predict the behavior of r1,
r0 has a chance to select another action so as not to disturb the behavior of r1. Reactive
planning based on the LPMs might be promising in order to realize such a purposive
action selection mechanism.

88 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

5.5.4 A Simplified Soccer Game among Three Robots

Finally, we perform three-robots’ experiments. This experiment involves the cooperative
and competitive tasks. r0 and r1 are teammates. We add a new reward function rl to
Eq.(5.17). The six dimensional reward vector is

r =

rc

rl

rm

rs

rp

rk

· · · the negative reward for collisions,
· · · the negative reward for losing scores,
· · · the negative reward to pass the ball to the opponent,
· · · the positive reward for success of shooting,
· · · the positive reward to pass the ball the teammate,
· · · the positive reward for kicking the ball.

(5.18)

We assign the negative reward rl(= −1.0) when the team to which the agent belongs
lose the goal. Other rewards rc, rs, rp and rk are the same value used before, respectively.
Furthermore, we choose the discounted matrix,

Γ = diag
[

0.3 0.9 0.9 0.9 0.9 0.6
]
.

We apply the learning schedule in the same way to make learning stable in the early
stage. We set up the following three learning schedules,

• case (a) : r0 → r1 → r2

• case (b) : r2 → r0 → r1

• case (c) : r0 → r2 → r1 → r2

Each interval has the same length in Section 5.5.3. After each agent learned the behaviors
(all the agent was selected at once), we recorded the total scores in each game. Fig.5.10
shows the histories of the game.

As we can see from this figure, the obtained result depends on the order to learn.
Although this game is two-to-one competition, r2 won the game if we selected r2 as the
first agent to learn. Otherwise, a team of r0 and r1 defeated r2. Even though r2 was
selected twice in one cycle (case (c)), r2 could not win the game.

5.5. EXPERIMENTAL RESULTS 89

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

to
ta

l s
co

re
s

by
 r

2

total scores by r0 and r1

case (a)
case (b)
case (c)

Fig.5.10 Curves of scores

90 CHAPTER 5. VECTOR-VALUED REWARD FUNCTION

5.6 Discussions and Future Works

This chapter has shown how the learning agent cope with the multiple tasks in multiagent
environment. In order to realize cooperation, global evaluation factors are added to the
reward function. In other words, the task for the agent is to consider the tradeoff between
the individual evaluation and the global one. One of the simplest implementation of
the multiple rewards is to sum up all the rewards from the environment. However, this
method sometimes leads to poor estimation.

Instead, we proposed the vector-valued reward estimator to evaluate the multiple
rewards. Although this method needs much more memory than the weighting method,
the vector-valued reward estimator can distinguish the reward. We apply the proposed
method to several simplified soccer games, and demonstrate that the learning agents can
acquire the purposive behaviors taking account of the tradeoff between individual and
group goals. Now, we are planning to implement real experiments to check the validity
of the proposed method and the obtained behaviors. There are two main issues to be
considered.

Design of the Discounted Matrix

In this chapter, we use the diagonal matrix as Γ because it is easy to understand the
meaning of Γ . Γ can be regarded as a kind of interaction among given tasks. It is not
evident how the general Γ will affect learning of actor-critic expressed by Eqs.(5.8) and
(5.9). We have to make clear that how we select Γ .

The Merits and Demerits of the Learning Schedule

If the multiple robots learn the behaviors simultaneously, the learning process may be
unstable, especially in the early stage of learning. Then, we have already proposed the
learning schedule to make the learning processes stable in Chapter 3. We have applied this
method to some experiments in Sections 5.5.3 and 5.5.4 as the same way. This scheduling
is a kind of teaching, help the agents to search the feasible solutions from a viewpoint of
the designer. The results in Chapter 3 showed the validity of this scheduling when the
task is cooperative one.

However, the demerits of this method is also revealed when we apply it to the com-
petitive tasks described in Section 5.5.4. That is, the learning schedule often leads the
competitive game to the local maxima. Therefore, we need to extend the learning sched-
ule to the one including competitive situations. We will discuss the alternative in next
Chapter 6 from a viewpoint of evolutionary approaches.

As future works, we are planning to extend our method in order to predict the behavior
of other agents from a viewpoint of the reward functions.

Chapter 6

Co-Evolution for Cooperative and
Competitive Behavior Acquisition

6.1 Introduction

In this chapter, we discuss how multiple agents can acquire cooperative and competitive
behaviors through interactions. As stated in the previous chapter, it seems difficult to
apply conventional learning algorithms such as reinforcement learning to co-evolution of
cooperative agents since the environment including other agents may cause unpredictable
changes in state transitions for learning agents. We have shown reinforcement learning
supported by Local Prediction Models (hereafter LPMs) and learning schedule in Chapter
3. This method estimated the relationships between learner’s behaviors and other robot
ones through interactions. In this method, only one robot may learn and other robots
had to fix their policies for successful learning to converge.

Recently, emergence of cooperative behaviors between multiple robots has been receiv-
ing increased attention as a problem of multiagent simultaneous learning. In the realm
of nature, we can see various aspects of behaviors emerged in multiagent environments,
not only competition but also cooperation, ignorance, and so on. That means there could
be artificial co-evolution for other than competition. This chapter discusses how multiple
robots can obtain cooperative behaviors through co-evolutionary processes. As a task
example, a simplified soccer game with three learning robots is chosen and a Genetic
Programming (hereafter GP) method [32, 33] is applied so as to experimentally evaluate
obtained behaviors in the context of cooperative and competitive tasks. Each robot has
its own individual population, and attempts to acquire desired behaviors through inter-
actions with its environment that is ever changing in the co-evolutionary process. The
complexity of the problem can be explained twofold:

1. Co-evolution for cooperative behaviors needs exact synchronization of mutual evo-
lutions.

2. Three robot co-evolution requires well-complicated environment setups that may

91

92 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

contribute to providing a wide variety of searching area from simpler to more com-
plicated situations in which they seek for better strategies so that they can emerge
cooperative and competitive behaviors simultaneously.

The rest of this chapter is organized as follows. First, we describe our views on co-
evolution in the context of cooperative and competitive tasks. Next, we explain our
task example, a simplified soccer game in which cooperative and competitive tasks are
involved. Then, we give a brief implementation of GP and two fitness functions: one is
fixed and the other varying. Finally, the results of computer simulation are shown, and a
discussion is given.

6.2 Co-Evolution in Cooperative Tasks

Generally, we have the following three difficult problems in multiagent simultaneous learn-
ing:

1. Unknown Policy
Learning agents do not know other agents’ policies in advance, therefore they need
to estimate them through observations and actions. What’s the worse is that the
agent policies may change through a learning process.

2. Synchronized Learning
Mutual learning robots have to improve their learned policies simultaneously. If the
opponent learning converged much earlier than itself, one robot could not improve
its strategy against the difficult environment that its opponent has already fixed.

3. Credit Assignment
Credit assignment to learning robots for cooperation seems difficult. If the credit
involves group evaluation only, one robot may accomplish a given task by itself and
others do just actions irrelevant to the task as they do not seem to interfere the one
robot’s actions. Else, if only individual evaluation is involved, robots may compete
each other. This trade-off should be carefully dealt.

Co-evolution is one of potential solutions for the first problem by seeking for better
strategies in a wide range of searching area in parallel. The second and third ones might
be solved by careful designs of environmental setups and fitness functions. Emerging
patterns by co-evolution can be categorized into three.

1. Cycles of switching fixed strategies
This pattern can be often observed in a case of a prey and predator which often
shift their strategies drastically to escape from or to catch the opponent. The same
strategies iterate many times and no improvements on both sides seem to happen.

6.2. CO-EVOLUTION IN COOPERATIVE TASKS 93

2. Trap to local maxima
This corresponds to the second problem stated above. Since one side overwhelmed
its opponents, both sides reached to one of stable but low skill levels, and therefore
no change happens after this settlement.

3. Mutual skill development
In certain conditions, every one can improve its strategy against ever-changing envi-
ronments owing to improved strategies by other agents. This is real co-evolution by
which all agents evolve effectively.

