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Abstract. Self localization seems necessary for mobile robot naviga-
tion. The conventional method such as geometric reconstruction from
landmark observations is generally time-consuming and prone to errors.
This paper proposes a method which constructs a decision tree and pre-
diction trees of the landmark appearance that enable a mobile robot with
a limited visual angle to observe efficiently and make decisions without
global positioning in the environment. By constructing these trees based
on information criterion, the robot can accomplish the given task effi-
ciently. The validity of the method is shown with a four legged robot.

1 Introduction

When it makes a decision, a mobile robot highly depends on its own location.
For self-localization, methods such as dead reckoning and global positioning by
geometric reconstruction from image data are commonly used [1][2][3]. However,
it seems difficult for a legged robot to use dead reckoning without special treat-
ment since the moving distance on the walking plane is less accurate than that
of a wheeled robot. that of a wheeled robot. For the latter, geometric reconstruc-
tion often highly depends on accurate motion information. Such information may
include drastic errors in the case of legged robots due to causes such as slipping.
Furthermore, it takes a lot of time not just for geometric reconstruction but also
for observation to capture the image surrounding the robot in order to make ge-
ometric reconstruction stable and accurate. Human beings do not seem to take
such a strategy to localize themselves. Rather, they use the minimum necessary
information for their decision making when they do not have enough resources
(time, etc.).

Moon et al. [4][5] have proposed a view point planning method to move
efficiently by reducing the frequent observation for self-localization mostly based
on dead reckoning. To apply their method, the map and the route to the goal
should be given in advance.

Burgard et al. [6] have proposed an active localization method by Markov
localization using occupancy grids as a world model representation. To apply
their method, the map of the environment and the dead reckoning model need
to be prepared. Also calculation and memorization costs for occupancy grids are
very high. These methods depend on geometric reconstruction.



Tani et al. [7] have experimented with the task of watching two visual targets
with a limited view angle camera. The robot switched the visual attention de-
pending on prediction accuracy. Since the robot action (wall following) is fixed,
the issue can be regarded as a view prediction problem on a route which is almost
fixed.

In this paper, we propose a method for a robot, which has a limited view angle
camera with panning facility, to make a decision by efficient observation without
explicitly localizing itself. With a limited view camera, a robot can widen the
angle by panning, but it takes time. Efficient observation is done by a decision
tree and prediction trees constructed based on the information criterion. The
basic idea of our observation strategy is not for self localization but for decision
making, that is, to minimize observation as long as decision making is possible.
By constructing a decision tree, one can know which landmark to observe first.
Similarly by making and using prediction trees with information criterion, one
can reduce the time for observation through decision making.

2 The method

2.1 Assumptions

We assume that the robot can make a decision for the given task at any position
by panning its camera head. Before making the decision and prediction trees,
sufficient example data are necessary. We used a teaching method to collect such
data.

2.2 Making decision and prediction trees

Suppose we have m landmarks and q kinds of actions. Each appearance of the
landmark is quantized into r kinds of viewing categories including a non-visible
situation. A training datum consists of a set of the appearance of the landmarks
at the current position and the action to accomplish the task, and we have n
training data. During the training period, the robot pans its camera head from
the left-most angle to the right most one, and observes as many landmarks as
possible.

First, calculate the occurrence probabilities of actions pk (k = 1, ..., q) as
pk = nk/n , where nk denotes the number of taken action k. Therefore, the
information I0 for the action probability is given by

I0 = −
∑

k

pk log2 pk. (1)

Next, calculate the occurrence probabilities of actions after each appearance of
the landmark was known. We denote the number of times action k was taken
as nijk when the landmark i is observed at the quantized direction j. Then, the
occurrence probability becomes,

pijk =
nijk∑
k nijk

. (2)



Next, calculate the expected information after one of these landmarks is found,
as follows:

Ii = −
∑

j

{ ∑
k nijk∑

j

∑
k nijk

∑

k

(pijk log2 pijk)
}
. (3)

The smaller Ii is, the smaller the uncertainty after the observation is. We put the
landmarks into the tree in decreasing order of uncertainty after its observation.
This information criterion is same as ID3 [8]. For the training data which take
different actions for the same situation, we add a leaf for each action and record
the probability that it was taken.

For example, suppose we have training data as shown in Fig.1(a). Since
px = 0.2, py = 0.4, and pz = 0.4, I0 is 1.52. By calculating each pijk, we have
expected informations, IA = 0.551, IB = 0.8, and IC = 1.2. So the ordering in
the decision tree is landmark A, B, and C, and the tree is shown in Fig.1(b). We
calculate the landmark appearance prediction trees in the same manner.
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Fig. 1. Examples of training data and an action decision tree.

