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Abstract

This paper proposes multi-layered reinforcement learn-
ing by which the control structure can be decomposed
into smaller transportable chunks and therefore previ-
ously learned knowledge can be applied to related tasks
in a newly encountered situation. The modules in the
lower networks are organized as experts to move in-
to different categories of sensor output regions and to
learn lower level behaviors using motor commands. In
the meantime, the modules in the higher networks are
organized as experts which learn higher level behavior
using lower modules. We apply the method to a simple
soccer situation in the context of RoboCup, show the
experimental results.

1 Introduction

Reinforcement learning has recently been receiving
increased attention as a method for robot learning
with little or no a priori knowledge and higher capa-
bility of reactive and adaptive behaviors [1]. However,
its applicability to real robot tasks in a dynamic en-
vironment seems limited since the real world is too
complicated for the robot to learn a variety of behav-
iors. Therefore, a hierarchical structure within lean-
ing control system seems necessary, by which the con-
trol structure can be decomposed into smaller trans-
portable chunks and previously learned knowledge can
be applied to related tasks in a newly encountered sit-
uation.

There have been a variety of works on multi-layered
control architecture. Albus[2] proposed Real-time Con-
trol System, which consists of task decomposition, world
modeling, and sensor processing modules at each layer

of the hierarchy. The task is decomposed in advance
into parallel and sequential subtasks, to be performed
by cooperating sets of subordinate agents. Kaelbling[3]
proposed HDG algorithm which has landmark net-
works as an upper level of hierarchy and enables to
learn the behavior more quickly. Stone and Veloso[4]
proposed layered learning, and applied it to the multi-
agent learning system. At the lower-level, individual
skills are learned, and more social skills are learned
at the higher-level. Morimoto and Doya[5] apply a
hierarchical reinforcement learning method by which
an appropriate sequence of subgoals for the task is
learned in the upper level, and behaviors to achieve
the subgoals are acquired in the lower level. However,
the problem is that the human designers have to define
the subtasks, landmarks, skills, and subgoals based on
their own experiences and insights.

Tani and Nolfi[6] developed an on-line multi-layered
sensory flow pattern learning scheme. A set of recur-
rent neural net (RNN) modules is self-organized as
a set of experts to account for different categories of
sensory flow which the robot experiences. Meanwhile,
another set of RNNs in the higher level learns the se-
quences of module switching observed in the lower lev-
el. Their scheme, however, doesn’t have any control
learning structure, which makes it difficult to acquire
a purposive behavior by itself.

In this paper, we propose a method by which a hier-
archical structure for behavior learning is self-organized
by adding action command lines to the system in [6].
The modules in the lower networks are organized as
experts to move into different categories of sensor out-
put region and learn lower level behaviors using mo-
tor commands. In the meantime, the modules in the
higher networks are organized as experts which learn
higher level behavior using lower modules. Each mod-
ule is assigned its own goal state by itself. We apply
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Figure 1: A hierarchical learning architecture

the method to a simple soccer situation in the context
of RoboCup, show the experimental results.

2 Hierarchical Learning System

The robot prepares learning modules of a kind, makes
a layer with the modules, and constructs a hierarchy
with the layers. The hierarchy of the learning mod-
ules’ layers seems to play a role of task decomposition.
The lower learning modules explore small areas in the
given environment, and learn lower level, fundamental
behaviors. They learn behaviors with narrower scope
and shorter time horizons, focusing on the more de-
tails. In contrast, the upper learning modules explore
a large area, and learn higher level, more abstracted
behaviors based on the learning modules at the lower
layer. They have behaviors with broader scope, longer
time horizons, and less concern for the details.

2.1 Architecture

The the proposed architecture of the multi-layered
reinforcement learning system is shown in Fig.1, in

which (a) and (b) indicate a hierarchical architecture
with two levels, and individual learning module em-
bedded in the layers.

Each module has its own goal state in its state s-
pace, and it learns the behavior to reach the goal, or
maximize the sum of the discounted reward received
over time, using Continuous Q-learning[8]. The state
and the action are constructed using sensory outputs
and motor command, respectively at the lower level.

