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Abstract

Self localization seems necessary for mobile robot
navigation. The conventional method such as geomet-
ric reconstruction from landmark observations is gen-
erally time-consuming and prone to errors. This pa-
per proposes a method which constructs a decision tree
and prediction trees of the landmark appearance that
enable a mobile robot with a limited visual angle to
observe efficiently and make decisions without global
positioning in the environment. By constructing these
trees based on information criterion, the robot can ac-
complish the given task efficiently. The validity of the
method is shown with a four legged robot.

1 Introduction

When it makes a decision, a mobile robot highly de-
pends on its own location. For self-localization, meth-
ods such as dead reckoning and global positioning by
geometric reconstruction from image data are com-
monly used. However, it seems difficult for a legged
robot to use dead reckoning since the moving distance
on the walking plane is less accurate than that of a
wheeled robot. For the latter, geometric reconstruc-
tion often highly depends on accurate motion informa-
tion. Such information may include drastic errors in
the case of legged robots due to causes such as slipping.
Furthermore, it takes a lot of time not just for geomet-
ric reconstruction but also for observation to capture
the image surrounding the robot in order to make ge-
ometric reconstruction stable and accurate. Human
beings do not seem to take such a strategy to localize
themselves. Rather, they use the minimum necessary
information for their decision making when they do
not have enough resources (time, etc.).

Moon et al. [3, 2] have proposed a view point plan-
ning method to move efficiently by reducing the fre-
quent observation for self-localization mostly based on
dead reckoning. To apply their method, the map and
the route to the goal should be given in advance.

Burgard et al. [1] have proposed an active localiza-
tion method by Markov localization using occupancy
grids as a world model representation. To apply their
method, the map of the environment and the dead
reckoning model need to be prepared. Also calcula-
tion and memorization costs for occupancy grids are
very high. These methods depend on geometric recon-
struction.

Tani et al. [6] have experimented with the task of
watching two visual targets with a limited view angle
camera. The robot switched the visual attention de-
pending on prediction accuracy. Since the robot action
(wall following) is fixed, the issue can be regarded as
a view prediction problem on a route which is almost
fixed.

In this paper, we propose a method for a robot,
which has a limited view angle camera with panning
facility, to make a decision by efficient observation
without explicitly localizing itself. With a limited view
camera, a robot can widen the angle by panning, but
it takes time. Efficient observation is done by a de-
cision tree and prediction trees constructed based on
the information criterion. The basic idea of our ob-
servation strategy is not for self localization but for
decision making, that is, to minimize observation as
long as decision making is possible. By constructing
a decision tree, one can know which landmark to ob-
serve first. Similarly by making and using prediction
trees with information criterion, one can reduce the
time for observation through decision making.



2 The method

2.1 Assumptions

We assume that the robot can make a decision for
the given task at any position by panning its cam-
era head. Before making the decision and prediction
trees, sufficient example data are necessary. We used
a teaching method to collect such data.

2.2 Making decision and prediction trees

Suppose we have m landmarks and q kinds of ac-
tions. Each appearance of the landmark is quantized
into r kinds of viewing categories including a non-
visible situation. A training datum consists of a set
of the appearance of the landmarks at the current po-
sition and the action to accomplish the task, and we
have n training data. During the training period, the
robot pans its camera head from the left-most angle to
the right most one, and observes as many landmarks
as possible.

First, calculate the occurrence probabilities of ac-
tions pk (k = 1, ..., q) as:

pk =
nk

n
, (1)

where nk denotes the number of taken action k. There-
fore, the information I0 for the action probability is
given by

I0 = −
∑

k

pk log2 pk. (2)

Next, calculate the occurrence probabilities of actions
after each appearance of the landmark was known. We
denote the number of times action k was taken as nijk

when the landmark i is observed at the quantized di-
rection j. Then, the occurrence probability becomes,

pijk =
nijk∑
k nijk

. (3)

Next, calculate the expected information after one of
these landmarks is found, as follows:

Ii = −
∑

j

{ ∑
k nijk∑

j

∑
k nijk

∑

k

(pijk log2 pijk)
}
. (4)

The smaller Ii is, the smaller the uncertainty after the
observation is. We put the landmarks into the tree in
decreasing order of uncertainty after its observation.
This information criterion is same as ID3 [4]. For the
training data which take different actions for the same
situation, we add a leaf for each action and record the
probability that it was taken.
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Figure 1: Examples of an action decision tree and a
prediction tree.

