
Behavior Generation for a Mobile Robot Based
on the Adaptive Fitness Function

Eiji Uchibe, Masakazu Yanase, and Minoru Asada
Adaptive Machine Systems Graduate School of Engineering

Osaka University, Suita, Osaka 565-0871, Japan
e-mail: uchibe@er.ams.eng.osaka-u,ac.jp

Abstract. We have to prepare the evaluation (fitness) function
to evaluate the performance of the robot when we apply the ma-
chine learning techniques to the robot application. In many cases,
the fitness function is composed of several aspects. Simple imple-
mentation to cope with the multiple fitness function is a weighted
summation. This paper presents an adaptive fitness function for
the evolutionary computation to obtain the purposive behaviors
through changing the weights for the fitness function. As an exam-
ple task, a shooting behavior in a simplified soccer game is selected
to show the validity of the proposed method. Simulation results
and real experiments are shown, and a discussion is given.

1 Introduction

One of the ultimate goals of Robotics and AI is to realize autonomous robots that
organize their own internal structure towards achieving their goals through interactions
with dynamically changing environments. In applying some of evolutionary approaches
to the robot in order to obtain purposive behaviors, the fitness (evaluation) function
should be given in advance. There are two important issues when we attempt to design
the fitness function.

First one is that the multiple fitness measures should be considered in order to e-
valuate the resultant performance. In case the desired behavior is simple one such as
wall-following, the fitness function can be also simple. However, many fitness measures
are considered when the desired behaviors become more complicated. One simple real-
ization is to create the new scalar function based on the weighted summation of multiple
fitness measures. However, this approach faces the essential problem of weighting itself,
that is, how to decide the weight values. In order to cope with multiple objective prob-
lem, several methods are proposed [2], of which purpose is to obtain the Pareto optimal
solutions. However, in robotic applications, it is sometimes meaningless to optimize one
of the fitness measures. For example, one of the rational policy of obstacle avoidance
in a static environment is not to move, which is not our intentional result.

Second one is the task complexity. If we set up the severe fitness function at the
beginning of learning, the robot does not obtain the good evaluation [6, 7]. As a result,
the robot can not accomplish the task. Therefore, we have to set up the appropriate
fitness function according to the current ability of the robot when the robot can ob-
tain the purposive behaviors in a finite learning time. In general, it seems difficult to

accomplish the complicated task from the beginning. Asada et al. proposed a paradig-
m called Learning from Easy Mission [1]. Yang and Asada [8] proposed Progressive
Learning which would learn a motion to be learned from slow to fast and apply it to
a peg insertion task. Omata [5] applied GAs to acquire the neural network controller
which can drive a bicycle. The designer give an initial velocity to the bicycle so as to
control it easily. After the generation proceeded, the assist was slightly decreased.

In this paper, we propose an adaptive fitness function in consideration of the change
of the evaluation through the evolution. Based on the given priority, the robot modi-
fies the fitness function to control the task complexity. In order to obtain the policy,
we select a Genetic Programming (hereafter GP) method [4]. GP is a kind of genetic
algorithms based on the tree structure with more abstracted node representation than
gene coding in ordinary GAs. We apply the GP enhanced by the adaptive fitness func-
tion to a simplified soccer game. We show how the robot would acquire the purposive
behaviors using the proposed method. Finally, the results of computer simulation, real
experiments, and a discussion are given.

2 Adaptive Fitness Function

Suppose that n fitness measures fi (i = 1, · · ·n) are given to the robot. We utilize the
standardized fitness representation, that has a positive value between 0 and 1. That is,
the smaller is better (0.0 is the best). Then, we introduce a priority function pr, and
define the priority of fi as pr(fi) = i. That is, f1 is the most important measures that
the robot has to consider. Combined fitness function is computed by

fc =
n∑

i=1

wifi, (1)

where wi denotes the weight for i-th evaluation. The robot updates wi through the
interaction with the environment.