The input and output from/to the higher level are
goal state activation and behavior activation, respec-
tively, as shown in Fig.1(b). The goal state activation
g is a normalized state value 1, and g = 1 when the
situation is the goal state. When the module receives
the behavior activation b from the higher level mod-
ules, it calculates the optimal policy for its own goal,
and sends action commands to the lower level. The
action command is translated to actual motor com-
mand, then the robot takes the action in the world.

One basic idea is to use the goal state activations g
of the lower level modules as the representation of the
situation for the higher level. Intuitively, we can re-
gard that the state value function represents how close
the robot is to the goal if the module received reward
only when it reached its goal, because the state value
function estimate the sum of the discounted reward re-
ceived over time when the robot takes optimal policy.
The state of the higher level modules is constructed
using the pattern of the goal state activations of the
lower level modules. In contrast, the actions of the
higher level modules is constructed using the behavior
activations to the lower level.

2.2 Algorithm

2.2.1 Continuous Q learning
We use Continuous Q learning[8] as behavior learn-

ing module which is a modified version of normal Q-
learning. We will briefly review the basics of continu-
ous Q-learning.

First, we quantize the state action space adequate-
ly. Each quantized state and action can be the repre-
sentative state and the representative action, respec-
tively. The state and action representations are given
by a contribution value vector of the representative s-
tate (ws

1, · · · , ws
n) and one of the representative action

(wa
1 , · · · , wa

m), respectively. A contribution value indi-
cates the closeness to the related representative state
or representative action. The summation of contribu-
tion values is one.

1The state value function estimates the sum of the discount-
ed reward received over time when the robot takes optimal pol-
icy, and is obtained using Q learning.



The Q-value when executing the representative ac-
tion aj at the representative state si is denoted by
Qi,j . A Q-value at any state and action pair is given
by:

Q =
n∑

i=1

m∑

j=1

ws
i w

a
j Qi,j (1)

Given the representative state si, the optimal rep-
resentative action is calculated by arg maxj Qi,j . The
optimal action contribution vector a∗ for any state s
is given by:

a∗ = wa∗ =
n∑

i=1

ws
i e(arg max

j
Qi,j) (2)

where e(k) denotes an M -dimensional vector of which
k-th component is one and of which others are zeros.
In order to obtain the optimal action based on eq.(2),
max Q is calculated by:

maxQ =
n∑

i=1

m∑

j=1

ws
i w

a∗
j Qi,j (3)

Then, the Q value when choosing an action a at the
current state s, and transiting the next state s′ given
reward r is updated by:

Qi,j ← Qi,j + αtw
s
i w

a
j (r + γV (s′)−Q(s, a)) (4)

where max Qt′ denotes Q value when choosing the op-
timal action at the next state.

2.2.2 State Action Space Construction
Learning modules at the lowest layer construct the

state action space using the sensory information and
motor command of the robot. In this paper, we apply
the method which is proposed in [8].

Learning modules at the higher layers construct the
representative state and action using the goal state ac-
tivations and behavior activations of lower modules,
respectively. That is that the contribution vector of
the representative state and action at the upper mod-
ules is given by the normalized pattern of the goal
state activation and behavior activation of the lower
modules.

2.2.3 Self-distribution of Goal State
The basic policy for the distribution of learning

modules is “to assign the goal state of each learning
module in the state space uniformly”. However, it
seems difficult

1© to find out how the state space does extend, nor

2© define a distance function in the state space with-
out robot’s experiences.

These problems will occur especially among the layers
which are upper than the lowest one.

Now, we can use the state value function as the dis-
tance function which estimates the distance to its own
goal state Because, we can regard that V (s) represents
how close the robot is to the goal if the robot received
reward only when it reach its goal.

Fig.2 shows the distribution procedure of each learn-
ing module’s goal state in the state space uniformly.
It shows the case of one dimension state space, how-
ever, the procedure is same way in the case of multi-
dimension one. The vertical axis indicates a goal state
activation of a learning module. Fig.2(a) show an ex-
ample of the learning module distribution at the ini-
tial learning stage. There are three learning modules,
and they are not distributed uniformly. The region
where the goal state activations of other modules are
low, could be judged that there is no learning mod-
ules which goal state is near. Then, the learning sys-
tem adds new learning module in that place(Fig.2(b)).
When the density of learning module is high, goal s-
tate activations of learning modules are high. Then,
The learning system moves a learning module’s goal
state to the region where the goal state activations of
other learning modules will be low(Fig.2(c)). When
the density of learning module is still high, the system
deletes an learning modules. As a result, the goal state
of each learning module distributes in the state space
uniformly after the learning (Fig.2(d)). The algorithm
is as follows.