As a typical co-evolution example, a competitive task such as prey and predator has
been often argued [12, 18] where heterogeneous agents often change their strategies to
cope with the current opponent. That is, the first pattern was observed. In a case of
homogeneous agents, Luke et al. [39] co-evolved teams consisting of eleven soccer players
among which cooperative behavior could be observed. However, co-evolving cooperative
agents has not been addressed as a design issue on fitness function for individual players
since they applied co-evolving technique to teams (See Fig.6.1 (a)).

We believe that between one-to-one individual competition and team competition,
there could be other kinds of multiagent behaviors by co-evolutions than competition.
Here, we challenge to evaluate how the task complexity and fitness function affect co-
evolution processes in a case of multiagent simultaneous learning for not only competitive
but also cooperative tasks through a series of systematic experiments. Fig.6.1 (b) shows
an our basic approach. First, we show the experiments for a cooperative task, that is,
shooting supported by passing between two robots in Section 6.4.1 where unexpected
cooperative behavior regarded as the second pattern was emerged. Next, we introduce
a stationary obstacle in front of the goal area into the first experimental set up in Sec-
tion 6.4.2 where the complexity is higher and an expected behavior was observed after
longer generation changes than the previous one. Finally, we exchange an active learning
opponent with the stationary obstacle to evaluate how both cooperative and competitive
behaviors are emerged in Section 6.4.3. We have tried several fitness functions, and we
may conclude that the same level fitness functions among them seems better to co-evolve
cooperative and competitive agents, and different ones tend to evolve only one side, that
is the second pattern.

94 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

(a) Luke’s approach [39]: a team as an individual

(b) Our approach: each agent has its own population

Fig.6.1 Difference between the previous method and ours

6.3. TASK AND ASSUMPTIONS 95

6.3 Task and Assumptions

6.3.1 Environment and Robots

Before explanation of the proposed method, we show a concrete task for reader’s under-
standing of the method. We have chosen a simplified soccer game consisting of two or
three robots as a testbed for the problem because both competitive and cooperative tasks
are involved as stated in RoboCup Initiative [21]. The environment consists of a ball and
two goals, and a wall is placed around the field except the two goals. The sizes of the
ball, the goals and the field are the same as those of the middle-size real robot league of
RoboCup Initiative. Fig.6.2 shows the size of the environment and the robot used for
modeling.

The robots have the same body (power wheeled steering system) and the same sensor
(on-board TV camera), that is, homogeneous agents. In this simulator, the robot can
not obtain the complete information because of limitation of its sensing capability and
occlusion of the objects.

6.3.2 Function and Terminal Sets

It is essential to design the well-defined function and terminal sets for appropriate evolu-
tion processes. This can be regarded as the same problem to construct the well-defined
state space, which has been argued in Chapter 3.

As sets of functions, we prepare a simple conditional branching function “IF a is b”
that executes its first branch if the condition “a is b” is true, otherwise executes its second
branch, where a is a kind of image features, and b is its category. Table 6.1 shows these
features and their categories.

Terminals in our task are actions that have effects on the environment. A terminal
set consists of the following four behaviors based on the visual information:

1. shoot : the robot shoots a ball into the opponent goal.

2. pass : the robot kicks a ball to one teammate.

3. avoid : the robot avoids collisions with other robots.

4. search : the robot searches the ball by turning to left or right.

These primitive behaviors have been obtained by the proposed learning algorithms described
in Chapter 3.

6.3.3 Fitness Measure

Another issue to apply an evolutionary algorithm is the design of fitness function which
leads robots to appropriate behaviors. It is so-called “credit assignment problem” [15] in

96 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

8.22 m

ball

O X

Y

goal goal

defender teammates

r0

r1
r2

(a) The size of an environment
(b) A real robot used for
modeling

Fig.6.2 Three robots and the environment

Table 6.1 Function sets
a ball, goal, other robot 0, other robot 1, · · ·
b left, middle, right, small, medium, large, lost

if
left

if search
center

true

true

false

false

pass avoid

ball

teammate

Fig.6.3 An example of a tree controller

6.3. TASK AND ASSUMPTIONS 97

the field of the reinforcement learning: when a trial is complete, which agents get more
credit (reward) for its success or failure?

We utilize the standardized fitness representation, that has a positive value. The
smaller is the better (0.0 is the best). We first consider the following parameters to
evaluate team behaviors such as cooperation between teammates and competition with
opponents:

• G(i) : the total number of achieved goals for the team to which robot i belongs,

• L(i) : the total number of lost goals for the team to which robot i belongs.

With these parameters only, most robots tend to be idle (passive cooperation) except one
that attempts at achieving the goal for itself, and therefore no active cooperation has been
seen. Then, we introduce the following more individual evaluation to encourage robots to
interact with each other while minimizing the number of collisions:

• K(i) : the total number of ball-kicking by robot i,

• C(i) : the total number of collisions between robot i and others.

In addition to the above, the following is involved to make robots achieve the goal earlier.

• steps : the total number of steps until all trials1 end, where a step is defined as
a time period for one action execution against the sensory input of a robot (1/30
[msec]).

Next, we combine these fitness measures to evaluate individuals. Angeline and Pollack
[2] point out that a competitive fitness function is useful instead of the explicit fitness
function. Because the competitive fitness function is based on the result of “competition”
between individuals, it can be applied to acquire the GP tree when the all agents are
considered as one GP individual. However, in our case, it is not useful because this method
can not cope with the “credit assignment problem” between agents. For example, suppose
the case of three robots game like Fig.6.2 (a). How should we evaluate the contribution
of the robots when the robots 0 and 1 win the game? Thus, we examine the following
two fitness function in the following experiments.

Fixed Fitness Function

The simplest fitness function is calculated by a linear combination of these parameters.
In this method, the weights of the fitness function are fixed over the all generations. The
fitness value which the robot i receives is given by:

f f (i) = αf
g · h(G(i), Tmax) + αf

l · L(i)

+αf
k · h(K(i), βf) + αf

c · C(i) + αf
s · steps, (6.1)

1One trial is terminated if one of the robots shoots a ball into the goal or the pre-specified time interval
expires.

98 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

and h(x, y) is a threshold function,

h(x, y) =

{
y − x if x < y

0 otherwise,
, (6.2)

where Tmax, αs
k ∼ αs

s, and βs denote the maximum number of trials, and constants.

Varying Fitness Function

In a case of a fixed fitness function, we do not consider the change of each measure.
Ideally, the individual factor (K) and the penalty (C and steps) are kept high and low,
respectively, at the beginning of the evolution by GP in order to reduce the search area.

As the evolution proceeds, the individual factor decreases gradually with the gener-
ation index while the penalty factors increase. Near the end of the run, the individual
factors reach appropriately small values. As one of such fitness function, a linearly varying
fitness function can be expressed as

f v(i) = αv
g · h(G(i), Tmax) + αv

l · L(i)

+
G− g

G
· αv

kh(K(i), βv) +
g

G
· αv

c · C(i) +
g

G
· αv

s · steps, (6.3)

where g and G are the generation index and the maximum number of generations, respec-
tively.

Table 6.2 shows the parameters which have been determined empirically. If two or
more individuals have the same fitness value, we prefer to one with more compact tree
depth.

Table 6.2 The parameters used in the fitness functions
fitness function αg αl αk αc αs β

fixed 1.0 0.5 1.0× 10−3 5.0× 10−3 1.0× 10−4 4000
varying 1.0 1.0 1.0× 10−2 1.0× 10−2 1.0× 10−2 4000

6.3. TASK AND ASSUMPTIONS 99

6.3.4 The GP Implementation

Other parameters in GP used are shown in Table 6.3. The best performing tree in
the current generation will survive in the next generation. In order to select parents for
crossover, we use tournament selection with size 10. After each population selects one
individual separately, the selected individuals participate in the game. We perform 20
games to evaluate them. As a result, it needs 1600 trials to alter a new generation. The
hardware used for the simulation is DEC VT-Alpha 600, which takes about 16 hours to
evaluate one experiment whole generations.