2.3 Calculation of the probability distribution

Here, we denote the probability that the viewing direction of the landmark i is
j at time t as pL

ij(t) (i = 1, ..., m, j = 1, ..., r), the probability that the action k
was taken at time t as pa

k(t) (k = 1, ..., q), and the probability that the action k
should be taken by the training data at t as p̂a

k(t) (k = 1, ..., q).
Calculation of the probability distributions are as follows. If currently the

landmark i is observed in the quantized viewing direction J we assign the prob-
ability 1.0 to pL

iJ(t) and 0s to others (pL
ij(t) = 0 (j 6= J)). When the previous

taken action was K, set pa
K(t − 1) = 1 and pa

k(t − 1) = 0 (k 6= K). The proba-
bilities of the landmarks, which are not currently observed, are predicted by the
prediction trees using the probability distributions pL

ij(t− 1) and pa
k(t− 1). We

assign the probability 1.0 to the quantized invisible direction and 0s to others if
the landmark cannot be observed while the robot looks around.



Following a landmark prediction tree from the root to one of the leaves, one
can obtain 1) the condition of the appearances of the landmarks and the action at
time (t−1) which is given by logical product, and 2) the consequence appearance
of the landmark at time t. In order to calculate the probability of reaching
each leaf, we change the logical product to an arithmetic one and conditions to
probabilities at time (t− 1). We consider the summation of the probabilities of
the leaves of the same appearance as the probability of the appearance at time
t.

To calculate the action decision probability p̂a
k(t), we use these probability

distributions pL
ij(t), and follow the action decision tree in the same manner.

2.4 Decision making

In order to make a decision on which action to take, the robot calculates the
p̂a

k(t) as described above. If one of the action probabilities is very high, it takes
that action. Otherwise, until one of them becomes high enough, it continues to
try to observe the landmark whose probability distributions is flat in the order
in which they were placed in the action decision tree (information criterion).
When the robot checks the landmark, one may find a peak of the profile, and
observation of that direction may help.

3 Experiments

3.1 Task and Assumptions

The task is to push a ball into a goal based on the visual information. We used a
legged robot with a limited view angle for the RoboCup 99 SONY legged robot
league (Fig.2). In the field, there are 8 landmarks, that is, target goal (TG),
own goal (OG), north west pole (NW), north east pole (NE), center west pole
(CW), center east pole (CE), south west pole (SW), and south east pole (SE).
All the landmarks and the ball are distinguished by their colors. The view angle
/ number of image pixels of the robot’s camera are about 53 degrees / 88 pixels
in width, and about 41 degrees / 59 pixels in height. Each leg and the neck
have three degrees of freedom. We fixed the joint angles of the legs and the neck
except for the pan joint when it observes the landmarks and the ball to make
its decision. The robot can rotate the pan joint from -90 degrees to 90 degrees.

The ball can be treated as a special landmark, which is static if the robot
does not push it while it can change its position if the robot pushes it. Therefore,
the appearance of the ball can be predicted by its previous location in the image
and the action of the robot. Note that for the ball prediction tree we cannot use
other landmarks because it may move in the field.

Each landmark’s appearance is quantized into eight categories, that is, seven
directions and one invisible situation (Fig.4). The ball appearance was quantized
into eleven categories, that is, the product of five directions and two kinds of
distances (near or far), and one invisible situation.



Fig. 2. The SONY legged robot for RoboCup 99 SONY legged robot league.

Since the training data may lack some situations, the sum of the proba-
bility distribution

∑N
i=1 pi might be less than one. To avoid this, we added

(1−∑N
i=1 pi)/N to each pi. N indicates the size of the distribution.

When it plays back the taught action based on the trees, the robot looks all
around to search landmarks and the ball (if they are invisible) if the peak action
probability was below 0.6 .

3.2 Experiment 1

In the field (Fig.3), we experimented with the task of guiding a ball into the
goal. The ball was put in front of the goal (the circle before the target goal in
the figure) and the robot was placed at middle of the field (one of three cross
marks in the middle). As actions, we prepared three movements, forward, left
forward and right forward for 4.8 seconds. The walking was programmed by
us and a motion for 4.8 seconds corresponds to four walking periods. In 4.8
seconds, the robot walks about 0.45[m] in forward movement and at most places
the appearance of the landmarks changes due to one of the motions.

We trained the robot starting from one of three positions in the middle of the
field. For each starting position, we trained five times and obtained eighty data
points to construct trees. We show the sizes (the number of leaves, minimum,
mean, and maximum depth) of decision and prediction trees in Table 1. The
orders in the trees by the information criterion are shown in Table 2.