In general, because the robot must consider a tradeoff among all the fitness measures,
it seems hard to optimize all the fitness measures simultaneously. We focus on the
change of each fi and correlation matrix so as to modify the weights. Let the fitness
measure of the individual j at the generation t be fi(j, t), and we consider the change
of the fitness measures by

∆fi(t) =
1

N

N∑

j=1

{fi(j, t)− fi(j, t− 1)} , (2)

where N is the number of population. In case of ∆fi > 0, i-th fitness measure is not
improved under the current fitness function. Therefore, the influence of the correspond-
ing weight wi should be changed. However, other fitness measures fj (j = i + 1, · · ·n)
should be also considered since they would be related to each other.

Let Ci be the set of fitness measures which is related to the i-th measure,

Ci = {j | |rij| > ε, j = i + 1, · · · , n}, (3)

where ε is a threshold between 0 and 1, and rij is a correlation between fi and fj. In
case of Ci = φ, wi can be modified independently because i-th fitness measure does
not correlate with other measures. Therefore, wi is increased so that the i-th fitness
measure would be emphasized.

In case of Ci 6= φ, wj∗ is updated, where j∗ is prior to other evaluation measures in
Ci, that is,

j∗ = arg max
j∈C i

pr(fi).

The reason why wi is not changed explicitly is that the weight of the upper fitness
measure would continue to be emphasized even if the corresponding fitness measure is
saturated. As a result, the lower fitness measure related to the upper one is emphasized
directly. The update value ∆wj∗(t) is computed by

∆wj∗(t) =

{
1 (rij∗ > ε)
−1 (rij∗ < −ε)

. (4)

It is possible for the weight corresponding to improved measures to change for the
worse. However, it would be rather unimportant measures because of the given priority.
Finally, we summarize the method to modify the fitness function as follows:

1. For i = 1, · · · , n, update the weights as follows:

A. In case of C = φ, update the i-th weight by wi(t + 1) = wi(t) + α∆wi.
B. In case of C 6= φ, update the j∗-th weight by Eq.(4).

2. Create the next population, and increment the generation by t → t + 1.

In this study α is equal to 0.02.

3 Task and Assumption

3.1 Environment and Robots

We have selected a simplified soccer game consisting of two mobile robots as a testbed.
RoboCup [3] has been increasingly attracting many researchers. The task for the learner
is to shoot a ball into the opponent goal without collisions with an opponent. At the
beginning, the behavior is obtained in computer simulation, and we transfer the result
of simulation to the real robot. Figure 1 (a) shows an our mobile robot, a ball, and a
goal.

The environment consists of a ball, two goals, and two robots. The sizes of the ball,
the goals and the field are the same as those of the middle-size real robot league of
RoboCup Initiative. The robots have the same body (power wheeled steering system)
and the same sensor (on-board TV camera). As motor commands, each mobile robot
has a 2 DOFs.

3.2 GP Implementation

Each individual has two GP trees, which control the left and right wheel, respectively. A
GP learns to obtain mapping function from the image features to the motor command.
Then, we select the terminals as the center position in the image plane. For example,
in a case of the ball, the current center position (xb(t), yb(t)) and the previous one
(xb(t− 1), yb(t− 1)) are considered. Because the objects that the GP robot can observe
are the ball, two goals and an opponent, the number of the terminals is 4(objects) ×
4(features) = 16. As a function set, we prepare four operators such as +, −, × and /.

Figure 1 (b) shows a flowchart to create a new generation. The best performing tree
in the current generation will survive in the next generation. The size of the population

next population

crossover
reproduction

5 %

90 %

5 %

best one
5 %

current population

reproduction
creation

geneticoperations

mutation

(a) our mobile robot (b) flowchart of GP

Figure 1: GP Implementation

Table 1: Fitness measures and the priorities
case A case B case C case D

fopp the total number of achieved goals 1 1 1 1
fown the total number of lost goals 2 2 6 2

the overlapping degree of the ball andfov the opponent goal in the image plane
3 5 3 3

fkick the total number of ball-kicking 4 3 4 6
fc the total number of collisions 5 4 5 5
fstep the total number of steps until all trials end 6 6 2 4

is set to 150. In order to select parents for crossover, we use tournament selection with
size 10. The maximum depths by crossing two trees is 25. We perform 30 games to
evaluate each robot. The number of generations for which the evolutionary process
should run is 200. One trial is terminated if the robot shoots the ball into the goal
or the pre-specified time interval expires. ε is set to 0.5. We perform 10 experiments
according to the variety of initial values of weights.