Table 6.3 Other parameters used in GP
the size of each population 80
the number of generations for which
the evolutionary process should run

60

the maximum depths during the creation 10
the maximum depths by crossing two trees 25
the crossover probability 95 %
the reproduction probability 5 %
the mutation probability 10 %

100 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

6.4 Experimental Results

6.4.1 Two Learners

At first, we demonstrate the experiments to acquire cooperative behaviors between two
robots. Both robots belong to the same team, and they obtain the score if they succeed
in shooting a ball into the goal. The number of function sets is 28 (= 7 (ball) +2×7 (two
goals) +7 (teammate)).

The tree depths and the numbers of nodes in cases of the fixed and varying fitness
functions are shown in Table 6.4. The tree of the best r0 (expected to be a passer) is
deeper than that of the best r1 (expected to be a shooter) in the fixed fitness functions,
but the average depth and the number of nodes of r0 are smaller than those of r1 in both
fitness functions. Actually, the acquired behavior of r1 is purposive while r0 does not
move appropriately from a viewpoint of the designer.

One of the successful behaviors based on the fixed fitness function are shown in
Fig.6.4. In this case, r0 does not kick the ball by itself but shakes its body by repeating
the behaviors search and avoid. On the other hand, r1 approaches the ball and passes
the ball to r0. After r0 receives the ball, it executes a shoot behavior. However, r1
approaches the ball faster than r0. As a result, r1 shoots the ball into the goal while r0
avoids collisions with r0. We checked the case of the varying fitness functions, and found
that the resultant behaviors were similar to the behavior by the fixed case. In this task,
the best r0 does not kick the ball toward r1 at the end of the generations.

Figs.6.5 and 6.6 show the results of evolution process based on the fixed and varying
fitness functions, respectively. Although both robots kick the ball frequently until 25th
generation, K(r1) is gradually decreased according to the evolutionary process (See (d)).
Because the fixed fitness function ignore C(i) and steps implicitly2, the values of them
are larger than those of the varying fitness function (See (e) and (f)).

We suppose that the reasons why they acquire such behaviors are as follows:

• In order for r0 to survive by passing the ball to r1, r1 has to shoot the ball which is
passed back from r0. This means that the development of both robots needs to be
exactly synchronized. It seems very difficult for such a synchronization to be found.

• r1 may shoot the ball by itself whichever r0 kicks the ball or not. In other words,
r1 does not need the help by r0.

In this task, r0 and r1 do not have even complexities of the tasks. As a result, the
behavior of r1 dominates this task while r0 cannot not improve its own behavior. This
is the second pattern explained in Section 6.2.

2The values of αs
c and αs

s are much smaller than αs
g, etc.

6.4. EXPERIMENTAL RESULTS 101

Table 6.4 The tree depths and the number of nodes in a case of two learners experiments
each content is listed with respect to the fitness of (best, average, worst).
fitness the tree depth the number of nodes

function r0 r1 r0 r1
fixed (30, 24.3, 2) (15, 15.03, 17) (729, 335.5, 3) (981, 909.4, 897)

varying (12, 17.5, 5) (13, 14.7, 16) (632, 594.5, 21) (784, 821.4, 108)

1

5 8

2 3 4

76

r0

r1

r0 r1

Fig.6.4 Two robots (r0 and r1) succeed in shooting a ball into the goal

102 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

0

5

10

15

20

25

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(a) the average fitness ff (i)

0

5

10

15

20

25

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(b) the best fitness ff
min(i)

0

5

10

15

20

0 10 20 30 40 50 60

sc
or

es

generation

score
lost score

(c) the total number of scores G(i) and L(i)

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 k

ic
ki

ng

generation

K(r0)
K(r1)

(d) the total number of kicking K(i)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 c

ol
lis

io
ns

generation

number_of_collisions

(e) the total number of collisions C(i)

1300

1400

1500

1600

1700

1800

1900

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 s

te
ps

generation

step

(f) the total number of steps step

Fig.6.5 Experimental results in a case of two learners with fixed fitness function

6.4. EXPERIMENTAL RESULTS 103

0

10

20

30

40

50

60

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(a) the average fitness fv(i)

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(b) the best fitness fv
min(i)

0

5

10

15

20

0 10 20 30 40 50 60

sc
or

es

generation

score
lost score

(c) the average number of scores G(i) and
L(i)

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 k

ic
ki

ng

generation

K(r0)
K(r1)

(d) the average number of kicking K(i)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 c

ol
lis

io
ns

generation

number_of_collisions

(e) the average number of collisions C(i)

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 s

te
ps

generation

step

(f) the average number of steps step

Fig.6.6 Experimental results in a case of two learners with varying fitness function

104 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

6.4.2 Two Learners and One Stationary Robot

Next, we add one robot as a stationary obstacle to the environment described in Section
6.4.1. The number of function sets is 35 (= 7 (ball) +2× 7 (two goals) +2× 7 (teammate
and opponent)).

Table 6.5 shows the tree depth and the number of nodes which are obtained by the
fixed and varying fitness functions. The GP trees which r1 acquires are more complicated
than those of r0. The reason is that r1 has to consider both of the shooting behavior
and avoiding collisions with r2. On the other hand, the resultant behavior of r0 is only
to push the ball to r1. At the end of generations, the number of scores is not different
between both fitness functions. However, there are difference with respect to the variety
of the final population.

Although both learning robots are placed in the same way as in the previous exper-
iments, the acquired cooperative behaviors are quite different. We found the following
three patterns in a case of the fixed fitness function:

1. First pattern (ball rolling and accidental goal)
Because r0 is placed near the ball, r0 pushes the ball more frequently than r1.
Most of individuals of r0 kick the ball towards r1 owing to the initial placement.
However, some individuals push the ball towards r2 in the neighborhood of r0.
Consequently, the ball rolls towards the goal by accident (See Fig.6.7).

2. Second pattern (goal after dribbling along the wall)
Although both r0 and r1 kick the ball until generation 4, r0 begins to pass the
ball towards r1. However, r1 can not shoot the ball from r0 directly because r0
cannot pass the ball to r1 precisely. Therefore, r1 kicks the ball to the wall and
continues to kick the ball to the opponent’s goal along the wall until generation 15
(See Fig.6.8). After that, the rank of this pattern dropped down.

3. Third pattern (mutual skill development)
After a number of generations, both robots improve their own behaviors and acquire
cooperative behaviors at the end of generations, where r0 kicks the ball to the front
of r1, then r1 shoots the ball into the opponent’s goal shown in Fig.6.9. As a
result, both robots improve the cooperative behaviors synchronously. This is a kind
of the mutual development described in Section 6.2.

The individual of the third pattern obtained the high evaluation because it takes much
shorter time to shoot the ball than the first and second patterns. Fig.6.10 shows the
results of evolutionary processes where a good synchronization between the best individ-
uals of r0 and r1 can be seen. Since it becomes more difficult for r1 to shoot the ball for
itself because of the existence of r2, r1 has to evolve behaviors with r0 synchronously. In
other words, the complexity of the task for r1 increased around the same level of r0.

On the other hand, when we use the varying fitness function, most of the individuals
that are obtained at the end of generations is the third pattern shown in Fig.6.9. We

6.4. EXPERIMENTAL RESULTS 105

can not find the first and the second patterns based on the varying fitness function. The
reason is that the varying fitness function does not permit a wider variety of individuals.
As we can see from Fig.6.11, the total number of collisions and the total steps decrease
gradually because the corresponding terms become effective through evolutionary process.
This leads to the extermination of the first and second patterns.

