
Dynamic Task Assignment in a Multiagent/Multitask Environment
based on Module Conflict Resolution

Eiji Uchibe, Tatsunori Kato, Minoru Asada, Koh Hosoda
Graduate School of Eng., Dept. of Adaptive Machine Systems

Osaka University, Suita, Osaka 565-0871, Japan
uchibe@er.ams.eng.osaka-u.ac.jp

Abstract

It is necessary to coordinate multiple tasks in or-
der to cope with larger-scaled and more complicated
tasks. However, it seems very hard to accomplish the
multiple tasks at the same time. This paper proposes
a method to resolve a conflict between task modules
through the processes of their executions. Based on
the proposed method, the robot can select an appropri-
ate module according to the priority. In addition, we
apply the module conflict resolution to a multiagent
environment. Consequently, multiple tasks are auto-
matically allocated to the multiple robots. As a task
example, a soccer game is selected to show the validity
of the proposed method. Real experiments are shown,
and a discussion is given.

1 Introduction

In general, a robot is required to accomplish a va-
riety of tasks in different environments. What is more
important is to develop a method that can cope with
multiple tasks at the same time. One approach to deal
with such multiple tasks is to make some modules cor-
responding to the tasks. Each module has an ability
to accomplish the corresponding task, that makes the
programming easier. The most simple implementation
is that one robot is allocated to the one task in ad-
vance. However, this approach seems inefficient from
a viewpoint of the cost performance. We should not
increase the number of robots even though the number
of tasks increases.

Fontán and Matarić [3] proposed a method to di-
vide a labor into exclusive spatial territories. That
is, the working area is assigned to the robot. In or-
der to realize their method, the knowledge about the
working-field is given to the designer in advance.

Kuniyoshi [5] developed a framework called Co-
operation by Observation. Although they realized a

number of cooperation in the real environment, the
conflict between the modules should be considered in
advance. Parker [7] proposed an architecture called
L-ALLIANCE. Castelpietra et al [2] has shown a dy-
namic role (task) assignment method based on explicit
communication. Although they realized some coop-
eration in the real environment, the number of the
tasks for each robot is one. Therefore, the relation-
ship between robots and tasks is exactly one to one
correspondence.

This paper proposes a method to assign the multi-
ple tasks to the multiple robots in a time-varying en-
vironment. Unlike previous work [2, 3, 7], we focus on
the incompatibility of the modules called module con-
flict through the interactions with the environment by
considering to what extent the executed module affects
the accomplished modules.

The robot can discriminate the conflict modules
between the current executed module and the accom-
plished module automatically. Based on the proposed
method, the robot can accomplish the tasks as many
as possible. The module conflict resolution is also ap-
plied to a multiple robots environment using explicit
communication.

As a task example, a simplified soccer situation in-
cluding multiple robots is introduced. Because there
are several tasks to perform the soccer game, each
robot has to do its own tasks in a dynamically chang-
ing environment. Based on the proposed method, two
robots show the defending behaviors while they change
the roles according to the situation. Real experiments
are shown and a discussion is given.

2 Dynamic Task Assignment

2.1 Definition of the Terminology

For reader’s understanding, we introduce some im-
portant terms. A multitask is a composition of multi-

Goal

t = 0 t = t1

Goal

Object A
Object A

Agent Agent

Figure 1: The definition of the task.

ple tasks, where a task means transfer from the initial
state to the desired state by robot. A module con-
sists of a policy (controller) and an evaluation function
which indicates to what extent the current task is ac-
complished.

Figure 1 shows a simple example. There are two
robots, one object (A), one obstacle, and, one goal
(destination) in the environment. In this case, the
multitask and the task are specified as follows:

multitask : To carry object A to the goal.
tasks : “Push object A”, “Avoid an obstacle”, “Ap-

proach an obstacle”, “Push an obstacle”, and so
on.

2.2 Module

Figure 2 (a) shows a definition of a module. Each
module mk ∈ M has two functions. One is a policy
fk(x) which maps from a state x to an action ok, and
the other is an evaluation function vk(x). The mod-
ule outputs ok based on fk(x) in order to minimize
the evaluation function vk(x). The module can be re-
garded as an actor-critic architecture [8]. In addition,
we standardize vk(x) by

ak =

0 (vk,inf < vk(x))
vk(x)− vk,inf

vk,sup − vk,inf
(vk,sup < vk(x) ≤ vk,inf)

1 (0 ≤ vk(x) < vk,sup)

,

(1)
where vk,inf and vk,sup are thresholds. Hereafter, we
call ak task accomplishment (0 ≤ ak ≤ 1). Using the
task accomplishment, the subset of modules Ma is de-
fined by

Ma = {mi|ak = 1}.
A module m ∈ Ma is no longer executed because it
has been already accomplished. In this sense, some

module (k)

o a

x

v()xf ()x

k k

module(1)

x

module(n)

on an

SENSOR

MOTOR

o k

...