For example, suppose we have training data as shown
in Table 1. Since px = 0.2, py = 0.4, and pz = 0.4,
I0 is 1.52. By calculating each pijk, we have expected
informations, IA = 0.551, IB = 0.8, and IC = 1.2.
So the ordering in the decision tree is landmark A, B,
and C, and the tree is shown in Fig.1(a). We calculate
the landmark appearance prediction trees in the same
manner.

Table 1: An example of teaching data.
Landmark A Landmark B Landmark C Action

1 1 1 x
2 1 1 y
3 2 1 y
1 3 1 z
1 2 2 z

2.3 Calculation of the probability distri-
bution

Here, we denote the probability that the viewing
direction of the landmark i is j at time t as pL

ij(t) (i =
1, ..., m, j = 1, ..., r), the probability that the action
k was taken at time t as pa

k(t) (k = 1, ..., q), and the
probability that the action k should be taken by the
training data at t as p̂a

k(t) (k = 1, ..., q).
Calculation of the probability distributions are as

follows. If currently the landmark i is observed in the
quantized viewing direction J we assign the probabil-
ity 1.0 to pL

iJ(t) and 0s to others (pL
ij(t) = 0 (j 6= J)).

When the previous taken action was K, set pa
K(t−1) =

1 and pa
k(t− 1) = 0 (k 6= K). The probabilities of the

landmarks, which are not currently observed, are pre-
dicted by the prediction trees using the probability
distributions pL

ij(t − 1) and pa
k(t − 1). We assign the



probability 1.0 to the quantized invisible direction and
0s to others if the landmark cannot be observed while
the robot looks around.

Following a landmark prediction tree from the root
to one of the leaves, one can obtain 1) the condition
of the appearances of the landmarks and the action at
time (t− 1) which is given by logical product, and 2)
the consequence appearance of the landmark at time t.
In order to calculate the probability of reaching each
leaf, we change the logical product to an arithmetic
one and conditions to probabilities at time (t − 1).
We consider the summation of the probabilities of the
leaves of the same appearance as the probability of the
appearance at time t. For example, if the prediction
tree of landmark A is Fig.1(b), then

pL
A1(t) = pa

x(t− 1)pL
A2(t− 1)pL

B2(t− 1)× 0.3,

pL
A2(t) = pa

x(t− 1)pL
A1(t− 1)pL

B1(t− 1)pL
C2(t− 1),

pL
A3(t) = pa

x(t− 1)pL
A2(t− 1)pL

B1(t− 1)pL
C3(t− 1)

+pa
x(t− 1)pL

A2(t− 1)pL
B2(t− 1)× 0.7. (5)

To calculate the action decision probability p̂a
k(t),

we use these probability distributions pL
ij(t), and fol-

low the action decision tree in the same manner.

2.4 Decision making

In order to make a decision on which action to take,
the robot calculates the p̂a

k(t) as described above. If
one of the action probabilities is very high, it takes
that action. Otherwise, until one of them becomes
high enough, it continues to try to observe the land-
mark whose probability distributions is flat in the or-
der in which they were placed in the action decision
tree (information criterion). When the robot checks
the landmark, one may find a peak of the profile, and
observation of that direction may help.

3 Experiments

3.1 Task and Assumptions

The task is to push a ball into a goal based on the
visual information. We used a legged robot with a
limited view angle for the RoboCup 99 SONY legged
robot league (Fig.2). In the field, there are 8 land-
marks, that is, target goal (TG), own goal (OG), north
west pole (NW), north east pole (NE), center west pole
(CW), center east pole (CE), south west pole (SW),
and south east pole (SE). All the landmarks and the
ball are distinguished by their colors. The view angle
/ number of image pixels of the robot’s camera are

about 53 degrees / 88 pixels in width, and about 41
degrees / 59 pixels in height. Each leg and the neck
have three degrees of freedom. We fixed the joint an-
gles of the legs and the neck except for the pan joint
when it observes the landmarks and the ball to make
its decision. The robot can rotate the pan joint from
-90 degrees to 90 degrees.

Figure 2: The SONY legged robot for RoboCup 99
SONY legged robot league.
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Figure 3: Experimental field (same as the one for
RoboCup SONY legged league). Cross marks and a
circle indicate the initial positions of the robot and the
ball respectively for the first experiment.