Table 6.5 The tree depths and the number of nodes in a case of two learners experiments
each content is listed with respect to the fitness of (best, average, worst).

fitness the tree depth the number of nodes
function r0 r1 r0 r1

fixed (13, 15.4, 4) (23, 17.7, 17) (989, 1126.9, 7) (261, 239.7, 125)
varying (14, 14.7, 8) (24, 18.3, 12) (1021, 1328.3, 251) (1142, 1394.2, 860)

1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Fig.6.7 r0 shoots the ball into the goal

106 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Fig.6.8 r1 shoots the ball into the goal along the wall at generation 15

1

5 8

2 3 4

76

r0

r1

r0
r1

r2

r2

Fig.6.9 After r0 pushes the ball toward the in front of r1, r1 shoots the ball into the
goal avoiding collision with r2

6.4. EXPERIMENTAL RESULTS 107

0

5

10

15

20

25

30

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(a) the average fitness ff (i)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(b) the best fitness ff
min(i)

0

5

10

15

20

0 10 20 30 40 50 60

sc
or

es

generation

score
lost score

(c) the average number of scores G(i) and
L(i)

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 k

ic
ki

ng

generation

K(r0)
K(r1)

(d) the average number of kicking K(i)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 c

ol
lis

io
ns

generation

C(r0)
C(r1)

(e) the average number of collisions C(i)

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 s

te
ps

generation

step

(f) the average number of steps step

Fig.6.10 Experimental results in a case of two learners and one stationary agent with
fixed fitness function

108 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

0

10

20

30

40

50

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(a) the average fitness fv(i)

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1

(b) the best fitness fv
min(i)

0

5

10

15

20

0 10 20 30 40 50 60

sc
or

es

generation

score
lost score

(c) the average number of scores G(i) and
L(i)

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 k

ic
ki

ng

generation

K(r0)
K(r1)

(d) the average number of kicking K(i)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 c

ol
lis

io
ns

generation

C(r0)
C(r1)

(e) the average number of collisions C(i)

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 s

te
ps

generation

step

(f) the average number of steps step

Fig.6.11 Experimental results in a case of two learners and one stationary agent with
varying fitness function

6.4. EXPERIMENTAL RESULTS 109

6.4.3 Three Learners

Finally, we test the co-evolution among three robots. That is, r2 added in Section 6.4.2
evolves its behavior with r0 and r1 simultaneously. The difference from Sections 6.4.1
and 6.4.2 is involvement of competition between r2 and a team of r0 and r1. The number
of function sets is the same as the case of Section 6.4.2.

Table 6.6 shows the tree depths and the numbers of the nodes. The acquired GP
tree of r1 tends to be simple as compared with the cases of r0 and r2. Furthermore, the
results based on the varying fitness function is more complicated than those of the fixed
one. However, the varying fitness function leads the GP agents to the local solutions as
follows.

The results are shown in Figs.6.12 and 6.13. As compared with the only cooperative
tasks in Section 6.4.2, fitness values rather oscillate than converge stably. Although C(i)
and steps decrease gradually through the evolution in a case of the varying fitness function,
this game is dominated by r2 at the 18th generation. This phenomenon is observed when
we use the fixed fitness function, but the acquired performances of r0 and r1 are a little
bit better than the a case of the varying fitness function.

We can see two typical settlements in this three-robot soccer game. One is the same
behaviors described in Section 6.4.2 : r0 kicks the ball toward r1, then r1 shoots the
ball into the goal avoiding collisions with r2 (See Fig.6.14). The other one is that r2
intercepts the ball and shoots the ball into the goal (See Fig.6.15). The ratio between
the former and the latter is about 25 % : 75 %. It depends on whether r0 or r2 achieves
its goal. However, r2 can observe the ball and the opponent’s goal at the same time and
it may shoot the ball by itself while r0 needs to pass the ball to r1. We suppose that the
predominance of r2 may be caused by the different complexity of the given tasks, that is,
task complexities for r0 and r1 is higher than that for r2.

Table 6.6 The tree depths and the number of nodes in a case of three learners experiments
each content is listed with respect to the fitness of (best, average, worst).

the tree depth
fitness function

r0 r1 r2
fixed (24, 23.7, 25) (15, 16.1, 18) (21, 20.0, 21)

varying (25, 27.3, 18) (16, 17.3, 12) (24, 19.8, 27)

the number of nodes
fitness function

r0 r1 r2
fixed (1433, 1373.2, 1505) (1093, 1081.8, 1265) (749, 772,5, 733)

varying (1810, 1635.7, 1206) (1272, 1184.2, 1306) (1762, 1083.5, 967)

110 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1
r2

(a) the average fitness ff (i)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1
r2

(b) the best fitness ff
min(i)

0

5

10

15

20

0 10 20 30 40 50 60

sc
or

es

generation

score_of_r0_and_r1
score_of_r2

(c) the average number of scores G(i) and
L(i)

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 k

ic
ki

ng

generation

K(r0)
K(r1)
K(r2)

(d) the average number of kicking K(i)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 c

ol
lis

io
ns

generation

C(r0)
C(r1)
C(r2)

(e) the average number of collisions C(i)

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 s

te
ps

generation

step

(f) the average number of steps step

Fig.6.12 Experimental results in a case of three learners with fixed fitness function

6.4. EXPERIMENTAL RESULTS 111

0

10

20

30

40

50

60

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1
r2

(a) the average fitness fv(i)

0

10

20

30

40

50

60

0 10 20 30 40 50 60

st
an

da
rd

iz
ed

 fi
tn

es
s

generation

r0
r1
r2

(b) the best fitness ff
min(i)

0

5

10

15

20

0 10 20 30 40 50 60

sc
or

es

generation

score_of_r0_and_r1
score_of_r2

(c) the average number of scores G(i) and
L(i)

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 k

ic
ki

ng

generation

K(r0)
K(r1)
K(r2)

(d) the average number of kicking K(i)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 c

ol
lis

io
ns

generation

C(r0)
C(r1)
C(r2)

(e) the average number of collisions C(i)

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 10 20 30 40 50 60

th
e

nu
m

be
r

of
 s

te
ps

generation

step

(f) the average number of steps step

Fig.6.13 Experimental results in a case of three learners with varying fitness function

112 CHAPTER 6. CO-EVOLUTION FOR COOPERATIVE AND COMPETITIVE ...

1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Fig.6.14 Two robots (r0 and r1) succeed in shooting a ball into the goal against the
defender (r2)

1

5 8

2 3 4

76

r0

r1

r0

r1

r2

r2

Fig.6.15 The defender (r2) succeeds in shoot a ball into the goal against the two robots
(r0 and r1)

6.5. DISCUSSION AND FUTURE WORKS 113

6.5 Discussion and Future Works

This chapter showed how co-evolution technique could emerge not only competitive behav-
iors but also cooperative ones through a series of experiments in which two or three robots
play a simplified soccer game. In order to co-evolve cooperative agents, it should be noted
that robots must synchronize their evolutionary processes. Otherwise, there are many
traps to local maxima (suboptimal strategies) as we can see in Section 6.4.1.

In a case of the most complicated situation (three agents and both cooperation and
competition are involved), the task complexity should be equal to all agents so as to
co-evolve cooperative and competitive agents simultaneously. This also suggests that
the environment itself should co-evolve from simpler to more complicated situations to
assist the development of desired skills of cooperations and competitions. Otherwise,
co-evolution is prone to be settled into suboptimal strategies as shown in Section 6.4.3.

In the current system, the visual information processing is simplified by color region
extraction. State quantization and terminal actions were fixed. Through the evolution
process, the agent obtains its decision tree which tells how visual features are organized
and connected to one terminal action. A different application of GP can be considered
to extract motor outputs by a feature tree in which sensory inputs are combined and
calculated. That is, evolutionary process can be used to express the motor outputs in
terms of the sensor inputs. In this case, both motor and sensor spaces are continuous;
therefore, it needs much more individuals and generations. Further, it seems difficult to
extract meaningful modules from the final tree that can be re-usable in different contexts.

More systematic understanding is needed to make clear what are necessary and sufficient
conditions to lead co-evolutionary processes to successful situations. Design issues of
environments including agents, tasks, and fitness functions are our future work. Also, we
are planning to implement real experiments to check the validity of the proposed method
and the obtained behaviors.

Chapter 7

Conclusion

In this dissertation, we developed techniques for cooperative and/or competitive behavior
acquisition in a multiagent environment. Multiagent systems are often required because
of spatial or geographic distribution, or in situation where centralized information is not
available or is not practical. Even when a distributed approach is not required, multiple
agents may still provide an excellent way of scaling up to approximate solutions for very
large problems by streamlining the search through the space of possible policies.