()

agent

x() x()

o1 ()a1 () ()

Selection

(a) module (b) agent

Figure 2: An architecture of the proposed method.

tasks might have been accomplished even if the corre-
sponding modules have never been executed.

We define a new measure ei by

ei(t) =
{

1 if mi is a selected module,
ai(t) otherwise. (2)

Hereafter, ei is called task execution, which is a scalar
value between 0 and 1. A case of ei = 1 and ai 6= 0
means that the robot can not minimize the evaluation
function although the robot attempt to accomplish the
i-th task. To deal with time-varying environment, the
averaged task execution is calculated by

ēi(t) = ρēi(t− 1) + (1− ρ)ei(t), (3)

where ρ is a forgetting factor between 0 and 1.

2.3 Module conflict resolution

Although it is desirable for a robot to accomplish
given multiple tasks, there would be some modules
incompatible to each other according to the situation.
Therefore, it is important for a robot to resolve such
conflicts between the modules automatically.

In order to detect the conflict between the mod-
ules mi and mj , a correlation of ei and aj is utilized.
∆r(ei, aj) is an index to measure how task execution
of mi influences task accomplishment of mj . The mod-
ules that are in conflict with the module mj ∈ Ma is
determined by

Mc = {mi|∆r(ei, aj) < 0, mj ∈Ma}.

In case of ∆r(ei, aj) ≥ 0, the robot can cope with
both the execution of the module mi and the accom-
plishment of the module mj . On the other hand, in
case of ∆r(ei, aj) < 0, the execution of the module mi

prevents the accomplishment of the module mj .

The rest of the modules is determined as

Mca = M−Ma −Mc.

At the beginning, Mca = M, Ma = φ, and Mc = φ.
The robot selects the module by

ms = arg max
m′∈Mca

U(m′), (4)

where U is a priority which is given in advance. Ma,
Mc and Mca are updated according to the changes of
the environment in order to accomplish the tasks as
many as possible.

Each module outputs an action based on the policy.
The problem is how the robot should integrate the
several outputs from the modules. Simple realization
is based on the weighted sum of outputs. However,
the resultant behavior is not guaranteed as an optimal
one, and it may lead to some serious situations. Then,
we introduce a priority function U in order to make
the priority. The robot follow the procedures every
time step:

1. For the all modules, task accomplishment and task
execution are computed using equations (1) and
(2).

2. Calculate subsets Ma, Mc, and Mca.
3. Select a module ms from Mca using equation (4).
4. Execute an action os based on the policy of the

module ms.

Because the actual outputs of the robot is one of
the outputs, the behavior of the robot has a physi-
cal meaning for the selected module.

3 Extension to a Multiagent Environ-
ment

As described in the previous section, we proposed a
method to detect conflicts between modules. However,
the modules belonging to Mc remain un-executed in
the current system. Therefore, we extend our method
to a multiagent system by adding multiple robots that
take charge of Mc. We assume that

• each robot has the same set of modules M.
• each robot can get the information about task ac-

complishment and task execution.

This can be implemented by a blackboard system.
Each robot has its own parameters such as task accom-
plishment, task execution, and module subsets (Ma,
Mc, and Mca). Hereafter, “k” denotes the parameter

of the k-th robot kR. In order to measure how much
the robot kR works, the load kLj(t) is calculated by

kLj(t) =
n∑

i=j

kaiU(mi), (5)

where U(mi) is the priority of module mi.
For the current module mj determined by Eq. (4),

the robot kR judges whether mj should be executed
or not. A procedure is described as follows:

1. Check task accomplishment of mj .
Go to step 4 if no robot has already accomplished
the task.

2. Check the remaining power of kR.
If kL(t) < Lmax, go to step 4 (Lmax is a thresh-
old).

3. Entrust the module mj to the other robot
Subtract mj from kMca, and add mj to kMe,
where kMe denotes the subset of the modules
that are accepted by other robots. Then, return
to step 1.

4. Check the module conflict.
Go to step 5 if the modules mj and mi are com-
patible each other. Otherwise, add mj to kMc.
Then, go to step 1.