3.3 Fitness Measures

One of the most important issues is to design the fitness measures. In this experiment,
we set up six fitness measures described in Table 1. Because it seems difficult to give
the optimal priority function, we prepare four priorities (case A, B, C, and D).

The initial weights for the six fitness measures are set as follows: fown = fopp = 9.0,
fkick = 8.0, fc = 4.0, fstep = fov = 2.0. They are the best values in our previous exper-
iments using the fixed fitness function. The policy to design the priority is explained
as follows. Since the main purpose for this robot is to shoot a ball into the goal, we
assume that the most important measure is the number of achieved goals.

4 Experimental Results

4.1 Comparison between the Proposed Method and the Fixed Weight Method

At first, we perform a simulation using a stationary opponent. This experiment can be
regarded as an easy situation. We compare the proposed method with the fixed weight

0

5

10

15

20

25

0 50 100 150 200

nu
m

be
r

of
 a

ch
ie

ve
d

go
al

s

number of generation

proposed method (average)
proposed method (best result)

fixed weight

0

5

10

15

20

25

0 20 40 60 80 100

nu
m

be
r

of
 a

ch
ie

ve
d

go
al

s

number of generation

proposed method (average)
fixed weight

(a) with the stationary opponent (b) with the moving opponent

Figure 2: Average of the number of achieved goals in the first experiment

method. Figure 2 (a) shows the result when the opponent is stationary. In a case of the
fixed weight method, the performance is not improved after the 50th generations. On
the other hand, the performance based on the proposed method is improved gradually.

Next, we show a simulation results using an active opponent. This experiment can
be regarded as a more difficult situation. As an initial population for this experiment, we
used the best population which was obtained based on the proposed method described
above. Figure 2 (b) shows a histories of fopp. In this experiment, although the opponent
just chases the ball, the speed can be controlled by the human designer. Its speed was
gradually increased at the 40th and 80th generations, respectively.

According to the increase of the speed of the opponent, the obtained scores fopp was
slightly decreased in a case of the fixed weight method. On the other hand, the robot
using the proposed method kept the performance same in spite of the increase of the
speed.

We checked the obtained behaviors based on both methods, and it was found the
following issues: With respect to fopp and fown, both methods achieved the almost
same performances. In cases of the number of collisions (fc) and the steps (fstep), the
performance of the proposed method is better than that of the fixed weight method.
We suppose the reason why the robot would acquire such behaviors as follows. At the
beginning of the evolution, the most important thing is to kick the ball towards the
opponent goal even if it makes a collision with the opponent. Therefore, the weights for
fc and fstep are set to small values in a case of the fixed weight method. After a number
of generation, the weight for fopp affected the differences of fitness among individuals
because most individuals accomplished the shooting behavior. Consequently, the robot
using the fixed weight method did not consider fc and fstep through the whole genera-
tions. On the other hand, the robot based on the proposed method changed the weight
for fstep to be considered. As a result, the robot using the proposed method obtained
the shooting behavior more quickly.

4.2 Comparison among the Different Priority Function

Next, we checked how the priority affects the acquired behaviors when we change
the order of the priority because the priority of fitness measures must be given to the
robot in advance. For the sake of the limitation of the space, we show the results of

Figure 3: Typical shooting and avoiding behavior in computer simulation

0

5

10

15

20

25

30

0 50 100 150 200

nu
m

be
r

of
 a

ch
ie

ve
d

go
al

s

number of generation

case A
case B

case C
case D

0

2

4

6

8

10

12

14

0 50 100 150 200

w
ei

gh
t

number of generation

ball-kicking
collision

steps
overlap

(a) achieved goals (b) weight based on case C

Figure 4: Comparison among four priority functions

four fitness measures in Figure 4 using the four priorities described in Table 1. From
Figure 4 (a), although the learning curves are different among four cases, the final values
converged to the almost same value.