In order to demonstrate the power of multiagent reinforcement learning, we focused
the research issues on the state representation and the reward function. Our work deals
with the following three issues in reinforcement learning [41]

• incomplete and imperfect perception (Chapter 3),

• re-learning based on the previously acquired results (Chapter 4),

• coordination of multiple behaviors (Chapter 5),

in the context of multiagent learning.
In Chapter 3, we have proposed an idea of the Local Prediction Model (hereafter LPM)

in order to apply reinforcement learning to the multiagent environments. In a dynamic
environment including other robots, sensor outputs do not have any simple relationship
to the learner’s motion. Markovian assumption which is the necessary condition to apply
reinforcement learning may be violated if the robots construct the state representation
from only current observation. Therefore, the learning robot has to construct the compli-
cated internal representation. When the real robots move in the real environment, all the
physical objects including robots have the dynamics. Therefore, we regard the order as
the a sort of criterion for state representation, that is we focus on the order of the state
vector of the objects. The LPM estimates the local interaction between the learner and
the other objects taking account of the tradeoff among the precision of prediction, the
dimension of state vector, and the length of steps to predict.

In Chapter 4, we have shown the method of controlling the environmental complexity
based on the LPM. If the representation become complicated, the learning time become

115

116 CHAPTER 7. CONCLUSION

long. Therefore, we have to cope with the acceleration of the learning. However, existing
work is based on the viewpoint of only learner. Therefore, we focus on the complexity
of the interaction to accelerate the learning. In multiagent systems, human designer can
control two issues to discuss the complexity of the interaction. One is that how the
learner should represent other robots because sensor outputs have no simple relationship
with the learner’s action. The other is that how other robot should behave toward the
learner because the goal achievement of the learner depends on the behavior of other
robots. In case of the learner, the learner should change the internal representation of
other robot. We regard the relative order of the state vector as a sort of the complexity
of the interaction.

In Chapter 5, we have proposed a vector-valued reward function to cope with the
multiple rewards. If we utilize the mixture of the several rewards, the estimation of
the utility may become poor. This reward function is a straightforward extension of a
scalar-valued reward function. We have shown the validity of the proposed method by
performing a series of experiments in the context of robotic soccer.

In Chapter 6, we have shown how co-evolution technique could emerge not only com-
petitive behaviors but also cooperative ones through a series of experiments in which two
or three robots play a simplified soccer game. In order to co-evolve cooperative agents,
it should be noted that robots must synchronize their evolutionary processes. Otherwise,
there are many traps to local maxima (suboptimal strategies).

We do not intend to use explicit communication simply because in a game situation
broadcasting might be overheard by opponent team members. A more serious reason is
that a longer range research issue related to no use of explicit communication is to establish
non-verbal communication based on observation and action, that is , eye-contact. This
can be also related to emergence of language, that is, symbols emerged in one agent
through learning or evolution processes might be shared by other agents to do some task
together. Such symbols might be building blocks of the language of the agents. As a
matter of fact, we might not be able to understand their language, but we may find the
process of emergence of one language. However, it seems difficult to expect the current
system to emerge such processes since both state variables and terminal actions are fixed.
Therefore, we need to extend and modify it so that co-evolution can contribute to such
processes.

Although there are some open problems discussed before , we suppose that the pro-
posed method might be promising for the fundamental method.

Appendix A

Basics of Subspace State Space
Identification

A.1 Problem Description

A number of algorithms to identify multi-input multi-output (MIMO) combined determin-
istic stochastic systems have been proposed. In contrast to ‘classical’ algorithms such as
PEM (Prediction Error Method), the subspace system identification algorithms [29, 71] do
not suffer from the problems caused by a priori parameterizations. Larimore’s Canonical
Variate Analysis (CVA) [36] is one of such algorithms, which uses canonical correlation
analysis to construct a state estimator. Conceptually, CVA deals directly with the input
and output time series.

Let ut ∈ <m and yt ∈ <q be the input and output generated by the unknown system

xt+1 = Axt + But + wt,

yt = Cxt + Dut + vt, (A.1)

with

E

{[
wt

vt

] [
wT

τ vT
τ

]}
=

[
Q S
ST R

]
δtτ ,

where vt ∈ <q and wt ∈ <n are unobserved, Gaussian-distributed, zero-mean, white noise
vector sequences. A ∈ <n×n is called the (dynamical) system matrix. It describes the
dynamics of the system (as completely characterized by its eigenvalues). B ∈ <n×m is
the input matrix which represents the linear transformation by which the inputs influence
the next state. C ∈ <q×n is the output matrix which describes how the internal state
is transferred to the outside world in the measurements y. The term with the matrix
D ∈ <q×m is called the direct feedthrough term. In continuous time systems, this term
is most often 0, which is not the case in discrete time systems due to the sampling.
Q ∈ <n×n, S ∈ <n×q and R ∈ <q×q are the covariance matrices of the noise sequences w
and v. E{·} denotes the expected value operator and δtτ the Kronecker delta. Generally

117

118 APPENDIX A. BASICS OF SUBSPACE STATE SPACE IDENTIFICATION

speaking, CVA uses a estimated state vector x̂ which is a linear combination of the
previous input-output sequences since it is difficult to determine the dimension of x.
Eq.(A.1) is transformed as follows:

[
x̂t+1

yt

]
=

[
T−1AT T−1B

CT D

] [
x̂t

ut

]
+

[
T−1wt

vt,

]
, (A.2)

and xt = T x̂t. Therefore, since we can regard µt as a new state vector, we use x̂ as
same as x hereafter. Strictly speaking, we require the pair {A, C} to be observable since
only the modes that are observed can be identified. Furthermore, we require the pair
{A [B, Q1/2]} to be controllable. This implies that all modes are excited by either the
external input u and the process noise w.

There are several subspace state space identification methods that assume the same
conditions, and van Overschee and De Moor report the differences among them [72].
According to their results, CVA is more insensitive than other two methods to scaling of
the inputs and/or outputs. They conclude that this is because only angles and normal-
ized directions are considered in the CVA algorithm. Therefore, we choose CVA as an
implementation of the LPM.

A.2 CVA Algorithm

Subspace Construction

At the beginning, we construct two subspaces P and F from the sequences of input
(action) and output (perception). For {ut, yt}, t = 1, · · ·Nall, construct new vectors

pt =

ut−1
...

ut−l

yt−1
...

yt−l

, f t =

yt

yt+1
...

yt+l−1

. (A.3)

Based on the vectors p and f , we compute estimated covariance matrices Σ̂pp, Σ̂pf

and Σ̂ff as follows:

Σ̂pp =
1

N ′

Nall−l+1∑

t=l+1

p̃tp̃
T
t , (A.4)

Σ̂ff =
1

N ′

Nall−l+1∑

t=l+1

f̃ tf̃
T

t , (A.5)

Σ̂pf =
1

N ′

Nall−l+1∑

t=l+1

p̃tf̃
T

t , (A.6)

A.2. CVA ALGORITHM 119

where N ′ = Nall − 2l + 1 and

p̃t = pt − E{pt} = pt −
Nall−l+1∑

t=l+1

pt,

f̃ t = f t − E{f t} = f t −
Nall−l+1∑

t=l+1

f t,

The rank of the subspace depends on the historical length l. Although the estimation is
improved if l becomes longer and longer, it needs enough memory and time to maintain
P and F . As we can see, Σ̂pp and Σ̂ff are usually regular matrices if the observation
vector y is appropriate.

Generalized Singular Value Decomposition

Next, the relation between calculated subspaces P and F should be obtained. This
relation can be solved by the following the generalized singular value decomposition

[
U
 V

] [
Σpp Σpf

Σfp Σff

] [
UT
 V T

]
=

[
I l(m+q) Saux

Saux
T I lq

]
. (A.7)

Actually, we have to compute following singular value decomposition

Σ̂
−1/2

pp Σ̂pfΣ̂
−1/2

ff = U auxSauxV
T
aux, (A.8)

U auxU
T
aux = I l(m+q), V auxV

T
aux = Ikq.

