Multi-Controller Fusion in Multi-Layered Reinforcement Learning

Y. Takahashi

M. Asada

Adaptive Machine Systems Graduate School of Engineering
Osaka University
Suita, Osaka 565-0871, Japan

Abstract

This paper proposes multi-controller fusion in
multi-layered reinforcement learning based omn which
an autonomous robot learns from lower level behaviors
to higher level ones through its life. In the previous
work [1], we proposed a method enables the behavior
learning system to acquire several knowledges/policies,
to assign sub-tasks to learning modules by itself, to or-
ganize its own hierarchical structure, and to simplify
the whole system by using only one kind of learning
mechanism in all learning modules. However, it has a
few drawbacks. The system cannot handle the change
of the state variables. It is easily caught by a curse of
dimension, if number of the state variables is large. In
this paper, we propose an approach of decomposing the
large state space at the bottom level into several sub-
spaces and merge those subspaces at the higher level.
This allows the system to reuse the policies learned be-
fore, to learn the policy against the new features, and
therefore to avoid the curse of dimension. To show
the validity of the proposed method, we apply it to a
simple soccer situation in the context of RoboCup, and
show the experimental results.

1 Introduction

There have been a lot of works on learning meth-
ods for behavior acquisition for robots based on the
methods such as reinforcement learning, genetic algo-
rithms, and so on (ex. [2], [3], and [4]). These methods
have a couple of advantages such as higher capabili-
ty of reactive and adaptive behaviors with little or no
a priori knowledge. Therefore, they are embedded as
components into autonomous robots expected to de-
velop their behaviors through the interaction between
environments and themselves in their lives. Almost of
the previous works, however, concentrate on acquir-
ing certain behaviors specified by the human designers
who must define the desired goals, state and action s-
paces, and evaluation functions, in order to apply their
methods to acquire the behaviors within reasonable
learning time. Therefore, the robot needs learn from
scratch if the task changes.

There are several works which reuse previously ob-
tained policies (ex. [5], [6] and [7]). They concentrate
on adjustment of certain behaviors to cope with new
environments based on knowledge obtained in the pre-
vious environment. However, the problem is that these
methods cannot handle the situations in which the s-
tate space or the state valuables are varying, therefore,

the robots need to learn from scratch, again.

An autonomous robot is expected to develop its be-
haviors from the lower level to the higher one in its life
time. In order to cope with various kind of situations,
a hierarchical structure within leaning control system
seems necessary, by which the control structure can
be decomposed into smaller transportable chunks and
previously learned knowledge can be applied to related
tasks in a newly encountered situation.

Takahashi and Asada [1] proposed a method by
which a hierarchical structure for behavior learning
is self-organized. The modules in the lower networks
are organized as experts to move into different cate-
gories of sensor output regions and learn lower level
behaviors using motor commands. In the meantime,
the modules in the higher networks are organized as
experts which learn higher level behaviors using lower
modules. This method enables the behavior learn-
ing system to acquire several knowledges/policies, to
assign sub-tasks to learning modules by itself, to self-
organize its own hierarchical structure, and to simplify
the whole system by using only one kind of learning
mechanism in all learning modules.

However, the proposed system has several draw-
backs. First, the system cannot handle the change of
the state variables because the system suppose that all
tasks can be defined on the state space at the bottom
level. This means that the system must discard the
learned hierarchical structure and reconstruct new one
when the robot obtains new features or variables which
represent the situations of the environment. This pre-
vents the robot from developing its behaviors. Next,
if number of the state variables is large, it is easily
caught by a curse of dimension. This means that the
number of state at the bottom layer becomes huge and
the system spends enormous computational resources.

Then, we propose an approach of decomposing the
large state space at the bottom level into several sub-
spaces and merge those subspaces at the higher level.
This allows the system

e to acquire behaviors based on new state features
by adding new learning modules layers based on
them while it leaves the already learned hierar-
chical structure when it encounters new state fea-
tures,

e to acquire behaviors based on state space con-
structed with large number of state valuables by

merging the modules at lower levels which acquire
behaviors based on subspaces, and

e to save computational resources because the num-
ber of state could be small by decomposing the
whole state space into small subspaces.