Figure 4 (b) shows the weights of case C during the evolution. Since the weights
for the number of achieved and lost goals are constant, only one line are shown in this
figure. It follows from the initial weights described in section 3.3, the important order
of fitness measures are described as follows:

achieved goals = lost goals > ball-kicking > collisions > step = overlap.

Using the priority function in Table 1, the resultant order are described as follows:

ball-kicking > step > achieved goals = lost goals > collisions > overlap.

In many cases we can see that settlement. That is, ball-kicking is emphasized through
the evolution. On the other hand, it was not important for the robot to consider the
measure about the overlapping degree fov directly.

Figure 5: Typical shooting behavior in the real environment

In this experiment, the resultant performance mainly depended on the number of
individuals, that was too exiguous for this problem. Although simple extension is to
increase the number of individuals, there are alternative approaches. One is to apply
a kind of intelligent genetic operations to our problems. We used an standard genetic
operation such as crossover and mutation, GP sometimes failed to search the feasible
solutions appropriately.

4.3 Real Experiments

We transfer the obtained policy to the real robot. A simple color image processing
(Hitachi IP5000) is applied to detect the objects in the image plane in real time (every
33 [ms]). The robot has a TV camera of which visual angles are 35 [deg] and 30 [deg]
in horizontal and vertical directions, respectively.

Figure 5 shows a preliminary result of the experiments, that is, one sequence of
images where the robot accomplished the shooting behavior. As compared with the
behaviors based on our previous methods [1, 7], obtained behavior seems very smooth
because of mapping from the continuous sensor space to the continuous action space.
This robot participated in the competition of RoboCup 99 which was held in Stockholm.
Currently, we perform one-to-one competition in the real environment and check the
validity of the proposed method.

5 Conclusion

This paper presented a method of the adaptive fitness function based on the changes
of fitness through the evolution. In consideration of the correlation between multiple
fitness measures, the weights for the combined fitness function are updated. We applied
the adaptive fitness function method to the simplified soccer game, and showed the
validity of the proposed method. The processes of evolution among different priority is
slightly different, but resultant performance are almost same in this experiment.

As a future work, we hope to challenge simultaneous evolution of multiple robots,

that is co-evolution. We have already reported how the multiple robots could obtain
the cooperative behaviors based on GP with the fixed fitness function [7]. Now, we are
planning to implement the proposed method to this task.

Acknowledgments

This research was supported by the Japan Society for the Promotion of Science, in
Research for the Future Program titled Cooperative Distributed Vision for Dynamic
Three Dimensional Scene Understanding (JSPS-RFTF96P00501).

References

[1] M. Asada, S. Noda, S. Tawaratumida, and K. Hosoda. Purposive Behavior Acquisi-
tion for a Real Robot by Vision-Based Reinforcement Learning. Machine Learning,
23:279–303, 1996.

[2] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in mul-
tiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[3] H. Kitano, ed. RoboCup-97 : Robot Soccer World Cup I. Springer Verlag, 1997.

[4] J. R. Koza. Genetic Programming I : On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

[5] T. Omata. Learning with Assistance based on Evolutionary Computation. In Proc.
of the IEEE International Conference on Robotics and Automation, pages 2180–
2186, 1998.

[6] E. Uchibe, M. Asada, and K. Hosoda. Environmental Complexity Control for Vision-
Based Learning Mobile Robot. In Proc. of the IEEE International Conference on
Robotics and Automation, pages 1865–1870, 1998.

[7] E. Uchibe, M. Nakamura, and M. Asada. Cooperative and Competitive Behavior
Acquisition for Mobile Robots through Co-evolution. In Proc. of the Genetic and
Evolutionary Computation Conference, pages 1406–1413, 1999.

[8] B.-H. Yang and H. Asada. Progressive Learning for Robotic Assembly: Learning
Impedance with an Excitation Scheduling Method. In Proc. of the IEEE Interna-
tional Conference on Robotics and Automation, pages 2538–2544, 1995.