5. Execute mj .
If the robot Rk accomplished the module mj ,
transfer mj from kMc to kMa. Then, go to step
1. Otherwise, execute mj .

Each robot kR computes the module conflict and ob-
tains the subsets kMa, kMc, kMca, and kMe, sepa-
rately.

4 Task and Assumptions

4.1 Environment and Robots

We apply the proposed method to a simplified soc-
cer game including two mobile robots in the context
of RoboCup [4]. RoboCup is an increasingly success-
ful attempt to promote the full integration of AI and
robotics research, and many researchers around the
world have been attacking a wide range of research
issues. Here, the multitask for the robots is to defend
the own goal.

A mobile robot has an omnidirectional vision sys-
tem. The robot moves around the field based on the

opponent goal

own goal

ball
robot

a

b

c

robot

robot

opponent goal

own goal

ball
robot

a

b

c

robot

robot

θb own

oppθb

bx

ownx

oppx

(a) top view of the field (b) view captured by an
omnidirectional vision

Figure 3: The experimental setting.

power wheeled steering system. As motor commands,
each robot has two degrees of freedom. The environ-
ment consists of a ball and two goals. The sizes of the
ball and the goals are the same as those of the middle-
size real robot league in the RoboCup Competition.

4.2 Module description

Figure 3 (b) shows detected image features to ex-
tract the information of the environment, where xb,
xown and xopp are the center positions of the ball, the
own goal, and the opponent goal, respectively. The
policy and the evaluation function are designed based
on these features. Figure 4 shows typical behaviors
generated by the four prepared modules. In order to
realize the defending behavior, we design the following
modules.

m1: The purpose of this module is to push the ball.

xd = xb,
v = ||xb||,

where xd and || · || denote the desired state and a norm
of the vector, respectively. This module can be used
when the robot attempts to shoot the ball into the
goal or clear the ball.

m2: The purpose of this module is to move to the
opposite side of the opponent goal.

xd = (b + 1)xb − bxopp (0 ≤ b ≤ 1),
vr = ||xb||,
vθ = bθopp,
v = wvr + (1− w)vθ, (0 ≤ w ≤ 1),

This module can be used when the robot behave as a
offensive player.

ball

robot
opponent
goal

(a) m1 (b) m2

own
goal

own
goal

(c) m3 (d) m4

Figure 4: Typical behaviors generated by the modules

m3: The purpose of this module is to move to the
position between the ball and the own goal to save
the own goal.

xd = (1− a)xb + axown,
v = π/2− |bθown|,

m4: The purpose of this module is to stay at the own
goal.

xd = xown

v = ||xown||,
The goalie should select this module in order to block
the own goal with its own body.

In addition, we define the priority as U(mi) = i in
this experiment. We prepare a controller which makes
the features on the image plane converge to the desired
values. For the desired state xd = [xd yd]T , a motor
command u is computed by

u =
[

ur

ul

]
=

[−1 1
1 1

] [
xd

yd

]
, (6)

where ur and ul are the velocities of the right and left
wheels, respectively. All the policies of the modules
are designed using Eq. (6). Although we implement
the above policies using the servoing technique in this
experiment, it is possible to acquire them based on the
learning algorithms [9] as well.

5 Experimental Results

We show a result to demonstrate how the proposed
method works. Figure 5 shows a configuration of the

PCI

ISA

Motor

Motor
Driver

Wireless LAN

RIF board

IP5000

Printer Port

Serial PortBoard PC

PC

Omni-directional
vision

Figure 5: An overview of the robot system

real mobile robot. A simple color image processor (Hi-
tachi IP5000) is applied to detect the ball and the
goal area in the image in real-time (33 [msec]). Com-
munication between the robots are realized using the
Wireless LAN. Since the bandwidth of communication
is very low, the robot can be controlled in real-time.

Figure 6 shows the averaged task accomplishment
and task execution calculated by Eq. (3). From the
beginning, m4 is accomplished (a4 = 1), while r0 sel-
dom executes m1. On the other hand, according to
the situation, r1 pushed the ball toward the opponent
goal using the module m1.

Figure 7 shows an example sequence of the robots’
behaviors. For the sake of convenience, the robot col-
ored in black (white) is called r0 (r1). In Figure 7 (a),
r0 is the robot in the right side. From these figures,

(a), (b) : Both robots moved to the own goal because
the module m4 (stay at the own goal) is the most
important.