We apply the method to a simple soccer situation in
the context of RoboCup, show the experimental re-
sults, and give discussions.

2 Basic Idea: Construction of a whole
state space with decomposed small
state spaces

The basic idea of multi-layered learning system is
same as our previous work [1]. The robot prepares
learning modules of one kind, makes a layer with these
modules, and constructs a hierarchy with the layers.
The hierarchy of the learning module’s layers can be
regarded as a role of task decomposition. The low-
er learning modules explore small areas in the given
environment, and learn lower level, fundamental be-
haviors. They learn behaviors with narrower scopes
and shorter time horizons, focusing on the more de-
tails. On the other hand, the upper learning modules
explore large areas, and learn higher level, more ab-
stracted behaviors based on the learning modules at
the lower layers.

In the previous work, the system dealt with a w-
hole state space from lower layer to higher one. Here,
we introduce an idea that the system constructs a w-
hole state space with several decomposed state spaces.
At the bottom level, there are several decomposed s-
tate spaces in which modules are assigned to acquire
the low level behavior in the small state spaces. The
modules at the higher level manage the lower modules
assigned to different state spaces.

In this paper, we define the term “layer” as a group
of modules sharing the same state space, and the term
“level” as a class in the hierarchical structure. There
might be several layers at one level (see Figure 1 and
Figure 3 (a)).

2.1 Construction of State-Action Space of
Upper Layer

2.1.1 Multiplicative Approach

The state space is constructed as direct product of
module’s activations of lower layers. This case occurs
when the every layer deals with the different object
from each other. For example, in the case of robot in
the RoboCup field, one layer’s modules could be the
experts of ball handling and the other layer’s modules
the one of navigation on the field. The higher modules
recognize the lower module’s outputs of layers as dif-
ferent one (In Figure 1, two layers but it can be any.).
We design the state-action space for the modules man-
aging two layer’s modules as shown in Figure 1. The
system constructs n x m-dimensional state vector and
n—+m-dimensional action vector, if one lower layer has
n modules and the other has m modules.

~

S ER

module 21 ction vector
statevector% %LE‘D OO g OO
f%%% %\/O © J
D e

gctivajton DD @6 \ rgma}éliyéﬁ OO)
DDI‘:‘OOthavior DD‘ OO ehavior

activation| activation|

module 1 module 11

L J L J

Figure 1: State-action space construction based on
multiplicative approach

\ A

I I
I Learning [N9 g ! I Learning "9 EI
I'| module21/® i || module25|® :
\ \

YT ’

Stat - Sgata~~
Vector 1 LD O ﬁr%mu Q
Vector 1 DDt @) 3gcgg¢j

fggug) du 9
0 ‘O ehavior | | [] ‘O

ehavior
activation|

activation|

o H Lea{rning. 9 H
"n;"aflﬂ‘,'é‘% module 11|

. J L J

Figure 2: State-action space construction based on
additive approach

2.1.2 Additive Approach

The state space is constructed in a additive manner
(see Figure 2) when there is a correlation between ac-
tivation patterns of lower layers. This approach seems
to be an extension of the previous work [1]. The out-
put of one layer is assumed to be complimentary to the
other in this case; if the system acquires the output
of one layer, it can predict the output of other one to
some extent. The system does not need to recognize
the outputs of two layers as different one, but as one
output. We design the state-action space of modules
which manages activations of two layers as shown in
Figure 2. The system constructs n +m-dimensional s-
tate vector and n+m-dimensional action vector, if one
lower layer has n modules and the other m modules.
This means that the modules which has its goal state
on the output of one lower layer, extrapolate the infor-
mation from the other lower layer, if there is no active
modules on the lower layer. This approach saves com-

«Layerb
|Goa| State Activation |<Behavior Activation) oy
Learning - second
Module S level
_ /\,zl'_'_'.'_'_'_'_:
- \::’ ‘ \\\‘
Layer A S \\r,_(l:gy_er_ﬁ:'

|Goal State Acti&alti on |<Behavi or Activati on)

Lning Learning
e Joooo e |
L — 4

Sensor

Environment]

(a) A whole system

Behavior
Activation
Goal State Activation :
"closenessto its own goal state”
normalized state value

Behavior Activation :
instruction from higher level
to execute learned policy

Goa State
Activation

Reward>-| Q-Learning

State Action

(b) A behavior learning module
Figure 3: A hierarchical learning architecture

putational resources compared to the “multiplicative
approach”.