Generally speaking, in order to obtain the matrices Σ̂
−1/2

pp and Σ̂
−1/2

ff , we have to solve
the eigen value decomposition. Given the symmetric matrix A ∈ <n×n, the eigen value
decomposition of A is

A = V ∆2V T = λ1v1v
T
1 + · · ·λnvnv

T
n ,

where v is an eigenvector of the matrix A, and

∆2 = diag
[

λ1 λ2 · · · λn

]
,

V =
[

v1 v2 · · · vn

]
,

where λ is an eigen value of the matrix A. After all, the matrix Ar can be calculated by

V ∆2rV T . Based on this spectral decomposition, we can compute both Σ̂
−1/2

pp and Σ̂
−1/2

ff .
After we solve Eq.(A.8), the n dimensional estimated vector xt is defined as:

xt = [In 0]Mp̃t, t = l + 1, · · · , Nall − l + 1, (A.9)

where the matrix M is calculated by

M := UT
auxΣ̂

−1/2

pp . (A.10)

120 APPENDIX A. BASICS OF SUBSPACE STATE SPACE IDENTIFICATION

Estimation of parameter matrices

After we define the state vector by Eq.(A.9), the parameter matrix Θ can be estimated
applying the least square method to Eq (A.2) as follows.

Θ̂ =

 1

N ′

N−k+1∑

t=l+1

[
xt+1

yt

] [
xT

t uT
t

]

 1

N ′

N−k+1∑

t=l+1

[
xt

ut

] [
xT

t uT
t

]

−1

, (A.11)

where Θ is the composed parameter matrix

Θ =

[
A B
C D

]
.

This parameter matrix Θ is used to predict the future observation and prediction error.
We implement this algorithm using C++.

Appendix B

Basics of Reinforcement Learning

B.1 Standard Reinforcement Learning

B.1.1 Problem Description

Reinforcement learning is a kind of unsupervised learning, and improves its policy based
on the delayed reinforcement without explicit state transition probabilities. In a typical
reinforcement learning method, a robot and its environment are modeled by two synchro-
nized finite state automatons interacting in discrete time cyclical processes. The robot
senses the current state of the environment and selects an action. Based on the state and
the action, the environment makes a transition to a new state and generates a reward
that is passed back to the robot. Through these interactions, the robot learns a purposive
behavior to achieve a given goal.

We assume that the robot can discriminate the set X of distinct world states, and
can take the set U of actions on the world. The world is modeled as a Markov process,
making stochastic transitions based on its current state and the action taken by the robot.
Let T (x, u, x′) be the probability that the world will transit to the next state x′ from the
current state-action pair (x, u). For each state-action pair (x, u), the reward r(x, u) is
defined.

The general reinforcement learning problem is typically stated as finding a policy that
maximizes discounted sum of the reward received over time. A policy f maps the state
space X to the action space U . This sum is so called the return and is defined as:

vt(x) = E

{ ∞∑

n=0

γnrt+n

∣∣∣∣xt = x

}
, (B.1)

where r(t) is the reward received at step t given that the agent started in state x and
executed policy f . γ (0 ≤ γ < 1) is the discounting factor, which controls to what degree
rewards in the distant future affect the total value of a policy and is slightly less than 1.

121

122 APPENDIX B. BASICS OF REINFORCEMENT LEARNING

B.1.2 Q Learning

Watkins and Dayan [73] proposed Q learning which is a form of model-free reinforcement
learning based on stochastic dynamic programming, and provides robots with the capabil-
ity of learning to act optimally in a Markovian environment. A simple version of tabular
Q learning algorithm is shown as follows:
¶ ³

1. Initialize Q(x, u) to 0s for all combination of X and U .

2. Perceive current state x.

3. Choose an action u according to the action value function.

4. Execute an action u in the environment. Let the next state be x′ and immediate
reward be r.

5. Update the action value function from x, u, x′, and r,

Qt+1(x, u) = Qt(x, u) + α

[
r + γ max

b∈U
Qt(x

′, b)−Qt(x, u)

]
, (B.2)

where α is a learning rate parameter and γ is a fixed discounting factor between
0 and 1.

6. Return to 2.
µ ´

B.2 Coordination of Interfering Multiple Behaviors
based on Q Learning

B.2.1 Background

Simple application of the reinforcement learning method to multiple robot tasks seems
hard because of enormous amount of learning time. Several methods are proposed to
cope with large scaled robot tasks. Singh [58] defined a composite task as sequentially
concatenating multiple elemental tasks, and rewards are generated only when the system
achieves a subtask in a prescribed order. Whitehead et al. [75] proposed a modular
architecture to coordinate multiple behaviors. Subtasks are independent of each other,
and therefore, their execution order can be arbitrary. The validity of these methods has
been shown by computer simulations where the action and state spaces are too idealized
and the task seems simple and straightforward.

Connel and Mahadevan [14] proposed a rapid task learning for real robots by de-
composing the whole task (box-pushing) into subtasks (finding, pushing a box, and un-
wedging) independent of each other. However, decomposition and switching conditions

B.2. COORDINATION OF INTERFERING MULTIPLE BEHAVIORS 123

between subtasks are designed by the programmer. Gachet et al. [19] realized a coordi-
nated behavior which is a linear combination of basic behaviors. However, the resultant
behavior is not guaranteed as an optimal one.

These methods explained above assume that the state spaces of subtasks do not inter-
fere with each other or they are completely independent of each other. Asada et al. [8]
proposed a method for behavior coordination in a case that the state spaces interfere with
each other. However, it takes still long time to acquire the coordinated behaviors because
their method learns the whole state space.

B.2.2 Finding Inconsistent States among Interfering Multiple
Behaviors

In order to overcome with the problems described above, the whole state space is classified
into two categories based on the action values separately obtained by Q learning as follows
[70] :

• no more learning area : the set of states at which one of the learned behaviors
is directly applicable. The maximum number of no more learning areas is the
number of behaviors to be coordinated. In this area, the agent utilize the learning
results with no modification.

• re-learning area : the set of states at which it is necessary to learn again because
of the competition of multiple behaviors.

Fig.B.1 shows the basic idea of coordination of multiple interfering behaviors based
on reinforcement learning, where the number of the tasks n is two for the sake of reader’s
understanding. First, a new state space cX is composed by direct product of all the state
spaces iX of the i-th behavior (i = 1, 2, · · · ,). We define the kernel state cxk,i of i-th
behavior in order to prepare for clustering the composite state space cX. We calculate
the maximum action value function

iqmax(
ix) = max

a′∈A
iQ(ix, a′).

for the state ix ∈ iX. If the state cx satisfies

cx = arg max
ix∈iX

iqmax(
ix), (B.3)

and for all j (j 6= i).
cx = arg min

jx∈jX
jqmax(

jx) (B.4)

In these cases, we regard the state cx as the kernel state cxk,i of the i-th behavior. We apply
ISODATA clustering algorithm [9], which is an iterative and non-hierarchical clustering
method, to classify these action values.

124 APPENDIX B. BASICS OF REINFORCEMENT LEARNING

jXc

iXc

Xrl
c

iX

jX

Fig.B.1 Basic idea for coordination of interfering multiple behaviors based on reinforce-
ment learning

Then all states cx ∈ cX are classified according to the weighted distance between the
non-kernel state and the kernel state. We utilize the weighted distance in the optimal
action value space which is affected by the results of learning to classify the state. The
distance between a composite state cxj and the kernel state cxk is calculated by

dj,k = (q(cxj)− q(cxk))
T W (q(cxj)− q(cxk)), (B.5)

where W denotes the weighted matrix, and

q(cx)T = [1qmax(
1x) · · · nqmax(

nx)].

Altogether, we summarize the classification algorithm as follows when the learning agent
has n learned behaviors.

B.2. COORDINATION OF INTERFERING MULTIPLE BEHAVIORS 125

¶ ³
1. Definition of the kernel states : Based on Eq (B.3) and (B.4), determine

the kernel state cxk,i (i = 1 · · ·n).

2. Definition of initial areas : Compute the weighted distance between n kernel
states and other states. According to the distance, categorize all the states into
one of the area.

3. Rearrangement of areas : Based on ISODATA algorithm, all the areas (no-
more learning areas and re-learning areas).

µ ´
All together, the composite state space cX is classified into n no-more learning area cX i,
i = 1 · · ·n and one re-learning area cXrl.