The ball can be treated as a special landmark, which
is static if the robot does not push it while it can
change its position if the robot pushes it. Therefore,
the appearance of the ball can be predicted by its pre-
vious location in the image and the action of the robot.
Note that for the ball prediction tree we cannot use



other landmarks because it may move in the field.
Each landmark’s appearance is quantized into eight

categories, that is, seven directions and one invisible
situation (Fig.4). The ball appearance was quantized
into eleven categories, that is, the product of five di-
rections and two kinds of distances (near or far), and
one invisible situation.
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Figure 4: Quantization for landmarks (left) and the
ball (right).

Since the training data may lack some situations,
the sum of the probability distribution

∑N
i=1 pi might

be less than one. To avoid this, we added (1−∑N
i=1 pi)/N

to each pi. N indicates the size of the distribution.
When it plays back the taught action based on the

trees, the robot looks all around to search landmarks
and the ball (if they are invisible) if the peak action
probability was below 0.6 .

3.2 Experiment 1

In the field (Fig.3), we experimented with the task
of guiding a ball into the goal. The ball was put in
front of the goal (the circle before the target goal in
the figure) and the robot was placed at middle of the
field (one of three cross marks in the middle). As ac-
tions, we prepared three movements, forward, left for-
ward and right forward for 4.8 seconds. The walking
was programmed by us and a motion for 4.8 seconds
corresponds to four walking periods. In 4.8 seconds,
the robot walks about 0.45[m] in forward movement
and at most places the appearance of the landmarks
changes due to one of the motions.

We trained the robot starting from one of three po-
sitions in the middle of the field. For each starting po-
sition, we trained five times and obtained eighty data
points to construct trees. We show the sizes (the num-
ber of leaves, minimum, mean, and maximum depth)
of decision and prediction trees in Table 2. The orders
in the trees by the information criterion are shown in
Table 3.

Table 2: Depth of the action and prediction trees (Ex-
periment 1).

# of leaves min dep. mean dep. max dep.
action: 43 1 4.91 8

ball: 52 2 2 2
OG: 13 1 4.23 8
TG: 44 1 5.39 8
SE: 6 1 2 3
SW: 1 0 0 0
CE: 28 2 4.69 8
CW: 11 1 3.91 8
NE: 51 1 5.96 8
NW: 54 2 5.91 8

Table 3: The order of information of trees (Experi-
ment 1, ‘act’ means action, ‘1’ means root node).

1 2 3 4 5 6 7 8
action: ball TG NE NW CW CE OG SE

ball: ball act
OG: act NE TG NW CW CE OG SE
TG: TG act NE NW CE OG CW SE
SE: act CE NE OG NW TG CW SE
SW: -
CE: act NE TG CE NW CW OG SE
CW: TG act NE NW CE CW OG SE
NE: NE act NW TG CE CW OG SE
NW: act NE TG NW CE OG SE CW

Next, we show the examples of action sequences
using these trees. From the starting position in the
center of the field, the robot took the forward motions
four times. In this experiment, the ball and the target
goal were observed at every moment for decision mak-
ing. The probability distributions of landmark obser-
vation predictions and the action decision are shown
in Fig.5.

The robot took different actions even if the starting
position was the same. This is due to the quantiza-
tion of the observation and variance of the walking.
In this example, the robot started from the center of
the field as in the first example, but then took other
actions instead ( 1) forward, 2) forward, 3) landmark
observation, 4) forward, 5) landmark observation, 6)
left forward, 7) forward, and 8) forward ). In this ex-
periment, the ball and the target goal were observed
at every moment for decision making. The probability
distributions of landmark observation predictions and
the action decision are shown in Fig.6.

Here is another example starting from the center



right cross mark of the field. In this example, the
robot took the actions, 1) left forward, 2) landmark
observation, 3) forward, 4) forward, and 5) left for-
ward. The ball and the target goal were observed at
every moment for decision making. The probability
distributions of landmark observation prediction and
the action decision are shown in Fig.7.

Figure 5: Probability distribution in Experiment 1-1
(The gray scale of each box indicates the probability.
Darkest 1 and lightest 0.).

We show the number of re-observations in Table
3.2. Each number indicates the number of trials, total
steps, re-observations, and the rate of re-observations.
We see that the number of re-observation is reduced
to about half of the total steps.

Table 4: The number of needed observation (Experi-
ment 1).

begin # of # of total # of rate of
from trials steps re-ovserv. re-observ.
center 12 35 18 .51
left 12 31 15 .48
right 16 64 38 .59

3.3 Experiment 2

In the same field we trained the robot with regard to
the games of the RoboCup 99. In this experiment, we
placed the robot and the ball at many more locations
than in experiment 1. To reduce the load of teaching,
we prepared six actions, forward, left forward, right
forward, left rotation, right rotation, and track the
ball. Each action is performed for 4.8 seconds.