3 Hierarchical Learning System

3.1 Architecture

The proposed architecture of the multi-layered re-
inforcement learning system is shown in Figure 3, in
which (a) and (b) indicate a hierarchical architecture
with two levels, and individual learning module em-
bedded in the layers, respectively.

Each module has its own goal state in its state s-
pace, and learns the behavior to reach the goal, or
maximize the sum of the discounted reward received
over time, using continuous Q-learning [8]. The state
and the action are constructed using sensory outputs
and motor command, respectively at the bottom level
(first level).

The input and output from/to the higher level are
goal state activation and behavior activation, respec-
tively, as shown in Figure 3(b). The goal state activa-
tion g is a normalized state value!, and g = 1 when the
situation is the goal state. When the module receives

1The state value function estimates the sum of the discount-
ed reward received over time when the robot takes the optimal
policy, and is obtained using @ learning.

L wm e

/ R Vo 1 | second
(o) @ | w |

first
o | e |
State Space 1 State Space 2
Target
Situation

(a) target situation on one state space

{

forth
level

hird

thir
{ Levd

second
(0) 0 (00) 0) 80 0 3 v
A

[]
first
wommm o) ie
State Space 1 State Space 2
T
Target
Situation

(b) target situation on two state spaces

Figure 4: Strategy in the multi-layered control struc-
ture. L.M. stands for learning module

the behavior activation b from the higher level mod-
ules, it calculates the optimal policy for its own goal,
and sends action commands to the lower level. The
action command is translated to actual motor com-
mand, then the robot takes the action in the world.
The details of the method is described in [1].

3.2 Strategy in the Multi-Layered Learn-
ing System to Accomplish Task

The basic idea of the strategy in the multi-layered
system is same as the previous work [1]. The target
state is given to the multi-layered learning system in
the state space at the bottom level. Figure 4(a) shows
this situation. If the target situation is defined on one
state space, the system executes the procedure [1]; first
of all, the system searches a module which is nearest
to the target situation. If the module can accomplish
the given task, it applies its optimal policy. Else the
system searches the module which is nearest to the
target situation at the higher level. If the module can
apply its policy, it sends behavior activation to lower
modules, else the system does the same way at higher
level.

If the target situation is defined on two state spaces
at the bottom level, the system searches the lowest
layer which has modules managing them. Figure 4(b)
shows this case. The target situation is given in the
two different state spaces. The system searches a mod-
ule nearest to the target situation at the second level
though there are two activated modules at the first
level, because the given task is specified in the two s-
tate spaces and the layer at the second level manages
them. If the module at the second level cannot handle
the situation, the system searches a module at higher

level as the previous proposed method does.

4 Experiments
4.1 Setting

¢

Figure 5: A mobile robot, a ball and a goal

Omni-directional PC
mirror

(Pentium MMX 233MHz)

Camera

Camera
<§ ; I
| Image Processing | PCI
Board (IP5000)

| Image Processing |
yasu4 I Board (IP5000) |

ISA
RIF
Motor Motor
Driver Wireless LAN

Figure 6: An overview of the robot system

To evaluate the proposed method, we apply it to
a task of shooting a ball into a goal. Figure 5 shows
a picture of the mobile robot we designed and built,
the ball, and the goal. Figure 6 shows an overview of
the robot system. It has two TV cameras; One with
wide-angle lens of which visual angles are 35 degrees
and 30 degrees in horizontal and vertical directions, re-
spectively. This camera is tilted down 23.5 degrees to
capture the ball image as large as possible. The other
with omni-directional mirror is mounted on the robot.
The driving mechanism is PWS (Power Wheeled Sys-
tem), and the action space is constructed in terms of
two torque values to be sent to two motors that drive
two wheels. These camera and kinematic parameters
of the system are unknown to the robot, and it tries
to estimate the mapping from sensory information to
appropriate motor commands by the method. The
environment consists of a ball, a goal, and the mobile
robot. The target situation is given by reading the

ball x goal
J .