Next, we show the examples of action sequences using these trees. From the
starting position in the center of the field, the robot took the forward motions
four times. In this experiment, the ball and the target goal were observed at
every moment for decision making. The probability distributions of landmark
observation predictions and the action decision are shown in Fig.5.

The robot took different actions even if the starting position was the same.
This is due to the quantization of the observation and variance of the walking. In
this example, the robot started from the center of the field as in the first exam-
ple, but then took other actions instead ( 1) forward, 2) forward, 3) landmark
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Fig. 3. Experimental field (same as the one for RoboCup SONY legged league). Cross
marks indicate the initial positions of the robot and the ball for the first experiment.

observation, 4) forward, 5) landmark observation, 6) left forward, 7) forward,
and 8) forward ). In this experiment, the ball and the target goal were observed
at every moment for decision making. The probability distributions of landmark
observation predictions and the action decision are shown in Fig.6.

Here is another example starting from the center right cross mark. In this
example, the robot took the actions, 1) left forward, 2) landmark observation,
3) forward, 4) forward, and 5) left forward. The ball and the target goal were
observed at every moment for decision making. The probability distributions of
landmark observation predictions and the action decision are shown in Fig.7.

We show the number of re-observations in Table 3.2. Each number indicates
the number of trials, total steps, re-observations, and the rate of re-observations.

Fig. 4. Quantization for landmarks (left) and the ball (right).



Table 1. Depth of the action and prediction trees (Experiment 1).

# of leaves min depth mean depth max depth

action 43 1 4.91 8
ball 52 2 2 2
OG 13 1 4.23 8
TG 44 1 5.39 8
SE 6 1 2 3
SW 1 0 0 0
CE 28 2 4.69 8
CW 11 1 3.91 8
NE 51 1 5.96 8
NW 54 2 5.91 8

Table 2. The order of information in trees (Experiment 1, ‘act’ means action, ‘1’ means
root node).

1 2 3 4 5 6 7 8

action ball TG NE NW CW CE OG SE
ball ball act
OG act NE TG NW CW CE OG SE
TG TG act NE NW CE OG CW SE
SE act CE NE OG NW TG CW SE
SW -
CE act NE TG CE NW CW OG SE
CW TG act NE NW CE CW OG SE
NE NE act NW TG CE CW OG SE
NW act NE TG NW CE OG SE CW

We see that the number of re-observation is reduced to about half of the total
steps.

3.3 Experiment 2

In the same field we trained the robot with regard to the games of the RoboCup
99. In this experiment, we placed the robot and the ball at many more locations
than in Experiment 1. To reduce the load of teaching, we prepared six actions,
forward, left forward, right forward, left rotation, right rotation, and track the
ball. Each action is performed for 4.8 seconds.

By this training, we obtained 1364 data points. Deleting inappropriate data,
we used 856 data points for the action decision tree and 1364 data points for
the ball and landmarks predictions. We show the sizes and the order of the trees
based on the information criterion in Tables 4 and 5. We used these data for the
RoboCup 99 and the robot showed the movement that was expected though the
robot did look for the landmarks more frequently than anticipated.



Fig. 5. Probability distribution in Experiment 1-1 (The gray scale of each box indicates
the probability. Darkest 1 and lightest 0.).

Fig. 6. Probability distribution in Experiment 1-2.

4 Discussions and conclusions

From Experiment 1, we see that the action probability distributions have either a
sharp peak (nearly equal to 1.0) or a very flat profile. When the action probability
profile is flat, the landmark probability profile, which is important for decision
making, is also flat due to poor training data for making prediction trees. Then,
the robot looked all around to search the landmarks and the ball.

Comparing the order of action and landmarks in prediction trees between
Experiment 1 and Experiment 2, we notice that the action is higher priority in
Experiment 1 than in Experiment 2. It seems that in Experiment 1 the train-
ing data was too few to extract the fact that prediction of landmarks highly
depends on its location, which indicates prediction can be done mostly by land-
mark observation. Note that although the order is different in both cases, they
are extracted from the training data by information criterion and are therefore



Fig. 7. Probability distribution in Experiment 1-3.

Table 3. The number of needed observation (Experiment 1).

begin from # of trials # of total steps # of re-observation rate of re-observation

center 12 35 18 .51
left 12 31 15 .48
right 16 64 38 .59

optimal in that sense. Although the proposed method does not depend on it,
the training data should be sufficient to accomplish the task.

In this paper, we quantized the appearance space by hand. But, by using
a method like C4.5 [9] for making action decision trees, quantization may be
self-organized. The order in the tree, which is fixed in this method for mem-
ory consumption and simplicity, might be changed as ID3 or C4.5 for further
abstraction and observation efficiency.
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