Figure 6: Probability distribution in Experiment 1-2.

By this training, we obtained 1364 data points.
Deleting inappropriate data, we used 856 data points
for the action decision tree and 1364 data points for
the ball and landmarks predictions. We show the sizes
and the order of the trees based on the information
criterion in Tables 5 and 6. We used these data for
the RoboCup 99 and the robot showed the movement
that was expected though the robot did look for the
landmarks more frequently than anticipated.

4 Discussions and conclusions

From Experiment 1, we see that the action proba-
bility distributions have either a sharp peak (nearly
equal to 1.0) or a very flat profile. When the ac-
tion probability profile is flat, the landmark proba-
bility profile, which is important for decision making,
is also flat due to poor training data for making pre-
diction trees. Then, the robot looked all around to
search the landmarks and the ball.

Comparing the order of action and landmarks in
prediction trees between Experiment 1 and Experi-



Figure 7: Probability distribution in Experiment 1-3.

Table 5: Depth and size of the trees (Experiment 2).
# of leaves min dep. mean dep. max dep.

action: 586 2 5.89 9
ball: 403 2 2 2

OG: 958 2 7.58 9
TG: 1050 2 7.67 9
SE: 845 2 7.35 9
SW: 901 2 7.41 9
CE: 901 2 7.13 9
CW: 873 2 7.37 9
NE: 1031 2 7.60 9
NW: 980 2 7.55 9

ment 2, we notice that the action is higher priority in
Experiment 1 than in Experiment 2. It seems that in
Experiment 1 the training data was too few to extract
the fact that prediction of landmarks highly depends
on its location, which indicates prediction can be done
mostly by landmark observation. Note that although
the order is different in both cases, they are extracted
from the training data by information criterion and
are therefore optimal in that sense. Although the pro-
posed method does not depend on it, the training data
should be sufficient to accomplish the task.

In this paper, we quantized the appearance space
by hand. But, by using a method like C4.5 [5] for
making action decision trees, quantization may be self-
organized. The order in the tree, which is fixed in

Table 6: The order of information of trees (Experi-
ment 2).

1 2 3 4 5 6 7 8 9
action: ball TG OG SW SE NW NE CE CW

ball: ball act
OG: OG SE SW TG NW CW NE CE act
TG: TG OG SE SW NW NE CW CE act
SE: SE OG TG SW CE NE NW CW act
SW: SW OG CW SE TG NW NE CE act
CE: CE SE OG TG NE SW NW act CW
CW: CW SW OG TG NW SE NE CE act
NE: TG NE OG SE CE NW SW CW act
NW: NW TG OG SW CW SE NE CE act

this method for memory consumption and simplicity,
might be changed as ID3 or C4.5 for further abstrac-
tion and observation efficiency.

Acknowledgments

We thank SONY Digital Creatures Laboratory for
providing us the opportunity to use the legged robots.

References

[1] W. Burgard, D. Fox, and S. Thrun. Active mobile
robot localization. In Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI). Morgan Kaufmann, San Mateo, CA, 1997.

[2] I. Moon, J. Miura, and Y. Shirai. Dynamic motion
planning for efficient visual navigation under uncer-
tainty. In Y. Kakazu, M. Wada, and T. Sato, editors, In
Proc. of the Intelligent Autonomous Systems 5, pages
172–179, 1998.

[3] I. H. Moon, J. Miura, Y. Yanagi, and Y. Shirai. Plan-
ning of vision-based navigation for mobile robot under
uncertainty. In Proceedings of the 1997 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, volume 1, pages 1202–1207, 1997.

[4] J. R. Quinlan. Discovering rules from large collections
of examples: a case study. In D. Michie, editor, Expert
Systems in the Microelectronic Age. University Press,
Edinburgh, Scotland, 1979.

[5] J. R. Quinlan. C4.5: PROGRAMS FOR MACHINE
LEARNING. Morgan Kaufmann Publishers, 1993.

[6] J. Tani, J. Yamamoto, and H. Nishi. Dynamical inter-
actions between learning, visual attention, and behav-
ior: An experiment with a vision-based mobile robot.
In P. Husbands and I. Harvey, editors, Fourth Euro-
pean Conference on Artificial Life, pages 309–317. The
MIT Press, 1997.