(1) Sneighbor = {sneighbor such that contribution val-
ue is larger than a threshold T}

(2) If ||Sneighbor || = 0, then exit, where || · || means
the number of elements.

(3) Search a learning module modulequery which has
its goal state in the Sneighbor

(4) Calculate the distribution of the maximum goal
state activation V noquery

max (sneighbor ) of the learn-
ing modules which are NOT modulequery

(5) If modulequery doesn’t exist, and maximum of
the V noquery

max (sneighbor ) is low, then add a new
learning modules and exit.

(6) If modulequery exists and the minimum of V noquery
max (sneighbor )

is high, delete modulequery and exit.

(7) Search sneighbor
min which is the state where the

V noquery
max (sneighbor ) is minimum among Sneighbor .

If modulequery exist and its goal state is not
sneighbor
min , then move the goal state to sneighbor

min
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Figure 2: Example of the assignment of the goal state
among learning modules
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Figure 3: Strategy in the multi-layered control struc-
ture. L.M. stands for learning module



2.2.4 Construction of Layer
We’ve described the distribution of the learning mod-

ules among each layer. The learning system makes
multi-layer by superposing them. Because it assigns
less learning modules than the number of states, less
number of states is assigned at upper layer. Then less
learning modules will assigned at upper layer. The
layering procedure stops when the number of learning
module is one at the top layer.

2.2.5 Strategy in the Multi-Layered Learn-
ing System to Accomplish Task

The target state is given to the multi-layered learn-
ing system in the state space at the bottom layer. First
of all, the system searches the learning module which
is nearest to the target state. If the learning module
can accomplish the given task, that is it can reach the
target state using its policy, the system sets the be-
havior activation of the learning module. The system
judges whether the learning module accomplish the
given task or not by its Q value at the current situa-
tion. That is, if Q value is hight, then the module has
a policy to reach the target state, and if Q value is
low, the module has not experienced the situation, or
the situation is very far from its goal state. Then, if Q
value is higher than an threshold, the system judges
that the module can accomplish the given task.

If the learning module module0
g which has nearest

goal state to the given target state s0
targetat the bottom

layer cannot accomplish the given task, the system let-
s the state at the upper layer which is related to the
module module0

g be the target state s1
target , and search-

es the learning module module1
g which is nearest to the

target state s1
target . If this learning module module1

g

can reach the target state s1
target from the current sit-

uation, then the system sets the behavior activation of
the learning module. This learning module module1

g

sends its command to the lower layer by setting the
behavior activations of lower learning modules, then
reaches its goal state(Fig.3(b)). If the system reach-
es the region which the learning module module0

g at
bottom layer can deal with, that is the situation be-
comes in case 1 in Fig.3, it starts the learning module
module0

g, then move to the given target state in the
same way as the first step.

If the learning module module1
g cannot deal with

the current situation, the system does same way at up-
per layer(Fig.3(c)). The multi-layered system sets be-
havior activation of only one learning module at each
layer, because of avoidance of conflict among learning
modules’ policy.

3 Experiments

3.1 Setting

Figure 4: A mobile robot, a ball and goals
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To evaluate the proposed method, we apply it to a
simple navigation task. The target situation is given
by reading the sensor information when the robot is
at the target position.

Fig.4 shows a picture of the mobile robot we de-
signed and built, the ball, and the goal. Fig.5 shows
an overview of the robot system. It has two TV cam-
eras. One has a wide-angle lens which visual angles are
35 degrees and 30 degrees in horizontal and vertical di-
rections, respectively. The camera is tilted down 23.5
degrees to capture the ball image as large as possible.
Other has a omni-directional mirror and is mounted
on the robot. The driving mechanism is PWS (Power
Wheeled System), and the action space is constructed
in terms of two torque values to be sent to two motors
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that drive two wheels. These parameters of the sys-
tem are unknown to the robot, and it tries to estimate
the mapping from sensory information to appropriate
motor commands by the method. The environment
consists of a ball, and a goal, and the mobile robot.

