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Abstract. Q-learning, a most widely used reinforcement learning method,
normally needs well-defined quantized state and action spaces to con-
verge. This makes it difficult to be applied to real robot tasks because of
poor performance of learned behavior and further a new problem of state
space construction. We have proposed Continuous Valued Q-learning for
real robot applications, which calculates contribution values to estimate
a continuous action value in order to make motion smooth and effective
[1].

This paper proposes an improvement of the previous work, which shows
a better performance of desired behavior than the previous one, with
roughly quantized state and action. To show the validity of the method,
we applied the method to a vision-guided mobile robot of which task is
to chase a ball.

1 Introduction

Reinforcement learning has been receiving increased attention as a method with
little or no a priori knowledge and higher capability of reactive and adaptive
behaviors for robots through the interactions with their environment[2]. How-
ever, Q-learning, a most widely used reinforcement learning method, normally
needs well-defined quantized state and action spaces to converge. This makes it
difficult to be applied to real robot tasks because of poor performance of learned
behavior and further a new problem of state space construction.

We have proposed Continuous Valued Q-learning for real robot applications[1].
The proposed method interpolates continuous values between roughly quantized
states and actions. This contributes to realize smooth motions with much less
computational resources. This paper proposes an improvement of the previous
work through the discussions what are problems in the previous one and how
they are solved. The proposed method obtained the better performance of desired
behavior than the conventional real-valued Q-learning method, with roughly
quantized state and action. To show the validity of the method, we applied the
method for a vision-guided mobile robot of which task is to chase the ball.



2 Continuous Valued Q-Learning

2.1 State Representation and Action Interpolation
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Fig. 1. Calculation of contribution value wi for the representative state si in the case
of two-dimensional state space

A basic idea for continuous value representation of the state, the action,
and the reward in Q-learning is to describe them as contribution vectors of
the representative states, actions, and rewards, respectively. First, we quantize
the state/action space adequately. Each quantized state and action can be the
representative state s1, · · · , or sn and the representative action a1, · · · , or am,
respectively. The state (action) representation is given by a contribution vector
of the representative state s = (ws

1, · · · , ws
n) (a = (wa

1 , · · · , wa
m)). A contribution

value indicates the closeness to the neighbor representative state (action). The
summation of contribution values is one.

There are several methods to calculate a contribution value, and we select
a following one because of the simplicity of the calculation. For the readers’
understanding, here we assume that the N -dimensional sensory information di-
rectly construct the N -dimensional state space, and the motor space has M -
dimensions. The robot perceives the current sensory information as a state vector
x = (x1, x2, · · ·xN ), and executes motor command u = (u1, u2, · · ·uM ).

First, we tessellate the state space into N -dimensional hyper cubes1. The
vertices of all hyper cubes correspond to the representative state vectors xi =
(xi

1, x
i
2, · · ·xi

N ) i = 1, · · · , n (here, n denotes the number of the vertices), and we
call each vertex the representative state si. The contribution value ws

i for each
representative state si when the robot perceives the input x = (x1, x2, · · ·xn)
is defined as the volume ws

i of the box diagonal to the state si. Mathematical
formulation is given by

ws
i =

N∏

k=1

li(xk) , where li(xk) =
{

1− |xi
k − xk| if |xi

k − xk| ≤ 1
0 else . (1)

1 the unit length is determined by normalizing the length of each axis appropriately



Fig.1 shows a case of two-dimensional sensor space. The area wx
i is assigned as

a contribution value for state si. Thus, the state representation corresponding
to the input x is given by a state contribution vector ws = (ws

1, · · · , ws
n).

Similarly, the representative action vectors uj = (uj
1, u

j
2, · · ·uj

M ) j = 1, · · · ,m,
and the representative action aj are given. When an action contribution vector
wa = (wa

1 , · · · , wa
m) is given from the current policy π of the agent, the mapping

to the motor command is defined as follows:

u =
m∑

j=1

wa
j uj . (2)

2.2 Extension to the Continuous Space

According to the state and the action definition mentioned above, we modify
the standard Q-learning algorithm as follows:

When the agent goes around its environment, it has a certain policy π, which
returns a representative action a ∈ A = {a1, a2, · · · , am}, for each each represen-
tative state s ∈ S = {s1, s2, · · · , sn}. That is:

a = π(s). (3)

Using this policy π, the agent calculates the contribution vector of the represen-
tative action as follows:

wa
j =

n∑

i=1

ws
i f(si, aj , π), where f(si, aj , π) =

{
1 if π(si) = aj

0 else . (4)

The Q-value when executing the representative action aj at the representative
state si is denoted by Q(si, aj). A Q-value at any state with policy π (x, π) is
given by:

Q(x, π) =
n∑

i=1

ws
i Q(si, a), where a = π(si). (5)

Given the representative state si, the representative action based on the optimal
policy π∗ is calculated by:

ak = π∗(si), where k = arg max
j

Q(si, aj) (6)

The state value function V (x) is calculated by:

V (x) =
N∑

i=1

ws
i Vi , where Vi = max

j
Qi,j . (7)

Then, the Q value when choosing an policy π at the current state x, and tran-
siting the next state x′ given reward r is updated by:

Q(si, aj) ← Q(si, aj) + αws
i f(si, aj , π)(r + γV (x′)−Q(x, π)) (8)

where α is a learning rate and γ is a fixed discount factor between 0 and 1.