B.2.3 Learning Rules

If both the current state x and the next state x′ belong to the re-learning area, the normal
Q learning algorithm can be applied. On the other hand both states x and x′ belong to the
no more learning area, it is not necessary to update the action value functions any more.
The problem is the estimation of discounted sum of the reward to update the action value
function, if the state x belong to the re-learning area while the state x′ belong to the no
more learning area. In general, the action values before and after coordination might not
be consistent between different areas. Because, the action values before coordination are
acquired independently by different subtasks, and therefore direct use of the action values
simply brings to local maxima. Therefore, we have to adjust the action value function.

To overcome with this problem, we calculate steps(x), the expected physical number
of steps to goal, given that the process begins in the state x and follows the optimal policy
thereafter. The action value functions are appropriately discounted using steps(is) as a
discount factor. Eventually, we show the learning rules of this algorithm as follows:¶ ³

1. if x, x′ ∈ cXrl : Apply normal update rule Eq.(B.2).

2. if x ∈ cXrl，x′ ∈ iX : Update cQrl(x, a) as follows.

cQrl,t+1(x, a) = cQrl,t(x, a) + α
[
r + γiV (x′)− cQrl,t(x, a)

]
, (B.6)

where iV (x′) is value function of the no more learning are of i-th behavior. That
is,

iV (x′) = cγ max
b∈A

iQ(x′, b), (B.7)

3. if x ∈ iX : Do not update.
µ ´

Bibliography

[1] Akaike, H. A New Look on the Statistical Model Identification. IEEE Transaction
on Automatic Control, 19:716–723, 1974.

[2] Angeline, P. J., and Pollack, J. B. Competitive Environments Evolve Better Solutions
for Complex Tasks. In Proc. of International Conference on Genetic Algorithm, pages
264–270, 1993.

[3] Arai, S., Miyazaki, K., and Kobayashi, S. Generating Cooperative Behavior by
Multi-Agent Reinforcement Learning. In Proc. of the Sixth European Workshop on
Learning Robots, pages 111–120, 1997.

[4] Asada, M. An Agent and an Environment: A View of “Having Bodies” – A Case
Study on Behavior Learning for Vision-Based Mobile Robot –. In Proc. of 1996 IROS
Workshop on Towards Real Autonomy, pages 19–24, 1996.

[5] Asada, M., et al. Purposive Behavior Acquisition for a Real Robot by Vision-Based
Reinforcement Learning. Machine Learning, 23:279–303, 1996.

[6] Asada, M., Noda, S., and Hosoda, K. Action-Based Sensor Space Categorization for
Robot Learning. In Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1996.

[7] Asada, M., Uchibe, E., and Hosoda, K. Agents That Learn from Other Competitive
Agents. In Proc. of Machine Learning Conference Workshop on Agents That Learn
from Other Agents, 1995.

[8] Asada, M., Uchibe, E., Noda, S., Tawaratsumida, S., and Hosoda, K. Coordination of
Multiple Behaviors Acquired By A Vision-Based Reinforcement Learning. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 2,
pages 917–924, 1994.

[9] Ball, G. H., and Hall, D. J. ISODATA, a novel method of data analysis and pattern
classification. Stanford Research Institute, AD-699616, 1965.

[10] Boyan, J. A., and Moore, A. W. Generalization in Reinforcement Learning : Safely
Approximating the Value Function. In Advances in Neural Information Processing
Systems. MIT Press, Cambridge, MA, 1995.

127

128 BIBLIOGRAPHY

[11] Brooks, R. A. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, RA-2:14–23, 1986.

[12] Cliff, D., and Miller, G. F. Co-evolution of Pursuit and Evasion II : Simulation
Methods and Results. In Proc. of the Fourth International Conference on Simulation
of Adaptive Behavior: From Animals to Animats 4, pages 506–515, 1996.

[13] Clouse, J. A., and Utogoff, P. E. A Teaching Method for Reinforcement Learning.
In Proc. of the Nineth International Conference on Machine Learning, pages 92–101,
1992.

[14] Connel, J. H., and Mahadevan, S. Rapid Task Learning for Real Robot. In Robot
Learning [15], chapter 5, pages 105–140.

[15] Connel, J. H., and Mahadevan, S. Robot Learning. Kluwer Academic Publishers,
1993.

[16] Demiris, J., and Hayes, G. Imitative Learning Mechanisms in Robots and Humans.
In Klingspor, V., editor, Proc. of the Fifth European Workshop on Learning Robots,
Bari, Italy, 1996.

[17] Dorigo, M., and Colombetti, M. Robot Shaping: Developing Autonomous Agents
through Learning. Artificial Intelligence, 71(2):321–370, 1994.

[18] Floreano, D., and Nolfi, S. Adaptive Behavior in Competing Co-Evolving Species.
In Proc. of the Fourth European Conference on Artificial Life, pages 378–387, 1997.

[19] Gachet, D., Salichs, M. A., Moreno, L., and Pimentel, J. R. Learning Emergent
Tasks for an Autonomous Mobile Robot. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 290–297, 1994.

[20] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison–Wesley, 1989.

[21] H. Kitano, ed. RoboCup-97 : Robot Soccer World Cup I. Springer Verlag, 1997.

[22] Held, R., and Hein, A. Movement-produced stimulation in the development of visu-
ally guided behaviors. Journal of Comparative and Physiological Psycology, 56:5:872–
876, 1963.

[23] Horridge, G. A. The evolution of visual proceeding and the construction of seeing
systems. In Proc. of Royal Soc. London B230, pages 279–292, 1987.

[24] Hosoda, K., and Asada, M. Versatile Visual Servoing without Knowledge of True
Jacobian. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 186–193, 1994.

BIBLIOGRAPHY 129

[25] Hu, J., and Wellman, M. P. Multiagent Reinforcement Learning : Theoretical Frame-
work and an Algorithm. In Proc. of the Fifteenth International Conference on Ma-
chine Learning, 1998.

[26] Ishida, T., Katagiri, Y., and Kuwabara, K. Distributed Artificial Intelligence. Corona
Publishing CO., LTD., Tokyo, Japan, 1996. (in Japanese).

[27] Kaelbling, L. P. Learning in Embedded Systems. MIT Press, 1993.

[28] Kanerva, P. Sparse distributed memory and related models. In Hassoun, M. H., edi-
tor, Associative Neural Memories, pages 50–76, New York, 1993. Oxford University
Press.

[29] Katayama, T. Introduction to System Identification. Asakura Publishing, 1994. (in
Japanese).

[30] Kimura, H., and Kobayashi, S. An Analysis of Actor/Critic Algorithms using Eli-
gibility Traces: Reinforcement Learning with Imperfect Value Function. In Proc. of
the Fifteenth International Conference on Machine Learning, 1998.

[31] Kohri, T., Matsubayashi, K., and Tokoro, M. An Adaptive Architecture for Modular
Q-Learning. In Fifteenth International Joint Conference on Artificial Intelligence,
pages 820–825. Morgan Kaufmann, 1997.

[32] Koza, J. R. Genetic Programming I : On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

[33] Koza, J. R. Genetic Programming II : Automatic Discovery of Reusable SubPrograms.
MIT Press, 1994.

[34] Kuniyoshi, Y. Behavior Matching by Observation for Multi-Robot Cooperation. In
International Symposium of Robotics Research, 1995.

[35] Kuniyoshi, Y., Inaba, M., and Inoue, H. Learning by watching: Extracting reusable
task knowledge from visual observation of human performance. IEEE Transaction
on Robotics and Automation, 10(5), 1994.

[36] Larimore, W. E. Canonical Variate Analysis in Identification, Filtering, and Adaptive
Control. In Proc. 29th IEEE Conference on Decision and Control, pages 596–604,
Honolulu, Hawaii, December 1990.

[37] Lin, L.-J., and Mitchell, T. M. Reinforcement Learning With Hidden States. In Proc.
of the Second International Conference on Simulation of Adaptive Behavior: From
Animals to Animats 2, pages 271–280, 1992.