i ball x goal /I\
i 000 000

ball pers. x goal pers)
...OOO- {TMyoo | M) jevel
ball omni ball pers) goal pers) goal omni
--ooo- --ooo- --ooo- ooo- =

God image

Ball |mage mage 0al image 1 imag
omni camera

omni camera perspectlve camera perspectlve camera

Figure 7: A hierarchy architecture of learning modules

sensor information when the robot pushes the ball in-
to the goal; the robot captures the ball and goal at
center bottom of the perspective camera image.

The state spaces at the bottom layers are construct-
ed in terms of the centroids of a ball and a goal im-
ages of the two cameras and the perspective image and
omni-directional one are tessellated into 11 by 21 grids
and 15 by 15 grids, respectively. The action space is
constructed in terms of two torque values and is tes-
sellated into 5 by 5 grids. The representative state
and action at the upper layer is constructed by the
learning modules automatically assigned at the lower
layer.

We construct the hierarchical structure as shown
in Figure 7. At the lowest level, there are four learn-
ing layers, and each of them deals with its own logical
sensory space (ball positions on the perspective cam-
era image and omni one, and goal position on both
images). At the second level, there are three learn-
ing layers in which one adopts multiplicative approach
and the others adopt additive approach. The multi-
plicative approach of the “ball pers.x goal pers.” layer
deals with lower modules of “ball pers.” and “goal
pers.” layers. The arrows in the figure indicate the
flows from the goal state activations to the state vec-
tors. The arrows from the action vectors to behav-
ior activations are eliminated. At the third level, the
system has three learning layer in which one adopts
multiplicative approach and the others adopt additive
approach, again. At the levels higher than third layer,
fh]e learning layer is constructed as the previous one
1].

4.2 Experiment Result

The experiment is constructed with two stages, one
is the learning stage and other the task execution one
using the learned results. First of all, the robot moved
at random in the environment for about two hours.

After the learning stage, we let our robot do a cou-
ple of tasks. One is shooting a ball into the goal using
this multi-layer learning structure. The target situa-
tion is given by reading the sensor information when
the robot pushes the ball into the goal; the robot cap-
tures the ball and goal at center bottom in the perspec-

M
.////ll

mnmn — -
l!‘ll\'lggll'lllllllll

il ‘WG.M(’co
Bl = ull

Figure 8: A sequence of the behavior activation of
learning modules and the commands to the lower layer
modules

tive camera image. As an initial position, the robot is
located far from the goal, faced opposite direction to
it . The ball was located between the robot and the
goal.

Figure 9 shows the time development of the goal
state and behavior activations of learning modules at
first, second, and third levels while the robot shoots a
ball into the goal. The arrows on the top of each series
indicate the behavior activations, and the others indi-
cate the goal state activation. Figure 8 shows the se-
quence of the behavior activation of learning modules
and the commands to the lower layer modules. The
down arrows indicate that the upper learning mod-
ules fire the behavior activations of the lower learning
modules.

When the robot located at the initial position, the
module 8 in the “ball omni” layer and the module 12
in the “goal omni” layer at the first level has high goal
state activations. “ball pers.” layer and “goal pers.”
layer at first level have no activated modules because
the robot does not capture the ball or the goal with
the perspective camera. When the robot located at
the target position, the module 0 at all layers are near
to their own goal states. The robot turns its body
until 20 steps in order to capture the ball and goal
with the perspective camera, and it dribbles the ball,
then finally shoots it into the goal.