3 Improvements of the learning algorithm

3.1 Action Contribution Vector

The calculation of the contribution vectors of representative actions from the ac-
tual motor command may not work well as expected. We show a simple example.
There are two representative states, i.e. “left” and “right”, and 3 representative
actions, i.e. “fast”, “slow”, and “stop”. The goal state is the “right” one. The
“fast” action is optimal at the “left” representative state, and the “stop” ac-
tion is optimal at the “right” representative state. When the agent is at the
middle position between two representative state, the agent may calculate the
slow action” by the interpolation between the optimal actions. Even if the agent
execute the ”slow” as the result of action interpolation, the Q-values for ”slow
action” will be reinforced on the both representative states. Since the ”slow”
action is not the optimal action at the both state, this reinforcement causes a
wrong effect.

To avoid this situation, we use the contribution vectors of representative
actions not calculated from the actual motor command, but based on the agent’s
current policy π (Equations (5) and (8)). In the last example, if the agent execute
the ”slow” as the result of action interpolation of “fast” and “stop”, the “fast”
and “stop” action will be reinforced, and “slow” action will not.

3.2 State Value Function

The calculation of a state value function V (s) in the previous version[1] was:

V (x) =
N∑

i=1

M∑

j=1

ws
i w

a∗
j Qi,j . (9)

This means that a state value function at the state s should be the Q value at
the state taking the action a∗ based on the optimal policy. However, this is not
a good idea because the state values except for the representative states are not
properly estimated unless the optimal action at all states are the same one.

Let us consider a case in which the optimal representative action at a rep-
resentative state differs from one at the other representative state. The contri-
bution of the each representative action wa∗

j has a mean value between the 0
to 1. The estimated state value at each representative state wa∗

j Qi,j is always
less than the state value at the representative state Vi = maxjQi,j . Then the
estimated state value at the middle state is underestimated. This phenomena is
not appropriate for the updating the Q-table. We should use the equation(7).

3.3 Q value Estimation

The Q value interpolation in the previous version was:

Q(s, a) =
n∑

i=1

m∑

j=1

ws
i w

a
j Qi,j (10)



As we mentioned in previous subsections, it is not a good idea to use the action
contribution vector in order to calculate or update the Q-table. Therefor, we
changed the definition of the state value function from equation (10) to equation
(7), and the equation of Q value estimation like (5), or the agent may underes-
timate the Q value than the state value V (x) if it takes the optimal policy.

3.4 Update Equation

The equation of update Q value in the previous version was:

Qi,j ← Qi,j + αws
i w

a
j (r + γV (s′)−Qi,j). (11)

This updates Qi,j even if the estimation is perfect. This phenomena does not
lead to the convergence, but causes the divergence of learning. We should use
the equation(8).

4 Experimental

In order to show the validity of the proposed method, we apply the method
to a mobile robot of which task is to chase a ball, one of the vision-guided
behavior acquisition. Fig.2(a) shows a picture in which the mobile robot we
have designed and built and the ball to chase are shown. A simple color image
processing (Hitachi IP5000) is applied to detect the ball area in the image in
real-time (every 33ms).

(a) A mobile robot and a ball
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Fig. 2. Experiment

The robot has a TV camera of which visual angles are 35 degs and 30 degs in
horizontal and vertical directions, respectively. The camera is tilted down 23.5



degs to capture the ball image as large as possible. The image area is 128 by
110 pixels, and the state space is constructed in terms of the centroid of the
ball image. The driving mechanism is PWS (Power Wheeled System), and the
action space is constructed in terms of two torque values to be sent to two motors
corresponding to two wheels. These parameters of the robot system are unknown
to the robot, and it tries to estimate the mapping from sensory information to
appropriate motor commands by the method.

The state and action spaces are two-dimensional ones, and tessellated into 5
by 5 and 3 by 3 grids, respectively. The learning rate α and the discount factor γ
are 0.05 and 0.7, respectively. The parameters are constant during the learning.

Action selection during the learning was random and the goal state is a
situation that the robot captures the ball region at the center of the image and
its size is pre-specified value so that the ball is located just in front of the robot
(about 50cm apart). In other words, the goal state is that the coordinates of the
centroid of the ball region is (64,55).

To show the efficiency of the exploration and smoothness of the motion,
we compare the results with standard Q-learning based on the quantized state
and action spaces. We show the difference in the step responses of the robot
behavior after the learning. The ball is positioned 3m far from the robot. Fig.2(b)
shows the step responses, where the behavior based on the proposed method
successfully reaches the goal state with smaller error and smoother motion than
the standard Q-learning method. The standard Q-learning method sometimes
lost the ball and oscillated left and right before reaching the goal state.
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