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Abstract: Cooperation is one the most important issues in multiagent systems. There
is a trade-off between the centralized control and the distributed one from the
performance viewpoint of cooperation. This paper proposes a method to emerge
cooperative behaviors via environmental dynamics caused by multi robots in a hostile
environment without any planning for cooperation. Each robot has its own policy to
achieve the goal with/without explicit social behavior such as yielding. Co-existence
of such robots in a dynamic, hostile environment produces various environmental
dynamics, in which the heterogeneous robots can be seen as cooperating each other.
The experimental results performed in the F2000 league at RoboCup-2000, Melbourne
is discussed, and the future issue is given.
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1. INTRODUCTION

RoboCup has been proposed as a test-bed for
multi robot systems in which a team of robots
play a soccer game to beat an opponent team (the
final goal of RoboCup is to beat the latest human
world cup champion team by a team of eleven
humanoid robots by 2050) (Kitano, 1998; Asada
and Kitano, 1999; Veloso et al., 2000). This can
be regarded as the most difficult task for the
multi robot systems due to its highly dynamic,
hostile situations that differ from situations in the
conventional multiagent systems in which the real
time constraint is not an issue.

In such an environment, cooperation is the most
difficult one to realize because the existing sense-
model-plan-act methods seem useless under the
real time constraint. Parker (Parker, 2000) cat-
egorized the multiagent systems into two: swarm-
type cooperation and “intentional” cooperation.
The former aims at emergence of cooperative be-
haviors as a consequence of the interaction be-
tween local behaviors of many agents, say 100 or

more, each of which does not concern the global
goal but does behave according to its own policy.
On the other hand, the “intentional” cooperation
deals with the problem by a limited number of
multiagent who know the global goal and actively
communicate with each other to negotiate the
issue of cooperation logically.

The highly dynamic, hostile environment pro-
vided by RoboCup differs from these two cate-
gories. Unlike the swarm-type cooperation, each
player knows the global goal (get a win by shoot-
ing), but no time to negotiate like “intentional”
cooperation. Furthermore, the robot player has
to realize not only cooperative behaviors but also
competitive ones to the opponents, which makes
the issue much more difficult.

In such a situation, action planning before the
game seems useless due to high environmen-
tal dynamics. Parker (Parker, 2000) proposed L-
ALLIANCE as an extension of ALLIANCE for
dynamic role assignment and adaptation in mul-
tiagent systems. Her architecture seems useful



with capabilities of dynamic role assignment and
learning. However, potential applicable to the
RoboCup situation is unknown because the in-
dependent subtask assumption does not seem to
hold in the RoboCup situations and modeling the
opponent players seems difficult. Instead of con-
sidering these issues, a simple and straightforward
method was proposed (Werger, 1999) in which
the design principles useful for highly dynamic
environments were shown such as “use the en-
vironment directly,” “replace computation with
rapid feedback,” and “tolerate uncertainty before
trying to reduce it.”

This paper follows these principles and proposes
a method to emerge the cooperative behaviors
without any planning or intention of coopera-
tion under the highly dynamic, adversary envi-
ronment. Environmental dynamics consists of dy-
namics of self motions to the static environment
and/or passive agents (ex., a ball), the motions
of other agents and combinations of these mo-
tions. We have embedded more skillful behavior
(a kind of visual servoing in a seamless manner
between defense and offense) into each player with
slightly different parameters. The cooperation in
higher level than Werger’s (Werger, 1999) can
be observed such as complementary behaviors in
both offense (shoot covering) and defense (ball
clearing).

The rest of the paper is organized as follows.
First, we explain the environmental dynamics and
the basic ideas to utilize it. Next, each agent
architecture is described with a hardware con-
figuration and motion control scheme. Then, the
experimental results performed in F2000 league at
RoboCup-2000, Melbourne are shown with many
pictures. Finally, a discussion and future issues are
given.