In this experiment, the robot receives the informa-
tion of only one goal, for the simplicity. The state
space at the bottom layer is constructed in terms of
the centroid of goal images of the two cameras and tes-
sellated both into 9 by 9 grids. And the action space
is constructed in terms of two torque values to be sent
to two motors corresponding to two wheels and tessel-
lated into 3 by 3 grids. Consequently, the number of
representative state and action are 162(9× 9× 2) and
9(3×3), respectively. The representative state and ac-
tion at the upper layer is constructed by the learning
modules at the lower layer, which are automatically

assigned.

3.2 Experiment Result

The experiment is constructed with two state, one
is the learning stage and other is the task execution
stage using the learned result. First of all, the robot
moved at random in the environment for about two
hours. The system learned and constructed the four
layers and one learning module exist at the top layer
(Fig.6). We call each layer from the bottom, bottom,
middle, upper, top layer. In this experiment, the sys-
tem assigned 40 learning modules at the bottom lay-
er, 15 modules at the middle layer and 4 modules at
the upper layer. Fig.7 and 8 show the distribution of
goal state activations of learning modules at the bot-
tom layer on the state spaces of wide-angle camera
image and omni-directional mirror image, respective-
ly. The x, y axes indicate the centroid of goal images.
The numbers on the figures indicate the numbers of
learning modules. The figures show that each learning
module is assigned on the state space uniformly.

The task for the robot is reaching a specified po-
sition using this multi-layer learning structure. The
robot was located far from the goal, and faced oppo-
site direction to it as an initial position. The target
position was reaching the goal and watching it in fron-
t. Figs.9，10，11 show the time development of the
goal state and behavior activations of learning mod-
ules at the bottom layer, middle layer and upper lay-
er, respectively. We omitted the time development
of the top learning module’s activation, because on-
ly one learning module existed at the top layer, and
it did never set behavior activation. The straight line
segments on top of the figure indicate the development
of the behavior activations. The numbers on the Fig.9
indicate the numbers of learning modules at the bot-
tom layer, and are correspond to the same numbers
on the Figs.7，8. Fig.12 shows a rough sketch of the
state transition and the commands to the lower layer
on the multi-layer learning system. This figure is cor-
respondent to the Figs.9，10 and 11. The circles in
the figure indicate the learning module, and the num-
ber in the circle indicates the number of the learning
module. The up arrows indicate that the upper learn-
ing module recognizes the state which is corresponded
to the lower module as the goal state. The thin solid
lines indicate the state transition while the robot ac-
complished the task. The down arrows indicate that
the upper learning module set the behavior activation
of the lower learning module. When the robot located
at the initial position, the learning module 25 at the
bottom layer, the learning module 10 at the middle
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layer and the learning module 1 at the upper layer
are near to their own goal states. When the robot lo-
cated at the target position, the learning module 1 at
the bottom layer, the learning module 7 at the middle
layer and the learning module 0 at the upper layer are
near to their own goal states. First of all, the system
tried to activate the learning module 1 at the bottom
layer, however, the module could not manage the cur-
rent situation, then the system tried to activate the
learning module 7 at the middle layer. But, the mod-
ule could not handle the current situation, either, then
the system activated the learning module 0 at the up-
per layer. The learning module 0 at the upper layer
activated the learning module 15 at the middle layer,
then this middle layer module activated the learning
modules 27 and 13 at the bottom layer until about 40
step. Next, the learning module 7 at the middle lay-
er became able to handle the situation, and activated
the learning modules 30 and 26 at the bottom layer
until about 360 step. Finally, the learning module 1 at
the bottom layer became able to handle the situation,
and the system reached the target position using this
module.

4 Conclusion

This paper proposed multi-layered reinforcement
learning. The results show that the competitive learn-
ing enable to determine the subgoals or subtasks by
the robot without human designers intervention, and
that as a whole system the robot could show purposive
behaviors.

The proposed approach should be able to reuse
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previously learned knowledge to related tasks. And
this enables the robot to learn always new, more ab-
stracted behavior and in newly encountered situations
through all its life.
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