130 BIBLIOGRAPHY

[38] Littman, M. L. Markov games as a framework for multi-agent reinforcement learning.
In Proc. of the Eleventh International Conference on Machine Learning, pages 157–
163, 1994.

[39] Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. Co-Evolving Soccer Soft-
bot Team Coordination with Genetic Programming. In Proc. of the First RoboCup-97
Workshop at IJCAI’97, pages 115–118, 1997.

[40] Maes, P., and Brooks, R. A. Learning to coordinate behaviors. In Proc. of the Nineth
National Conference on Artificial Intelligence, pages 796–802, 1990.

[41] Mahadevan, S., and Kaelbling, L. P. The NSF Workshop on reinforcement learning:
Summary and observations. AI Magazine, page 1996.

[42] Mataric, M. Learning to Behave Socially. In Proc. of the Third International Con-
ference on Simulation of Adaptive Behavior: From Animals to Animats 3, pages
453–462, 1994.

[43] Mataric, M. Reward Functions for Accelerated Learning. In Proc. of the Eleventh
International Conference on Machine Learning, pages 181–189, 1994.

[44] McCallum, A. K. Learning to Use Selective Attention and Short-Term Memory in
Sequential Tasks. In Proc. of the Fourth International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 4, 1996.

[45] Michaud, F., and Mataric, M. Learning from History for Behavior-Based Mobile
Robots in Non-Stationary Conditions. Machine Learning, 31(1–3):141–167, 1998.

[46] Minato, T., and Asada, M. Skill Acquisition and Self-Improvement for Environmental
Change Adaptation of Mobile Robot. In Proc. of the Fifth International Conference
on Simulation of Adaptive Behavior: From Animals to Animats 5, pages 360–365,
1998.

[47] Miyazaki, K., Yamamura, M., and Kobayashi, S. On the Rationality of Profit Sharing
in Reinforcement Learning. In Proc. of the 3rd International Conference on Fuzzy
Logic, Neural Nets and Soft Computing, pages 285–288, 1994.

[48] Moore, A. W., and Atkeson, C. G. The Parti-game Algorithm for Variable Resolu-
tion Reinforcement Learning in Multidimensional State-spaces. Machine Learning,
21:199–233, 1995.

[49] Nakamura, T., and Asada, M. Motion Sketch: Acquisition of Visual Motion Guided
Behaviors. In Fourteenth International Joint Conference on Artificial Intelligence,
pages 126–132. Morgan Kaufmann, 1995.

[50] Nottebohm, F. Laterality, seasons and space govern the learning of a motor skill.
Neuroscience, 4:104–106, 1981.

BIBLIOGRAPHY 131

[51] Ohko, T., Hiraki, K., and Anzai, Y. Reducing Communication Load on Contract Net
by Case-Based Reasoning — Extension with Directed Contract and Forgetting. In
Proc. of the Second International Conference on Multi-Agent Systems, pages 244–251,
1996.

[52] Omata, T. Learning with Assistance based on Evolutionary Computation. In Proc.
of the IEEE International Conference on Robotics and Automation, pages 2180–2186,
1998.

[53] Ono, N., Ikeda, O., and Rahmani, A. T. Synthesis of Organization Behavior by
Modular Q-learning Agents. In Proc. of 1995 IEEE/Nagoya Univ. WWW’95 on
Fuzzy Logic and Neural Networks / Evolutionary Computation, pages 76–80, 1995.

[54] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufman, San Mateo,
CA, 1993.

[55] Rao, R. P. N., and Fuentes, O. Hierarchical Learning of Navigational Behaviors
in an Autonomous Robot using a Predictive Sparse Distributed Memory. Machine
Learning, 31(1–3):87–113, 1998.

[56] Schwartz, B. Psychology of Learning and Behavior: Third Edition. W. W. Norton,
NY, London, 1989.

[57] Sen, S., Sekaran, M., and Hale, J. Learning to coordinate without sharing informa-
tion. In Proc. of the Twelfth National Conference on Artificial Intelligence, pages
426–431, 1994.

[58] Singh, S. P. Transfer of Learning by Composing Solution of Elemental Sequential
Tasks. Machine Learning, 8:99–115, 1992.

[59] Smith, R. G., and Davis, R. Frameworks for Cooperation in Distributed Problem
Solving. IEEE Transaction on Systems, Man and Cybernetics, 11(1):61–70, 1981.

[60] Steels, L. Structural coupling of cognitive memories through adaptive language
games. In Proc. of the Fifth International Conference on Simulation of Adaptive
Behavior: From Animals to Animats 5, pages 263–269, 1998.

[61] Steels, L., and Vogt, P. Grounding adaptive language games in robotic agents. In
Proc. of the Fourth European Conference on Artificial Life, pages 474–482, 1997.

[62] Stone, P., and Veloso, M. Using Machine Learning in the Soccer Server. In Proc. of
IROS-96 Workshop on Robocup, 1996.

[63] Stone, P., and Veloso, M. Team-Partitioned, Opaque-Transition Reinforcement
Learning. In Asada, M., editor, Proc. of the First RoboCup-97 Workshop at IC-
MAS’98, pages 221–235, 1998.

132 BIBLIOGRAPHY

[64] Sugita, Y., and Tani, J. Emergence of Cooperative/Competitive Behavior in Two
Robots’ Games : Plans or Skills? In SAB-98 Workshop 1 : Adaptive Behavior using
Dynamic Reccurent Neural Nets, 1998.

[65] Sutton, R. Generalization in Reinforcement Learning: Successful Examples Using
Sparse Coarse Coding. In Advances in Neural Information Processing Systems, 1996.

[66] Sutton, R. S., and Barto, A. G. Reinforcement Learning. MIT Press/Bradford Books,
March 1998.

[67] Suzuki, S., Kato, T., Asada, M., and Hosoda, K. Behavior Learning for a Mobile
Robot with Omnidirectional Vision Enhanced by an Active Zoom Mechanism. In
Proc. of Intelligent Autonomous System 5(IAS-5), pages 242–249, 1998.

[68] Takahashi, Y., Asada, M., and Hosoda, K. Reasonable Performance in Less Learning
Time by Real Robot Based on Incremental State Space Segmentation. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

[69] Tani, J. Cognition of Robots from Dynamical Systems Perspective. In Proc. of 1996
IROS Workshop on Towards Real Autonomy, pages 51–59, 1996.

[70] Uchibe, E., Asada, M., and Hosoda, K. Behavior Coordination for a Mobile Robot
Using Modular Reinforcement Learning. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1329–1336, 1996.

[71] van Overschee, P., and De Moor, B. A Unifying Theorem for Three Subspace System
Identification Algorithms. Automatica, 31(12):1853–1864, 1995.

[72] van Overschee, P., and De Moor, B. Subspace Identification for Linear Systems.
Kluwer Academic Publishers, 1996.

[73] Watkins, C. J. C. H., and Dayan, P. Technical note: Q-learning. Machine Learning,
pages 279–292, 1992.

[74] Whitehead, S. D. Complexity and Coordination in Q-Learning. In Proc. of the Eighth
International Workshop on Machine Learning, pages 363–367, Evanston, Illinois,
1991. Morgan Kaufmann.

[75] Whitehead, S. D., Karlsson, J., and Tenenberg, J. Learning Multiple Goal Behavior
Via Task Decomposition And Dynamic Policy Merging. In Connel and Mahadevan
[15], chapter 3.

[76] Yamaguchi, T., Miura, M., and Yachida, M. Multi-agent Reinforcement Learning
with Adaptive Mimetism. In 5th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA-96), pages 288–294, 1996.

BIBLIOGRAPHY 133

[77] Yang, B.-H., and Asada, H. Progressive Learning for Robotic Assembly: Learning
Impedance with an Excitation Scheduling Method. In Proc. of the IEEE International
Conference on Robotics and Automation, pages 2538–2544, 1995.

[78] Zlotkin, G., and Rosenschein, J. S. Cooperation and Conflict Resolution via Nego-
tiation Among Autonomous Agents in Noncooperative Domains. IEEE Transaction
on Systems, Man and Cybernetics, 21(6):1317–1324, 1991.