Figure 8 shows the rough sketch of the activated
modules transition and the commands to the lower
layer on the multi-layer learning system. First of al-
1, the system tried to activate the module 0 of “ball
pers.x goal pers.” layer at the second level, however,
the module could not manage the current situation,
because the robot doesn’t capture the ball and goal
with the perspective camera. Then the system tried
to activate the module 0 of “ballx goal’ layer at the
third level, and this module activates the module 1

of “goal pers.+omni’ layer and the module 0 of “ball
pers.+omni’ layer at second level, sequentially. These
modules at second level activate adequate modules at
first level. When the module 0 of “ball pers.x goal
pers.” layer at second level is able to handle the situ-
ation, the module takes over all control of the robot.
Sometimes the module 0 of “ballx goal’ layer at the
third level is activated when the module “0” of “ball
pers.x goal pers.” layer at second level cannot handle
the situation because the robot bumped the ball and
the situation changed drastically. Finally, the mod-
ule 0 of “ball pers.xgoal pers.” layer at the second
level leads the robot to the target situation in which
the robot is capturing the ball and the goal at center
bottom of the perspective camera image.

5 Discussions

This paper proposed a mechanism which constructs
several configurations of learning modules at higher
layers using several groups of modules at lower layers.
We applied the method to a simple soccer situation
in the context of RoboCup, show the experimental
results.

One missing point in the current method is that
it does not have the mechanism that constructs the
learning layer by itself. We will extend the method
to add new learning layers without human designer’s
intension.

We need take the action space hierarchy into con-
sideration, while the current method deals with state
space hierarchy. We expect we can apply similar ap-
proach to this problem.

Acknowledgments

This research was supported by the Japan Science
and Technology Corporation, in Research for the the
Core Research for the Evolutional Science and Tech-
nology Program (CREST) titled Robot Brain Project
in the research area “Creating a brain”.

References

[1] Y. Takahashi and M. Asada, “Vision-guided be-
havior acquisition of a mobile robot by multi-
layered reinforcement learning,” in IEEE/RSJ
International Conference on Intelligent Robots
and Systems, 2000, vol. 1, pp. 395—402.

[2] M. Asada, S. Noda, S. Tawaratumida, and
K. Hosoda, “Purposive behavior acquisition for
a real robot by vision-based reinforcement learn-
ing,” Machine Learning, vol. 23, pp. 279-303,
1996.

[3] Eiji Uchibe, Masateru Nakamura, and Minoru
Asada, “Cooperative behavior acquisition in
a multiple mobile robot environment by co-
evolution,” in RoboCup-98: Robot Soccer World
Cup II, Proc. of the second RoboCup Workshop,
Minoru Asada, Ed., 1998, pp. 237-250.

[4] Noriaki Mitsunaga and Minoru Asada, “Obser-
vation strategy for decision making based on in-
formation criterion,” in Proceedings of the 2000

[10]

IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2000, pp. 1038-1043.

Sebastian Thrun, “A lifelong learning perspective
for mobile robot control,” in In Proceedings of
the IEEE/RSJ/GI International Conference on
Intelligent Robots and Systems, 1994, vol. 1, pp.
23-30.

Fumihide Tanaka and Masayuki Yamamura,
“An approach to lifelong reinforcement learning
through multiple environments,” in 6th Furopean
Workshop on Learning Robots, 1997, pp. 93-99.

Takahashi Minato and Minoru Asada, “Envi-
ronmental change adaptation for mobile robot
navigation,” in Proc. of IEEE/RSJ Internation-
al Conference on Intelligent Robots and Systems,
1998, pp. 1859-1864.

Yasutake Takahashi, Masanori Takeda, and Mi-
noru Asada, “Continuous valued g-learning for
vision-guided behavior acquisition,” in Proceed-
ing of the 1999 IEEE International Conference
on Multisenso Fusion and Integration for Intelli-
gent Systems, 1999, pp. 255-260.

J. Tani and S. Nolfi, “Self-organization of mod-
ules and their hierarchy in robot learning prob-
lems: A dynamical systems approach,” Tech.
Rep., Sony CSL Technical Report, SCSL-TR-97-
008, 1997.

C. J. C. H. Watins and P. Dayan, “Technical
note: Q-learning,” Machine Learning, vol. 8, pp.
279-292, 1992.

100
step 150 200

(b) second layer

10
jv\ 0Ty ——
0 —A—
A s
13 XY
14 14 113 16 219 02025%;?1 AN
e

sep 150

(b) first layer

Figure 9: A sequence of the goal state activation and
behavior activation of learning modules

