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Abstract

Perceptual attention can be regraded as the first step
towards symbol emergence from senroy data. Espe-
cially, visual attention is one of the key issues for robots
to accomplish the given tasks, and the existing meth-
ods specify the image features and attention control
scheme in advance according to the task and the robot.
However, in order to cope with environmental changes
and/or task variations, the robot should construct
its own attention mechanism. This paper presents a
method for image feature generation by visio-motor
map learning for a mobile robot. The teaching data
constructs the visio-motor mapping that constrains the
image feature generation and state vector estimation as
well. The resultant projection matrix from the filtered
image to a state vector tells us which part of the image
is more informative for decision making than others.
The method is applied to indoor navigation and soccer
shooting tasks, and discussion is given.

Introduction
Through billions of years of evolution process, biolog-
ical systems have acquired their organs and their own
strategies so that they can survive in hostile environ-
ments. Visual attention can be regarded as a combina-
tion of such organs and strategies, that is, “vision” that
brings a huge amount of data about the external world
and “attention mechanism” that extracts the necessary
and sufficient information from them for the system to
achieve the mission at hand. Such a capability is de-
sired in artificial systems too, and therefore, it has been
one of the most typical but formidable issues in robotics
and AI for long years.

Human beings can easily enjoy such a mechanism
in various kinds of situations, and a number of re-
searches focus on the early visual processing of human
beings (Treisman & Gelade 1980), improve the Treis-
man’ model (Wolfe, Cave, & Franzel 1989; Laar & Gie-
len 1997), and apply Shanon’s information of the ob-
served image (Takeuchi, Ohnishi, & Sugie 1998) in or-
der to select the focus of attention in the view. The
main issues of these works are the analysis of the human
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visual processing and the explanation for our attention
mechanism.

Some of computer vision researchers focused on the
view point selection (where to look) problem (Nayar,
Murase, & Nene 1996; Arbel & Ferrie 1999) in order
to disambiguate the descriptions for the observed im-
age that is obtained by matching the image with the
model database. The selection criterion is based on the
statistics of the image data and actions (gaze control),
if any, are intended to get the better observation for ob-
ject recognition, but are not directly related to physical
actions needed to accomplish a given task.

Self localization is the one of the issues in naviga-
tion task, and most of the works are based on a kind
of geometric reconstruction from the observed image
using a priori knowledge of the environment. Thrun
(Thrun 1998) and Vlassis et al. (Vlassis, Bunschoten,
& Kröse 2001) extracted the features correlated to the
information of the self-localization of the mobile robot
from the observed images based on the probabilistic
method. Kröse and Bunschoten (Kröse & Bunschoten
1999) decided the robot direction, i.e., camera direc-
tion by minimizing the conditional entropy of the robot
position given the observations.

The existing approaches mentioned above mostly
specify the kinds of image features in advance and adopt
a sort of attention mechanism based on the designers
intuition having considered the given task. However,
in order to cope with environmental changes and/or
task variations, the robot should generate image fea-
tures and construct its own attention mechanism. This
paper presents a method for image feature generation
by visio-motor map learning for a mobile robot. The
teaching data construct the visio-motor mapping that
constrains the image feature generation and state vec-
tor estimation for the action selection as well. That is,
the state space is constructed in such a way that the
correlation between a state and a given instruction can
be maximum. Thus, through the task accomplishment
process, the robot emerges a symbol (physical meaning)
grounded by its actions. The method is applied to an
indoor navigation and a soccer shooting tasks.

In the existing approaches, there have been some
methods to construct the visual state spaces through
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Figure 1: Image feature generation and action selection
model

the task executions (e.g.(Nakamura 1998; Ishiguro,
Kamiharako, & Ishida 1999)). These methods can con-
struct the task-oriented state vector, but they don’t fo-
cus on the image features. Our proposed method con-
structs the task-oriented visual state space and image
feature which is useful for the selective attention.

The rest of the paper is organized as follows. First,
the basic idea for image feature generation is described
along with the learning formulation. Here, the projec-
tion matrix from the extracted image feature to the
state vector is introduced to consequently determine
the optimal action. Next, the experimental results are
given to show the validity of the proposed method. Fi-
nally, discussion on the attention mechanism suggested
from the current results is given towards the next step.

Image feature generation

A basic idea
Fig.1 shows the proposed model of the system for im-
age feature generation and action selection. The reason
why adopting two stage learning is that we expect the
former more general and less task specific while the lat-
ter vice versa. In other words, at the image feature
generation stage, the interactions between raw data are
limited inside local areas while the connections between
the image features and the states spread over the entire
space to represent more global interactions. A similar
structure can be found in the synapse connections in
our brain, where the retinal signals geometrically close
to each other are mapped to nearby regions in the early
visual processing area while the post-processing and
therefore more abstracted information is spread out the
whole brain via a number of synapse connections (ex.
(Fellman & Essen 1991)).