(c) : Since r0 accomplished the module m4, r1 ne-
glected m4 and checked the task accomplishment
of ai (i = 1, 2, 3).

(d) : r0 stayed in front of the own goal while r1 at-
tempted to clear the ball.

(e) : They swapped their roles.
(f), (g) : r0 attempted to push the ball by m1. In

this case, m2 was also accomplished by r0. On the
other hand, r1 went to the own goal. However r1
failed to accomplish m1 due to its poor policy.

(h) : r0 moved to the own goal again because r1 could
not reach the own goal. As a result, r1 attempted
to clear the ball again since r1 was not needed to
stay at the own goal any more.

Because of the low image resolution, the robot
sometimes failed to detect the objects at a long dis-
tance. In this case, the module could not be performed
appropriately. In spite of those troubles, both robots

were complementary to each other. The defense be-
havior could be accomplished based on our method.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

ta
sk

 a
cc

om
pl

is
hm

en
t

time [sec]

a1

a2

a3

a4

(a) r0’s accomplishment

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

ta
sk

 e
xe

cu
tio

n

time [sec]

e 1

e 2

e 3

e 4

(b) r0’s execution

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

ta
sk

 a
cc

om
pl

is
hm

en
t

time [sec]

a1

a2

a3

a4

(c) r1’s accomplishment

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

ta
sk

 e
xe

cu
tio

n

time [sec]

e 1

e 2

e 3

e 4

(d) r1’s execution

Figure 6: The averaged task accomplishment āi and
task execution ēi

6 Conclusion

We have proposed a method to resolve the con-
flict between the given modules to handle the mul-
tiple tasks in a multiagent environment. We have ap-
plied the proposed method to several simplified soc-
cer games, and show the validity of our method in a
dynamically changing environment. We have already
checked the simulation results in case of three robots,
and we are planning to perform the experiments using
three mobile robots in the real environment.

As future work there are following issues. One is
a study about the priority function U because the to-
tal performance depends on the given priority func-
tion in the current system. Now, we are developing
the method to change the priority function using the
value of evaluation function. The other is an imple-
mentation of the proposed method without explicit
communication since behavior understanding is also
an important issue [6]. We have developed some algo-
rithms to estimate the other’s behavior from sequences
of perception and action [1]. The integration of them
leads the proposed method to be scaled to larger and
more complicated situations.

Acknowledgment

This research was supported by the Japan Society for
the Promotion of Science, in Research for the Future
Program titled Cooperative Distributed Vision for Dy-
namic Three Dimensional Scene Understanding (JSPS-
RFTF96P00501).

References

[1] M. Asada, E. Uchibe, and K. Hosoda. Coopera-
tive behavior acquisition for mobile robots in dynam-
ically changing real worlds via vision-based reinforce-
ment learning and development. Artificial Intelligence,
110:275–292, 1999.

[2] C. Castelpietra et al. Communication and Coordina-
tion among heterogeneous Mid-size players: ART99.
In The Fourth International Workshop on RoboCup,
pages 149–158, 2000.

[3] M. S. Fontán and M. J. Matarić. Territorial multi-
robot task division. IEEE Transaction on Robotics and
Automation, 14(5):815–822, 1998.

[4] H. Kitano, ed. RoboCup-97 : Robot Soccer World Cup
I. Springer Verlag, 1997.

[5] Y. Kuniyoshi. Behavior Matching by Observation for
Multi-Robot Cooperation. In International Symposium
of Robotics Research, 1995.

[6] T. Matsuyama. Cooperative Distributed Vision – Dy-
namic Integration of Visual Perception, Action, and
Communication –. In Proc. of Image Understanding
Workshop, Monterey CA, 11 1998.

[7] L. E. Parker. Lifelong Adaptation in Heterogeneous
Multi-Robot Teams: Response to Continual Variation
in Individual Robot Performance. Autonomous Robots,
8:239–267, 2000.

[8] R. S. Sutton and A. G. Barto. Reinforcement Learning.
MIT Press/Bradford Books, March 1998.

[9] S. Suzuki, T. Kato, M. Asada, and K. Hosoda. Be-
havior Learning for a Mobile Robot with Omnidirec-
tional Vision Enhanced by an Active Zoom Mechanism.
In Proc. of Intelligent Autonomous System 5(IAS-5),
pages 242–249, 1998.

(a) Start (b)

(c) (d) r1:450

(e) r0:400 (f) r1:600

(g) r1:800 (h) r0:t=600

Figure 7: The result of real space experiment (robot
ID:time)