2. ENVIRONMENTAL DYNAMICS AND OUR
APPROACH

Environmental dynamics can be defined from a
view point of single agent. The simplest one is
a situation of a single agent in a static environ-
ment, and the most complicated one is the sit-
uation of multi-agents with conflict goals. Asada
et al.(Asada et al., 1999) classified the dynamics
based on the relationship between visual informa-
tion and self-induced motion as follows:

(1) Body of its own and static environ-
ment: The body of its own or static envi-
ronment can be defined in a way that notes
the changes in the image plane that can
be directly correlated with the self-induced
motor commands (e.g., looking at your hand
showing voluntary motion, as does changing

your gaze to observe the environment). Theo-
retically, discrimination between “body of its
own” and “static environment” is a difficult
problem because the definition of “static” is
relative and depends on the selection of the
reference (the base coordinate system) which
also depends on the context of the given task.
Usually, we suppose the orientation of gravity
can provide the ground coordinate system.

(2) Passive agents: As a result of actions of the
self or other agents, passive agents can be
moving or still. A ball is a typical example.
As long as they are stationary, they can be
categorized into the static environment. But
no simple correlation of motor commands
with its body or the static environment can
be expected when they are in motion.

(3) Other active agents: Active agents do not
have a simple and straightforward relation-
ship with self motions. In the early stage,
they are treated as noise or disturbance be-
cause they lack direct visual correlation with
the self-induced motor commands. Later,
they can be found from more complicated
and higher order correlations (coordination,
competition, and others). The complexity is
drastically increased.

Based on this definition, Asada et al. (Asada et
al., 1999) proposed a method to estimate the order
of the environmental dynamics with observation
and self-induced actions, and applied it to the
multiagent reinforcement learning to realize a co-
operative behavior such as passing and shooting.
Uchibe et al. (Uchibe et al., 1998) applied the
method to control the environmental complexity
to gradually skill up the competitive behavior
such as shooting against a goalie.

In these methods, off-line process of the order
estimation and long reinforcement learning time
are needed. Our approach here is instead to adopt
more practical strategy:

(1) use the environment directly (Brooks, 1991),
(2) replace computation with rapid feedback,

and
(3) tolerate uncertainty before trying to reduce

it.

According to 1, we realized a sensory-motor map-
ping without any 3-D geometric reconstruction
of the environment which is time-consuming and
prone to errors. A kind of visual servoing mech-
anism is adopted to realize a rapid feedback (2),
which as a result reflects 3.



3. WHAT MAKES ENVIRONMENTAL
DYNAMIC?

We have found three key aspects which cause the
environmental dynamics:

(1) Multi-agent environment
(2) Hostile environment
(3) Heterogeneity among the agents

3.1 Multi-Agent Environment

Multi-agent system emerges a dynamical environ-
ment. Each agent moves around in the environ-
ment under its own policy. They change situations
by themselves constantly. The dynamical envi-
ronment sometimes provides the agents a way to
escape from a stuck situation. For example, when
a ball is stuck between a robot and a wall, another
robot pushes the ball from its side, then they can
go through the stuck situation.

Our team has no explicit communication among
the players. An explicit communication between
team members using some kind of wireless devices
sometimes causes more difficulty and complexity,
and brings less practical benefit, because of its
instability, asyncronousness, time-consuming cal-
culation to abstract data to make it useful.

Implicit communication may avoid such difficulty
and complexity. The implicit communication uses
the perception of other agents’ effects on the
environment. We prepare slightly different social
behaviors to each agent, like collision avoidance or
path yielding.

3.2 Hostile Environment

The opponent agents’ behaviors may lead coop-
erative behavior among teammates. There might
be no need for cooperation in the soccer situa-
tions unless opponents exist because one agent
can shoot a ball to a goal by itself and there is
much time to recover the failures even if it fails to
control the ball. On the other hand, in the hostile
environment where the opponent tries to take a
ball to shoot it into the own goal, the team needs
much faster error recovery than in the non-hostile
one, or the team loses the game. It is very useful
strategy for the fast error recovery that the multi-
robots stay to the side and behind while one robot
leads with the balls. Even if the leading robot fails
to shoot the ball or the opponent agent takes the
ball, another robot may cover the situation im-
mediately. The hostile environment emerges such
a kind of cooperative error recovery.

Fig. 1. Our mobile robots
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Fig. 2. An overview of the robot system

3.3 Heterogeneity

Fig.1 shows pictures of our mobile robots we
designed and built. The left robot has both a
normal camera and an omni-directional one, and
right one has only an omni-directional camera.
Fig.2 shows an overview of the robot system,
which consists of a motor driving unit, a vision
system, and a control unit. The hardware details
are given in (Takahashi et al., 2000).