We prepare the image filter F to generate the image
features. The robot estimates its state s from the fil-
tered image If and decides the action appropriate to the
current state s. In order to avoid curse of dimension,
we compress the filtered image If into Ic from which the
state vector is extracted by a projection matrix W . We
can regard W as a kind of attention mechanism because
it connects the filtered image Ic to the state space, that

is, it tells which part in the view is more important to
estimate each state, and finally to decide the optimal
action. Therefore, the problem is how to learn F and
W .

In order to reflect the task constraints, we use the
supervised successful instances (a training set). F and
W are computed by minimizing the conditional entropy
of the action given the state on the training set.

In this paper we prepare a 3×3 spatial filter Fs and
a color filter Fc as follows:
• a 3×3 spatial filter Fs ∈ <3×3:

Īxy = fs11Ix−1y−1+fs12Ixy−1+fs13Ix+1y−1

+fs21Ix−1y +fs22Ixy +fs23Ix+1y

+fs31Ix−1y+1+fs32Ixy+1+fs33Ix+1y+1,

Ifxy = g
(
Īxy

)
.

• a color filter Fc ∈ <3:
Īxy = fc1Irxy + fc2Igxy + fc3Ibxy,

Ifxy = g
(
Īxy

)
,

where x and y denote the position of the pixel, I, Ir, Ig

and Ib the gray, red, green and blue components of the
observed image, respectively, and g(·) a sigmoid func-
tion. For example, the following Fs and Fc represent a
vertical edge filter and a brightness one, respectively.

Fs =

( −1 0 1
−1 0 1
−1 0 1

)
,

Fc = ( 0.2990 0.5870 0.1140 )T
.

Learning method
In the teaching stage the robot collect the i-th pair

Ti =< Ioi, ai >,

where Io is the observed image, a ∈ <l is the supervised
robot action executed after the robot observes Io and i
denotes the data number. In the case of a mobile robot,
l is two.

The state of the robot s ∈ <m is extracted by W ∈
<m×ncxncy . Let ic ∈ <ncxncy be the one dimensional
representation of Ic, then

s = g (W ic) ,

where g(·) is a vector function of which components are
sigmoid functions.

To evaluate F and W , we use the conditional entropy
H(a|s):

H(a|s) = −
∫

p(s)
∫

p(a|s) log p(a|s)dads,

where p(·) denotes the probabilistic density. To ap-
proximate H(a|s), we use the risk function R (Vlassis,
Bunschoten, & Kröse 2001).

R = − 1
N

N∑

d

log p(ad|sd)

= − 1
N

N∑

d

log
p(ad, sd)

p(sd)
,



where N is the size of the teaching data set. To model
p(a, s) and p(s), we use the kernel smoothing (Wand &
Jones 1995).

p(s) =
1
N

N∑
q

Ks(s, sq),

p(a, s) =
1
N

N∑
q

Ka(a, aq)Ks(s, sq),

where

Ks(s, sq) =
1

(2π)m/2hm
s

exp
(
−||s− sq||2

2h2
s

)
,

Ka(a, aq) =
1

(2π)l/2hl
a

exp
(
−||a− aq||2

2h2
a

)
,

hs and ha are the width of the kernels. R can
be regarded as the Kullback-Leibler distance between
p(a|sd) and a unimodal density sharply peaked at a =
ad. By minimizing R, we can bring p(a|s) close to the
unimodal density, that is, the robot can uniquely decide
the action a from the state s.

Using the steepest gradient method, we obtain a pair
of F and W which minimize R:

F ← F − αf
∂R

∂F
, W ← W − αw

∂R

∂W
,

where αf and αw are the step size parameters.
After learning the robot executes the action a derived

from its state s computed from the observed image as
follows:

a = arg max
a′

p(a′|s).

To find the maximum value, we adopt a coarse-to-fine
search strategy.

Experiments
Task and assumptions
We applied the proposed method to an indoor naviga-
tion task with the Nomad mobile robot (Fig.2(a)) and
a shooting ball task of the soccer robot (Fig.2(b)). The
mobile robot shown in Fig.2(a) is equipped with stereo
cameras and we use only the left camera image. The
soccer robot shown in Fig.2(b) is equipped with a single
camera directed ahead. The size of observed image is
64×54 and the values of I, Ir, Ig and Ib are normalized
to [0 1]. The robots can execute translational speed v
and steering speed ω independently, so the action vector
is represented as

a = (v, ω)T
,

where v and ω are normalized to [-1 1], respectively.
We define the size of the compressed filtered image as
8×6 and the dimension of state as m = 2. The sigmoid
function g is

g(x) =
1

1 + exp
(−x−θ

c

) ,

where θ = 0.0 and c = 0.2.
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Figure 2: Task

Learning results
At the teaching stage, we gave 158 pairs of images and
actions in the task 1, and 100 pairs in the task 2. In each
task we tested the two models (Fig.1) with a spatial
filter Fs and a color filter Fc, separately. We initialized
the components of W by random small number and

Fs =

( 0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

)
(smoothing),

Fc = ( 0.2990 0.5870 0.1140 )T (brightness).

Task 1: simple navigation Fig.3 shows the changes
of R in the case of Fs and Fc models. F and W are
learned so as to decrease R. Fig.4 shows the distribu-
tions of the state on the teaching data set in the case
of the model with Fs. To show the relation between
the states and actions, we labeled the action indices as
follows:
• v ≥ 0.6 : forward,
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(a) Model with Fs

� ��� �
� ��� �
� ��� �
� �

��� � �
��� � �

	 �
	�	�	 ��	�	�	 �	�	�	

�

������������������

(b) Model with Fc

Figure 3: Learning curves of R

• v ≤ −0.6 : backward,

• −0.6 < v < 0.6 and ω < 0.0 : right turn, and

• −0.6 < v < 0.6 and ω > 0.0 : left turn.

As we can see from these figures, the state space can be
roughly classified in terms of actions. That is, the state
space is constructed so that the correlation between an
action and a class of states can be maximized. However
it seems difficult to reveal a physical meaning from this
relationship.

The generated Fs and Fc are shown below:

Fs =

( −0.8915 −0.5995 −0.06528
−0.9696 −0.4790 1.357
−0.2482 0.1021 2.756

)
,

Fc = ( −0.4233 1.464 −0.1718 )T
.

Figs.5 and 6 show the examples of the filtered images.
As we can see from Fig.5, Fs shows the characteristic
to extract vertical and horizontal edges. However Fc

does not show remarkable characteristic because there
are not salient color objects in the environment (our
laboratory). Intuitively, it implies that the generated
Fs is good at a navigation task of a mobile robot.

Task 2: shooting a ball The generated Fs and Fc

are shown below. The examples of the filtered image
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(a) Initial state space
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(b) Learned state space

Figure 4: State distributions

are shown in Figs.7 and 8.

Fs =

( −3.384 −1.953 −1.686
0.3491 −1.350 0.5363
1.656 −1.208 5.223

)
,

Fc = ( 1.836 1.616 −4.569 )T
.

Fs shows the characteristic to extract horizontal
edges (see Fig.7). Fc emphasizes the red ball and yellow
goal but inhibits the white line and wall. This is equiv-
alent to a characteristic of a reversed U component of
YUV image. The generated Fc is good at a soccer robot
task in the colored soccer field.

Learned behavior
To verify the validity of the learned model, we applied
the model with Fs (task 1) to a navigation task of the
Nomad mobile robot (see Fig.2(a)). Fig.9 shows a se-
quence of the acquired behavior. The estimated states
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Figure 5: Example of the filtered image with Fs

(a) Io (b) If (c) Ic

Figure 6: Example of the filtered image with Fc

in this experiment are not exactly coincident with the
states computed from the teaching data set, but the
robot accomplished the task. Hence it implies that this
model is an effective representation for the task and
environment.

Discussion and future work
In this paper we proposed the method to generate an
image feature and to learn a projection matrix from
the image feature to the state, that suggests which part
in the view is important, that is, a gaze selection by
visio-motor mapping. The generated image features
are appropriate for the task and environment. Also
the acquired projection matrices give appropriate gaze
selection for the task and environment. To show this,
we illustrate the absolute value of W acquired in the
model with Fc in the task 2. Figs.10(a) and (b) show
the values of components of W related to the first and
second components of the state s, respectively. In these
figures brighter pixels are more closely related to the
state vector, that is, the robot gazes this parts in the
view. Therefore we can regard that a projection matrix
gives a gaze selection.

In our experiments, the instructor gave a motor com-
mand at every situation although he or she liked to give
more abstracted instructions such as ”avoid an obsta-
cle” or ”make a detour” since the robot dose not have
any mechanism to interpret such instructions. Fig.4 (a)
indicates this situation where there is no correlation be-
tween action and state. However, through the proposed
learning process, the robot constructed the state space
as shown in Fig.4 (b) where each action almost corre-
sponds a cluster of states. This may imply that the
physical meaning of instructions (the symbol) intended
by the instructor can be interpreted (grounded) by the
robot.

(a) Io (b) If (c) Ic

Figure 7: Example of the filtered image with Fs

(a) Io (b) If (c) Ic

Figure 8: Example of the filtered image with Fc

In this paper we defined the dimension of the state
vector as two heuristically. However, as a result, this
number was appropriate. Fig.11(a) shows the relation-
ship between the number of dimension and R in the
case of learning the model with Fs in the task 1, and
Fig.11(b) shows the relationship between the number of
dimension and the action estimation error. This error
shows the sum of error norms between the estimated
action and the supervised action. From these figures
we can see that the necessary number of dimension is
two to estimate the action from the state.

In the sequence of Fig.9 there are some cases that the
robot decides the actions with relatively low probability
p(a|s), that is, the robot is not so sure about its action
decision. Therefore, it seems necessary for the robot to
select multiple image features from the image feature
set to accomplish more complicated tasks. Now, we
are investigating how to integrate the proposed method
and the image feature selection method based on the
information theoretic criterion (Minato & Asada 2000).
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