Table 1. Heterogeneity between the two
robots

Type A Type B

vision omni & normal omni

ball handling skillful not so skillful

shooting motion slow fast

social behavior collision avoidance + path yielding

We prepare two type robots at first. Table 1 shows
the heterogeneity between the two type robots. In
general, the type A robot is selfish, skillful and
careful to shoot a ball, on the other hand, the



type B is moderate and not so skillful but has a
much fast shooting behavior.

3.3.1. Vision System Omni-directional vision
system is suitable to capture the image around
the robot. However, it is not good at capturing
the image of the objects too far due to the poor
resolution, or too close because the own body
hides the object to be observed.

The heterogeneity of the vision system character-
izes the different behaviors of both type robots.
The type A robot has a normal camera, and the
precise detection of ball enables it to handle a ball
skillfully. For example, this robot can spring out
the ball stuck at the corner while the type B robot
cannot do that because its vision system has too
poor resolution to detect the ball position.

The shooting behavior of type A is more careful
than the type B robot, of which behavior is like
a straight-line motion. Because the type B robot
doesn’t have image resolution enough to handle
the ball precisely, it tries to push the ball toward
the opponent goal as soon as possible. On the
other hand, type A robot tries to control the ball
carefully in order to shoot the ball, avoiding the
opponent.

3.3.2. Social Behavior Type A robot doesn’t
distinguish the other robots as teammates or not.
It just recognizes them as obstacles, and doesn’t
care about the other robots’ intention. The reason
is that its computer does not have enough power
to process more number of colors in two camera
images.

On the other hand, type B robot can recognize
the own team members using team color. If the
team member is in the desired robot direction,
the robot just stops to avoid interfering with its
team member.

4. COOPERATION VIA ENVIRONMENTAL
DYNAMICS

We show some performances reflecting the three
key aspects, that is, multi-agent, hostile environ-
ment, and the heterogeneity among the agents
at the real robot soccer competition in the
RoboCup2000 which was held in Melbourne, Aus-
tralia during August 28th and September 3rd,
2000.

Fig.3 shows how the multi-agent system succeeded
in escaping from a stuck situation. The opponent
controls the ball at 1©. It tries to shoot the ball
and our goalie defends it at 2©. All our robots
tries to defend the ball, but the situation is almost
stuck because our robots cannot move in order to

Fig. 3. A sequence of a breakthrough of a stuck
situation

avoid a collision or yielding the other robot’s path
at 3© and 4©. On the other hands, the opponent
tries to shoot the ball again, and the ball moves at
5©. The situation changes and one of our robots
begins to move again at 6©. The our goalie pushes
the ball forward and the other two robots follow
the ball at 7© and 8©.

Fig.4 shows how the two robots recover each
others’ failures quickly. 1© indicates that the two
different robots follow a ball. The type B robot
tries to shoot a ball to the opponent goal at
2©. But it failed at 3© because the ball handling
skill of type B is not so good, and type A robot
recovers the failure soon. The type A robot tries
to shoot the ball, but the opponent goalie defends
it at 4©. The type A robot tries to shoot the
ball from left side of the goal at 5© and 6©, but
unfortunately fails again while the type B robot
moves its position behind the type A robot. The
type B robot tries to recover the failure of type
A robot’s shooting at 7©, and it shoots the ball
successfully after all at 8©.

Fig.5 shows that a kind of social behavior and how
the heterogeneity takes effect. The type A robot
follows the ball and the type B robot follows them
at 1© and 2©. The ball sticks on the wall at 3© and
the type A is good at handling the ball, then it
springs out the ball while the type B is waiting
because it has a path yielding policy as a social



Fig. 4. A sequence of a failure recovery behavior among two robots

behavior at 4©. The type A robot tries to shoot,
but the opponents defend it while the type B robot
stop waiting and runs to shoot the ball at 5© and
6©

5. DISCUSSION AND FUTURE ISSUES

We have proposed a method to emerge coopera-
tive behaviors without any plans, and shown some
experimental results with qualitative explanation.
As a future work, we are planning to formulate



Fig. 5. A pass sequence

the environmental dynamic in more quantitative
manner.
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